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PREFACE

This third edition, like the first two, is an introduction to the basic methods, theory,
and applications of differential equations. A knowledge of elementary calculus is
presupposed.

The detailed style of presentation that characterized the previous editions of the text
has been retained. Many sections have been taken verbatim from the second edition,
while others have been rewritten or rearranged with the sole intention of making them
clearer and smoother. As in the earlier editions, the text contains many thoroughly
worked out examples. Also, a number of new exercises have been added, and assorted
exercise sets rearranged to make them more useful in teaching and learning.

The book is divided into two main parts. The first part (Chapters 1 through 9) deals
with the material usually found in a one-semester introductory course in ordinary
differential equations. This part is also available separately as Introduction to Ordinary
Differential Equations, Third Edition (John Wiley & Sons, New York, 1980). The
second part of the present text (Chapters 10 through 14) introduces the reader to
certain specialized and more advanced methods and provides an introduction to
fundamental theory. The table of contents indicates just what topics are treated.

The following additions and modifications are specifically noted.

1. Material emphasizing the second-order linear equation has been inserted at
appropriate places in Section 4.1.

2. New illustrative examples, including an especially detailed introductory one, have
been written to clarify the Method of Undetermined Coefficients in Section 4.3,
and a useful table has also been supplied.

3. Matrix multiplication and inversion have been added to the introductory
material on linear algebra in Section 7.5.

4. Additional applications now appear in the text in Sections 3.3 and 7.2.

5. Section 7.6is a completely new section on the application of matrix algebra to the
solution of linear systems with constant coefficients in the special case of two
equations in two unknown functions. The theory that occupied this section in the
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second edition now appears in Chapter 11 (see note 9 following). We believe that
this change represents a major improvement for both introductory and inter-
mediate courses.

6. Section 7.7 extends the matrix method of Section 7.6 to the case of linear systems
with constant coefficients involving n equations in n unknown functions. Several
detailed examples illustrate the method for the case n = 3.

7. Both revised and new material on the Laplace Transform of step functions,
translated functions, and periodic functions now appears in Section 9.1.

8. The basic existence theory for systems and higher-order equations, formerly
located at the beginning of Chapter 11, has now been placed at the end of
Chapter 10. This minor change has resulted in better overall organization.

9. Chapter 11, the Theory of Linear Differential Equations, has been changed
considerably. Sections 11.1 through 11.4 present the fundamental theory of linear
systems. Much of this material was found in Section 7.6 in the second edition, and
some additional results are also included here. Sections 11.5 through 11.7 now
present the basic theory of the single nth-order equation, making.considerable use
of the material of the preceding sections. Section 11.8 introduces second-order
self-adjoint equations and proceeds through the fundamentals of classical Sturm
Theory. We believe that the linear theory is now presented more coherently than
in the previous edition.

10. Anappendix presents, without proof, the fundamentals of second and third order
determinants.

The book can be used as a text in several different types of courses. The more or less
traditional onc-semester introductory course could be based on Chapter 1 through
Section 7.4 of Chapter 7 if elementary applications are to be included. An alternative
one-semester version omitting applications but including numerical methods and
Laplace transforms could be based on Chapters 1,2,4, 6,7, 8, and 9. An introductory
course designed to lead quickly to the methods of partial differential equations could
be based on Chapters 1, 2 (in part), 4, 6, 12, and 14.

The book can also be used as a text in various intermediate courses for juniors and
seniors who have already had a one-semester introduction to the subject. An interme-
diate course emphasizing further methods could be based on Chapters 8, 9, 12, 13,
and 14. An intermediate course designed as an introduction to fundamental theory
could be based on Chapters 10 through 14. We also note that Chapters 13 and 14 can
be interchanged advantageously.

I am grateful to several anonymous reviewers who made useful comments and
suggestions. I thank my colleagues William Bonnice and Robert O. Kimball for helpful
advice. I also thank my son, Shepley L. Ross, II, graduate student in mathematics,
University of Rochester, Rochester, New York, for his careful reviewing and helpful
suggestions.

I am grateful to Solange Abbott for her excellent typing. I am pleased to record my
appreciation to Editor Gary Ostedt and the Wiley staff for their constant helpfulness
and cooperation.

As on several previous occasions, the most thanks goes to my wife who offered
encouragement, understanding, patience, and help in many different ways. Thanks,
Gin.

Shepley L. Ross
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— CHAPTER ONE—

Dufferential Equations and Thewr Solutions

The subject of differential equations constitutes a large and very important branch of
modern mathematics. From the early days of the calculus the subject has been an area
of great theoretical research and practical applications, and it continues to be so in our
day. This much stated, several questions naturally arise. Just what is a differential
equation and what does it signify? Where and how do differential equations originate
and of what use are they? Confronted with a differential equation, what does one do
with it, how does one do it, and what are the results of such activity? These questions
indicate three major aspects of the subject: theory, method, and application. The
purpose of this chapter is to introduce the reader to the basic aspects of the subject and
at the same time give a brief survey of the three aspects just mentioned. In the course of
the chapter, we shall find answers to the general questions raised above, answers that
will become more and more meaningful as we proceed with the study of differential
equations in the following chapters.

1.1 CLASSIFICATION OF DIFFERENTIAL EQUATIONS; THEIR ORIGIN AND
APPLICATION

A. Differential Equations and Their Classification

DEFINITION

An equation involving derivatives of one or more dependent variables with respect to one or
more independent variables is called a differential equation.*

* In connection with this basic definition, we do not include in the class of differential equations those
equations that are actually derivative identities. For example, we exclude such expressions as

—d(e"x) = ae¥, —d(uv) =u—~=+ vi, and so forth.
dx dx dx dx
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» Example 1.1

For examples of differential equations we list the following:

e dy\?
dT}Z) + xy(%) -0, (1.1)
dx  _d? .
Ff+5w{+3x=smt, (1.2)
ov  Ov
g + E =10, (13)

0%u N 0%u N 0%u
ox?  oy*  0z?

From the brieflist of differential equations in Example 1.1 it is clear that the various
variables and derivatives involved in a differential equation can occur in a variety of
ways. Clearly some kind of classification must be made. To begin with, we classify
differential equations according to whether there is one or more than one independent
variable involved.

=0. (1.4)

DEFINITION

A differential equation involving ordinary derivatives of one or more dependent variables
with respect to a single independent variable is called an ordinary differential equation.

» Example 1.2

Equations (1.1) and (1.2) are ordinary differential equations. In Equation (1.1) the
variable x is the single independent variable, and y is a dependent variable. In Equation
(1.2) the independent variable is ¢, whereas x is dependent.

DEFINITION

A differential equation involving partial derivatives of one or more dependent variables
with respect to more than one independent variable is called a partial differential
equation.

» Example 1.3

Equations (1.3) and (1.4) are partial differential equations. In Equation (1.3) the
variables s and ¢ are independent variables and v is a dependent variable. In Equation
(1.4) there are three independent variables: x, y, and z; in this equation u is dependent.

We further classify differential equations, both ordinary and partial, according to the
order of the highest derivative appearing in the equation. For this purpose we give the
following definition.
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DEFINITION

The order of the highest ordered derivative involved in a differential equation is called the
order of the differential equation.

» Example 1.4

The ordinary differential equation (1.1) is of the second order, since the highest
derivative involved is a second derivative. Equation (1.2) is an ordinary differential
equation of the fourth order. The partial differential equations (1.3) and (1.4) are of the
first and second orders, respectively.

Proceeding with our study of ordinary differential equations, we now introduce the
important concept of linearity applied to such equations. This concept will enable us to
classify these equations still further.

DEFINITION

A linear ordinary differential equation of order n, in the dependent variable y and the
independent variable x, is an equation that is in, or can be expressed in, the form

n n—1

d
a0(x) 7% + 1 () Y

d
S a5 + a9y = (),

where a is not identically zero.
Observe (1) that the dependent variable y and its various derivatives occur to the first

degree only, (2) that no products of y and/or any of its derivatives are present, and (3)
that no transcendental functions of y and/or its derivatives occur.

» Example 1.5

The following ordinary differential equations are both linear. In each case y is the
dependent variable. Observe that y and its various derivatives occur to the first degree
only and that no products of y and/or any of its derivatives are present.

d
S +5246y=0, (1.5)
X X

4
CAU L AL A (1.6)

DEFINITION

A nonlinear ordinary differential equation is an ordinary differential equation that is not
linear.
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» Example 1.6

The following ordinary differential equations are all nonlinear:

iy _d
—dx°J2) +5 % +6y2 =0, (1.7
a2 dy\?
e 5(%) +6y=0, (18)
PE d
W}Z)+5y£+6y=0. (1.9)

Equation (1.7) is nonlinear because the dependent variable y appears to the second
degree in the term 6y~. Equation (1.8) owes its nonlinearity to the presence of the term
5(dy/dx)3, which involves the third power of the first derivative. Finally, Equation (1.9)
is nonlinear because of the term 5y(dy/dx), which involves the product of the
dependent variable and its first derivative.

Linear ordinary differential equations are further classified according to the nature
of the coefficients of the dependent variables and their derivatives. For example,
Equation(1.5)is said to be linear with constant coefficients, while Equation (1.6) is linear
with variable coefficients.

B. Origin and Application of Differential Equations

Having classified differential equations in various ways, let us now consider briefly
where, and how, such equations actually originate. In this way we shall obtain some
indication of the great variety of subjects to which the theory and methods of
differential equations may be applied.

Differential equations occur in connection with numerous problems that are
encountered in the various branches of science and engineering. We indicate a few such
problems in the following list, which could easily be extended to fill many pages.

The problem of determining the motion of a projectile, rocket, satellite, or planet.
The problem of determining the charge or current in an electric circuit.

The problem of the conduction of heat in a rod or in a slab.

The problem of determining the vibrations of a wire or a membrane.

The study of the rate of decomposition of a radioactive substance or the rate of
growth of a population.

The study of the reactions of chemicals.

The problem of the determination of curves that have certain geometrical
properties.

b e

=~

The mathematical formulation of such problems give rise to differential equations.
But just how does this occur? In the situations under consideration in each of the above
problems the objects involved obey certain scientific laws. These laws involve various
rates of change of one or more quantities with respect to other quantities. Let us re-
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call that such rates of change are expressed mathematically by derivatives. In the
mathematical formulation of each of the above situations, the various rates of change
are thus expressed by various derivatives and the scientific laws themselves become
mathematical equations involving derivatives, that is, differential equations.

In this process of mathematical formulation, certain simplifying assumptions
generally have to be made in order that the resulting differential equations be tractable.
For example, if the actual situation in a certain aspect of the problem is of a relatively
complicated nature, we are often forced to modify this by assuming instead an
approximate situation that is of a comparatively simple nature. Indeed, certain
relatively unimportant aspects of the problem must often be entirely eliminated. The
result of such changes from the actual nature of things means that the resulting
differential equation is actually that of an idealized situation. Nonetheless, the
information obtained from such an equation is of the greatest value to the scientist.

A natural question now is the following: How does one obtain useful information
from a differential equation? The answer is essentially that if it is possible to do so, one
solves the differential equation to obtain a solution; if this is not possible, one uses the
theory of differential equations to obtain information about the solution. To
understand the meaning of this answer, we must discuss what is meant by a solution of
a differential equation; this is done in the next section.

Exercises
Classify each of the following differential equations as ordinary or partial differential

equations; state the order of each equation; and determine whether the equation under
consideration is linear or nonlinear.

1. 3—i}+x2y=xe". 2. %+4%—53—i+3y=sinx.
3. g—:;—+2721;=0. 4. x*dy+y*dx=0.
7. %+ysinx=0. 8. g;yz—+xsiny=0.

1.2 SOLUTIONS
A. Nature of Solutions

We now consider the concept of a solution of the nth-order ordinary differential
equation.
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DEFINITION

Consider the nth-order ordinary differential equation

dy d"y
—, ... =0, 1.10
F[x, e ’dx":| 0 (1.10)
. . . dy d
where F is a real function of its (n + 2) arguments x, Y e

1. Let f be a real function defined for all x in a real interval I and having an nth
derivative (and hence also all lower ordered derivatives) for all x € 1. The function f is
called an explicit solution of the differential equation (1.10) on I if it fulfills the following
two requirements:

FIx, f(x), f'(x),..., f®(x)] (A)
is defined for all x € 1, and

Flx, f(x), f'(x),..., f®(x)] =0 (B)

for all x € 1. That is, the substitution of f(x) and its various derivations for y and its
corresponding derivatives, respectively, in (1.10) reduces (1.10) to an identity on I.

2. Arelation g(x, y) = 0 is called an implicit solution of (1.10) if this relation defines
at least one real function f of the variable x on an interval I such that this function is an
explicit solution of (1.10) on this interval.

3. Both explicit solutions and implicit solutions will usually be called simply solutions.

Roughly speaking, then, we may say that a solution of the differential equation (1.10)

is a relation—explicit or implicit—between x and y, not containing derivatives, which
identically satisfies (1.10).

» Example 1.7

The function f defined for all real x by

f(x)=2sinx + 3 cos x (1.11)
is an explicit solution of the differential equation
d?y
yrel +y=0 (1.12)

for all real x. First note that f is defined and has a second derivative for all real x. Next
observe that

f'(x)=2cos x — 3sin x,
f"(x) = —2sin x — 3 cos x.
Upon substituting f”(x) for d? y/dx* and f(x) for y in the differential equation (1.12), it

reduces to the identity

(—2sinx —3cosx)+(2sinx + 3 cos x) =0,
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which holds for all real x. Thus the function f defined by (1.11) is an explicit solution of
the differential equation (1.12) for all real x.

» Example 1.8

The relation
x2+y2-25=0 (1.13)
is an implicit solution of the differential equation

dy_

x+y =0 (1.14)

on the interval I defined by —5 < x < 5. For the relation (1.13) defines the two real

functions f; and f, given by
filx) = /25 — x*

filx)= —/25 - x?,

respectively, for all real x € I, and both of these functions are explicit solutions of the
differential equations (1.14) on I.
Let us illustrate this for the function f;. Since

filx) = /25 - x?,

and

we see that
, —X
X)) = —
f1(x) 25 = 2

for all real x € I. Substituting f;(x) for y and f(x) for dy/dx in (1.14), we obtain the
identity

x+(~/25—x2)<\/%>=0 or x—x=0,

which holds for all real x € I. Thus the function f; is an explicit solution of (1.14) on the
interval I.
Now consider the relation

x4+ y2+25=0. (1.15)
Is this also an implicit solution of Equation (1.14)? Let us differentiate the relation

(1.15) implicitly with respect to x. We obtain

2x+2y%=0 or E=—;.

Substituting this into the differential equation (1.14), we obtain the formal identity

x + y(—%) =0.
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Thus the relation (1.15) formally satisfies the differential equation (1.14). Can we
conclude from this alone that (1.15) is an implicit solution of (1.14)? The answer to this
question is “no,” for we have no assurance from this that the relation (1.15) defines any
function that is an explicit solution of (1.14) on any real interval /. All that we have
shown is that (1.15) is a relation between x and y that, upon implicit differentiation and
substitution, formally reduces the differential equation (1.14) to a formal identity. It is
called a formalsolution; it has the appearance of a solution; but that is all that we know
about it at this stage of our investigation.
Let us investigate a little further. Solving (1.15) for y, we find that

y=+/-25-x%

Since this expression yields nonreal values of y for all real values of x, we conclude
that the relation (1.15) does not define any real function on any interval. Thus the
relation (1.15) is not truly an implicit solution but merely a formal solution of the
differential equation (1.14).

In applying the methods of the following chapters we shall often obtain relations that
we can readily verify are at least formal solutions. Our main objective will be to gain
familiarity with the methods themselves and we shall often be content to refer to the
relations so obtained as “solutions,” although we have no assurance that these relations
are actually true implicit solutions. If a critical examination of the situation is required,
one must undertake to determine whether or not these formal solutions so obtained are
actually true implicit solutions which define explicit solutions.

In order to gain further insight into the significance of differential equations and
their solutions, we now examine the simple equation of the following example.

» Example 1.9
Consider the first-order differential equation

dy

2 = 2x. 1.16

priaky (1.16)
The function f; defined for all real x by f,(x) = x? is a solution of this equation. So also
are the functions f,, f,, and f, defined for all real x by f,(x) = x* + 1, f5(x) = x* + 2,
and f3(x) = x* + 3, respectively. In fact, for each real number c, the function f, defined
for all real x by

flx)=x*+¢ (1.17)

is a solution of the differential equation (1.16). In other words, the formula (1.17) defines
an infinite family of functions, one for each real constant ¢, and every function of this
family is a solution of (1.16). We call the constant ¢ in (1.17) an arbitrary constant or
parameter and refer to the family of functions defined by (1.17) as a one-parameter
faimily of solutions of the differential equation (1.16). We write this one-parameter
family of solutions as

y=x*+c. (1.18)
Although it is clear that every function of the family defined by (1.18) is a solution of

(1.16), we have not shown that the family of functions defined by (1.18) includes all of
the solutions of (1.16). However, we point out (without proof) that this is indeed the
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case here; that is, every solution of (1.16) is actually of the form (1.18) for some
appropriate real number c.

Note. We must not conclude from the last sentence of Example 1.9 that every first-
order ordinary differential equation has a so-called one-parameter family of solutions
which contains all solutions of the differential equation, for this is by no means the case.
Indeed, some first-order differential equations have no solution at all (see Exercise 7(a)
at the end of this section), while others have a one-parameter family of solutions plus
one or more “extra” solutions which appear to be “different” from all those of the
family (see Exercise 7(b) at the end of this section).

The differential equation of Example 1.9 enables us to obtain a better understanding
of the analytic significance of differential equations. Briefly stated, the differential
equation of that example defines functions, namely, its solutions. We shall see that this
is the case with many other differential equations of both first and higher order. Thus
we may say that a differential equation is merely an expression involving derivatives
which may serve as a means of defining a certain set of functions: its solutions. Indeed,
many of the now familiar functions originally appeared in the form of differential
equations that define them.

We now consider the geometric significance of differential equations and their
solutions. We first recall that a real function F may be represented geometrically by a
curve y = F(x)in the xy plane and that the value of the derivative of F at x, F'(x), may
be interpreted as the slope of the curve y = F(x) at x. Thus the general first-order
differential equation

gx=f(x,y), (1.19)
b
where f is a real function, may be interpreted geometrically as defining a slope f(x, y) at
every point (x, y) at which the function f is defined. Now assume that the differential
equation (1.19) has a so-called one-parameter family of solutions that can be written in
the form

y = F(x,0), (1.20)
where c is the arbitrary constant or parameter of the family. The one-parameter family
of functions defined by (1.20) is represented geometrically by a so-called one-parameter
family of curves in the xy plane, the slopes of which are given by the differential

equation (1.19). These curves, the graphs of the solutions of the differential equation
(1.19), are called the integral curves of the differential equation (1.19).

» Example 1.10
Consider again the first-order differential equation

dy
o= (1.16)

of Example 1.9. This differential equation may be interpreted as defining the slope 2x at
the point with coordinates (x, y) for every real x. Now, we observed in Example 1.9 that
the differential equation (1.16) has a one-parameter family of solutions of the form

y=x?+c, (1.18)
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(Vi

Figure 1.1

where c is the arbitrary constant or parameter of the family. The one-parameter family
of functions defined by (1.18) is represented geometrically by a one-parameter family of
curves in the xy plane, namely, the family of parabolas with Equation (1.18). The slope
of each of these parabolas is given by the differential equation (1.16) of the family. Thus
we see that the family of parabolas (1.18) defined by differential equation (1.16) is that
family of parabolas, each of which has slope 2x at the point (x, y) for every real x, and
all of which have the y axis as axis. These parabolas are the integral curves of the
differential equation (1.16). See Figure 1.1.

B. Methods of Solution

When we say that we shall solve a differential equation we mean that we shall find one
or more of its solutions. How is this done and what does it really mean? The greater
part of this text is concerned with various methods of solving differential equations.
The method to be employed depends upon the type of differential equation under
consideration, and we shall not enter into the details of specific methods here.

But suppose we solve a differential equation, using one or another of the various
methods. Does this necessarily mean that we have found an explicit solution f
expressed in the so-called closed form of a finite sum of known elementary functions?
That is, roughly speaking, when we have solved a differential equation, does this
necessarily mean that we have found a “formula” for the solution? The answer is “no.”
Comparatively few differential equations have solutions so expressible; in fact, a
closed-form solution is really a luxury in differential equations. In Chapters 2 and 4 we
shall consider certain types of differential equations that do have such closed-form
solutions and study the exact methods available for finding these desirable solutions.
But, as we have just noted, such equations are actually in the minority and we must
consider what it means to “solve” equations for which exact methods are unavailable.
Such equations are solved approximately by various methods, some of which are
considered in Chapters 6 and 8. Among such methods are series methods, numerical
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methods, and graphical methods. What do such approximate methods actually yield?
The answer to this depends upon the method under consideration.

Series methods yield solutions in the form of infinite series; numerical methods give
approximate values of the solution functions corresponding to selected values of the
independent variables; and graphical methods produce approximately the graphs of
solutions (the integral curves). These methods are not so desirable as exact methods
because of the amount of work involved in them and because the results obtained from
them are only approximate; but if exact methods are not applicable, one has no choice
but to turn to approximate methods. Modern science and engineering problems
continue to give rise to differential equations to which exact methods do not apply, and
approximate methods are becoming increasingly more important.

Exercises

1. Show that each of the functions defined in Column I is a solution of the
corresponding differential equation in Column II on every interval a < x < b of

the x axis.
: 11
d
(a) f(x)=X+3€_x %'{'YZX‘F]
d? d
(b) flx) = 2> — Se* TS -1 412y =0
d? d
© f(x)=e"+2x>+6x+7 #—3%4-2)}:4)(2
d’y dy
- 2 4%y dy _
) S =175 (L+x%) 75 +4x = +2y=0

2. (a) Show that x* + 3xy? = 1 is an implicit solution of the differential equation
2xy(dy/dx) + x* + y> = 0 on the interval 0 < x < 1.
(b) Show that 5x?y? — 2x3y? =1 is an implicit solution of the differential
equation x(dy/dx) + y = x?y* on the interval 0 < x < 3.

3. (a) Show that every function f defined by
f(x) = (x> +c)e 3%,
where ¢ is an arbitrary constant, is a solution of the differential equation
j—i} + 3y = 3x2%e .
(b) Show that every function f defined by
f(x) =2+ ce >,
where ¢ is an arbitrary constant, is a solution of the differential equation

d
d—i}+4xy=8x.
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4 (a)
(b)
5. (a)
(b)
6. (a)
(b)
1. (a)
(b)

Show that every function f defined by f(x) = c,e** + c,e~2*,wherec, and c,
are arbitrary constants, is a solution of the differential equation

Show that every function g defined by g(x) = c,e?* + ¢,xe®* + c3e~ 2%, where
¢y, ¢,,and ¢, are arbitrary constants, is a solution of the differential equation
d’y d*y dy
——-2——-4—+8y=0.
dx? dx? ax T
For certain values of the constant m the function f defined by f(x) = e™ isa
solution of the differential equation
d3y d*y

dy

Determine all such values of m.

For certain values of the constant n the function g defined by g(x) = x" is a
solution of the differential equation
dy

d 2
X dx—3+2x F—IOXE—8))—O

Determine all such values of n.

Show that the function f defined by f(x) = (2x? + 2e3* + 3)e ™ 2* satisfies the
differential equation

d
& + 2y = 6e* + 4xe " 2*
dx

and also the condition f(0) = 5.

Show that the function f defined by f(x) = 3e2* — 2xe?* — cos 2x satisfies
the differential equation
d’y  dy

dx—z—4d—x+4y= —8 sin 2x

and also the conditions that f(0) = 2 and f'(0) = 4.

Show that the first-order differential equation

dy

1=0
Ix + |yl +

has no (real) solutions.
Show that the first-order differential equation

dy\?
(&) =0

has a one-parameter family of solutions of the form f(x) = (x + ¢)2, where c is
an arbitrary constant, plus the “extra” solution g(x) = 0 that is not a member
of this family f(x) = (x + ¢)? for any choice of the constant c.
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1.3 INITIAL-VALUE PROBLEMS, BOUNDARY-VALUE PROBLEMS, AND
EXISTENCE OF SOLUTIONS

A. Initial-Value Problems and Boundary-Value Problems

We shall begin this section by considering the rather simple problem of the following
example.

» Example 1.11
Problem. Find a solution f of the differential equation

dy
—=2 .
Ix X (1.21)

such that at x = 1 this solution f has the value 4.

Explanation. First let us be certain that we thoroughly understand this problem.
We seek a real function f which fulfills the two following requirements:

1. The function f must satisfy the differential equation (1.21). That is, the function f
must be such that f'(x) = 2x for all real x in a real interval I.

2. Thefunction f must have the value 4 at x = 1. Thatis, the function f must be such
that f(1) = 4.

Notation. The stated problem may be expressed in the following somewhat
abbreviated notation:

dy

2L =9

dx *
y(1) =4

In this notation we may regard y as representing the desired solution. Then the
differential equation itself obviously represents requirement 1, and the statement
y(1) = 4 stands for requirement 2. More specifically, the notation y(1) =4 states
that the desired solution y must have the value 4 at x = 1; thatis, y =4 atx = 1.

Solution. We observed in Example 1.9 that the differential equation (1.21) has a
one-parameter family of solutions which we write as

=x’+c (1.22)

where cis an arbitrary constant, and that each of these solutions satisfies requirement 1.
Let us now attempt to determine the constant ¢ so that (1.22) satisfies requirement 2,
that is, y = 4 at x = 1. Substituting x = 1, y = 4 into (1.22), we obtain4 = 1 + ¢, and
hence ¢ = 3. Now substituting the value ¢ = 3 thus determined back into (1.22), we
obtain

y=x2+3,
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which is indeed a solution of the differential equation (1.21), which has the value 4 at
x = 1. In other words, the function f defined by

fx)=x%+3,

satisfies both of the requirements set forth in the problem.

Comment on Requirement 2 and Its Notation. In a problem of this type, require-
ment 2 is regarded as a supplementary condition that the solution of the differential
equation must also satisfy. The abbreviated notation y(1) = 4, which we used to
express this condition, is in some way undesirable, but it has the advantages of being
both customary and convenient.

In the application of both first- and higher-order differential equations the problems
most frequently encountered are similar to the above introductory problem in that they
involve both a differential equation and one or more supplementary conditions which
the solution of the given differential equation must satisfy. If all of the associated
supplementary conditions relate to one x value, the problem is called an initial-value
problem (or one-point boundary-value problem). If the conditions relate to two dif-
ferent x values, the problem is called a two-point boundary-value problem (or simply a
boundary-value problem). We shall illustrate these concepts with examples and then
consider one such type of problem in detail. Concerning notation, we generally employ
abbreviated notations for the supplementary conditions that are similar to the ab-
breviated notation introduced in Example 1.11.

» Example 1.12

y(l)y=—4.
This problem consists in finding a solution of the differential equation

d*y

— +y=0,

ax2 7
which assumes the value 3 at x = 1 and whose first derivative assumes the value —4 at
x = 1. Both of these conditions relate to one x value, namely, x = 1. Thus this is an
initial-value problem. We shall see later that this problem has a unique solution.

» Example 1.13
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In this problem we again seek a solution of the same differential equation, but this time
the solution must assume the value 1 at x = 0 and the value 5 at x = n/2. That is, the
conditions relate to the two different x values, 0 and =n/2. This is a (two-point)
boundary-value problem. This problem also has a unique solution; but the boundary-
value problem
d?y
dx?

yO) =1,y =5,

has no solution at all! This simple fact may lead one to the correct conclusion that
boundary-value problems are not to be taken lightly!

+y=0,

We now turn to a more detailed consideration of the initial-value problem for a first-
order differential equation.

DEFINITION

Consider the first-order differential equation

dy
E - f(x> _V), (123)

where f is a continuous function of x and y in some domain* D of the xy plane; and let
(X9, o) be a point of D. The initial-value problem associated with (1.23) is to find
a solution ¢ of the differential equation (1.23), defined on some real interval containing x,,
and satisfying the initial condition

(x0) = yo-

In the customary abbreviated notation, this initial-value problem may be written
dy
;1; - f(xv y)a

Y(x0) = Yo.

To solve this problem, we must find a function ¢ that not only satisfies the differential
equation (1.23) but that also satisfies the initial condition that it has the value y, when x
has value x,. The geometric interpretation of the initial condition, and hence of the
entire initial-value problem, is easily understood. The graph of the desired solution ¢
must pass through the point with coordinates (x4, yo). That is, interpreted geometri-
cally, the initial-value problem is to find an integral curve of the differential equation
(1.23) that passes through the point (xq, yo).

The method of actually finding the desired solution ¢ depends upon the nature of the
differential equation of the problem, that is, upon the form of f(x, y). Certain special
types of differential equations have a one-parameter family of solutions whose
equation may be found exactly by following definite procedures (see Chapter 2). If the
differential equation of the problem is of some such special type, one first obtains the
equation of its one-parameter family of solutions and then applies the initial condition

* A domain is an open, connected set. For those unfamiliar with such concepts, D may be regarded as the
interior of some simple closed curve in the plane.
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to this equation in an attempt to obtain a “particular” solution ¢ that satisfies the entire
initial-value problem. We shall explain this situation more precisely in the next
paragraph. Before doing so, however, we point out that in general one cannot find
the equation of a one-parameter family of solutions of the differential equation;
approximate methods must then be used (see Chapter 8).

Now suppose one can determine the equation

g(x, y,¢)=0 (1.24)

of a one-parameter family of solutions of the differential equation of the problem.
Then, since the initial condition requires that y = y, at x = x4, we let x = x, and
y = Yo in (1.24) and thereby obtain

g(x()) y09c) = 0'

Solving this for ¢, in general we obtain a particular value of ¢ which we denote here by
co- We now replace the arbitrary constant ¢ by the particular constant ¢, in (1.24), thus
obtaining the particular solution

g(x’ yvCO) = 0

The particular explicit solution satisfying the two conditions (differential equation and
initial condition) of the problem is then determined from this, if possible.

We have already solved one initial-value problem in Example 1.11. We now give
another example in order to illustrate the concepts and procedures more thoroughly.

» Example 1.14

Solve the initial-value problem

dy _ X
=y (1.25)
¥(3) =4, (1.26)

given that the differential equation (1.25) has a one-parameter family of solutions which
may be written in the form

x?2+ yr=c% (1.27)

The condition (1.26) means that we seek the solution of (1.25) such that y = 4 at x = 3.
Thus the pair of values (3,4) must satisfy the relation (1.27). Substituting x = 3 and
y = 4 into (1.27), we find

9+16=c? or c2=25
Now substituting this value of ¢2 into (1.27), we have

x2 + y? =25.

y=+./25—x%

Obviously the positive sign must be chosen to give y the value +4 at x = 3. Thus the

function f defined by
f(x) =./25 - x?, -5<x<5,

Solving this for y, we obtain
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is the solution of the problem. In the usual abbreviated notation, we write this solution
as y=./25 — x2.

B. Existence of Solutions

In Example 1.14 we were able to find a solution of the initial-value problem under
consideration. But do all initial-value and boundary-value problems have solutions?
We have already answered this question in the negative, for we have pointed out that
the boundary-value problem

d*y

axz =0
y(0) =1,
y(m) =5,

mentioned at the end of Example 1.13, has no solution! Thus arises the question of
existence of solutions: given an initial-value or boundary-value problem, does it
actually have a solution? Let us consider the question for the initial-value problem
defined on page 17. Here we can give a definite answer. Every initial-value problem that
satisfies the definition on page 17 has at least one solution.

But now another question is suggested, the question of uniqueness. Does such a
problem ever have more than one solution? Let us consider the initial-value problem

dy 15
dx Yo
y(0) = 0.

One may verify that the functions f; and f, defined, respectively, by

fi(x) =0 for all real x;
and
fz(x)z(%x)3/2, x> 0; f,x)=0, x<0;
are both solutions of thisinitial-value problem! In fact, this problem has infinitely many
solutions! The answer to the uniqueness question is clear: the initial-value problem, as
stated, need not have a unique solution. In order tb ensure uniqueness, some additional

requirement must certainly be imposed. We shall see what this is in Theorem 1.1, which
we shall now state.

THEOREM 1.1. BASIC EXISTENCE AND UNIQUENESS THEOREM

Hypothesis. Consider the differential equation

d
= ) (1.28)
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where

1. The function f is a continuous function of x and y in some domain D of the xy plane,
and

2. The partial derivative 0f/dy is also a continuous function of x and y in D; and let
(x05 Yo) be a point in D.

Conclusion. There exists a unique solution ¢ of the differential equation (1.28),
defined on some interval |x — xo| < h, where h is sufficiently small, that satisfies the
condition

?(xo) = yo- (1.29)

Explanatory Remarks. This basic theorem is the first theorem from the theory of
differential equations which we have encountered. We shall therefore attempt to
explain its meaning in detail.

1. It is an existence and uniqueness theorem. This means that it is a theorem which
tells us that under certain conditions (stated in the hypothesis) something exists (the
solution described in the conclusion) and is unique (there is only one such solution). It
gives no hint whatsoever concerning how to find this solution but merely tells us that
the problem has a solution.

2. The hypothesis tells us what conditions are required of the quantities involved. It
deals with two objects: the differential equation (1.28) and the point (xq, yo). As far as
the differential equation (1.28) is concerned, the hypothesis requires that both the
function f and the function Jf/0y (obtained by differentiating f(x, y) partially with
respect to y) must be continuous in some domain D of the xy plane. As far as the point
(xo, yo) is concerned, it must be a point in this same domain D, where f and df/0dy are so
well behaved (that is, continuous).

3. The conclusion tells us of what we can be assured when the stated hypothesis is
satisfied. It tells us that we are assured that there exists one and only one solution ¢ of
the differential equation, which is defined on some interval | x — x| < h centered about
xo and which assumes the value y, when x takes on the value x,. That is, it tells us that,
under the given hypothesis on f(x, y), the initial-value problem

dy
E - f(xv y)a
Y(Xo) = Yo,

has a unique solution that is valid in some interval about the initial point x,.

4. The proof of this theorem is omitted. It is proved under somewhat less restrictive
hypotheses in Chapter 10.

5. The value of an existence theorem may be worth a bit of attention. What good is
it, one might ask, if it does not tell us how to obtain the solution? The answer to this
question is quite simple: an existence theorem will assure us that there is a solution to
look for! It would be rather pointless to spend time, energy, and even money in trying to
find a solution when there was actually no solution to be found! As for the value of the
uniqueness, it would be equally pointless to waste time and energy finding one
particular solution only to learn later that there were others and that the one found was
not the one wanted!
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We have included this rather lengthy discussion in the hope that the student, who has
probably never before encountered a theorem of this type, will obtain a clearer idea of
what this important theorem really means. We further hope that this discussion will
help him to analyze theorems which he will encounter in the future, both in this book
and elsewhere. We now consider two simple examples which illustrate Theorem 1.1.

» Example 1.15

Consider the initial-value problem

dy 5,
dx_x +y)
yy=3

Let us apply Theorem 1.1. We first check the hypothesis. Here f(x, y) = x2 + y?

0
and _%)_cy_y) = 2y. Both of the functions f and Jf/dy are continuous in every domain
D of the xy plane. The initial condition y(1) = 3 means that x, = 1 and y, = 3, and the
point (1, 3) certainly lies in some such domain D. Thus all hypotheses are satisfied and
the conclusion holds. That is, there is a unique solution ¢ of the differential equation
dy/dx = x* + y?, defined on some interval |x — 1| < h about x, = 1, which satisfies
that initial condition, that is, which is such that ¢(1) = 3.

» Example 1.16

Consider the two problems:

dy y
. —=—— =2
xR y(1) =2,
dy y
2. —=— 0)=2
ix " s y(0)
Here
y of(x, y) 1
.f(xvy)le/z and ay =x1/2'

These functions are both continuous except for x = 0 (that is, along the y axis). In
problem 1, x, = 1, yo = 2. The square of side 1 centered about (1,2) does not contain
the y axis, and so both f and df/dy satisfy the required hypotheses in this square. Its
interior may thus be taken to be the domain D of Theorem 1.1; and (1, 2) certainly lies
within it. Thus the conclusion of Theorem 1.1 applies to problem 1 and we know the
problem has a unique solution defined in some sufficiently small interval about x, = 1.

Now let us turn to problem 2. Here x, = 0, y, = 2. At this point neither f nor df/0dy
are continuous. In other words, the point (0, 2) cannot be included in a domain D where
the required hypotheses are satisfied. Thus we can not conclude from Theorem 1.1 that
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problem 2 has a solution. We are not saying that it does not have one. Theorem 1.1
simply gives no information one way or the other.

Exercises

1.

Show that
y = de?™ 4 2¢ ™

is a solution of the initial-value problem

d’y dy

Cr i _ey=o,

dx2+dx y
y(0) =6,
V'(0) = 2.

Is y = 2¢%* + 4¢3~ also a solution of this problem? Explain why or why not.

Given that every solution of

d
;1%+ y =2xe”

X

may be written in the form y = (x? + c¢)e ™, for some choice of the arbitrary
constant ¢, solve the following initial-value problems:

dy _ dy _
- — x >y =9 x
(a) I + y=2xe 7, (b) ix + y=2xe 7
y(0) = 2. y(—1)=e+3.
Given that every solution of
d’y dy
&2 a0

may be written in the form

y=ce* +c,e”

for some choice of the arbitrary constants ¢, and c,, solve the following initial-
value problems:

d’y dy d’y dy
L 12y = 2 =
(@) dx? dx ’ (b) dx* d 12y =9,
Y(0)= > y(0)= -2,
y'(0) =6 y'(©0)=6
4. Every solution of the differential equation
d2

dx?
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may be written in the form y = ¢, sin x + ¢, cos x, for some choice of the arbitrary
constants ¢, and c,. Using this information, show that boundary problems (a) and
(b) possess solutions but that (c) does not.

d2 d2
@ Z3+y=0 0 T3+y=0,
y(0) =0, y(0) =1,
ym/2) = 1. y'(r/2) = —1.
dZ
© Tr+y=0.
y(0) =0,
ym) = 1.

Given that every solution of

d’y d’y dy
3 2
x°—=—-3x*—F+6x——6y=0

dx’ ax? T ax
may be written in the form y = ¢, x + ¢,x? + ¢;x?for some choice of the arbitrary
constants ¢,,c,, and c;, solve the initial-value problem consisting of the above
differential equation plus the three conditions

y2)=0, y(@=2 y"@=6.

Apply Theorem 1.1 to show that each of the following initial-value problems has
a unique solution defined on some sufficiently small inverval |x — 1| < h about
xO = ].'

dy 5. dy y*
(a) dx = X" sin }’» (b) dx - X — 27
y() = —2. y(1) =0.

Consider the initial-value problem

dy
= Py + 00y,
y(2) =5,

where P(x) and Q(x) are both third-degree polynomials in x. Has this problem a
unique solution on some interval | x — 2| < h about x, = 2? Explain why or why
not.

On page 19 we stated that the initial-value problem

d_y — L3
dx ’

y(0) =0,

has infinitely many solutions.
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(a) Verify that this is indeed the case by showing that

_ 0, x<e¢,
YTl - 012 x>,

is a solution of the stated problem for every real number ¢ > 0.

(b) Carefully graph the solution for which ¢ = 0. Then, using this particular
graph, also graph the solutions for whichc = 1,¢ = 2,and ¢ = 3.



—— CHAPTER TWO——

First-Order Equations for Which Exact Solutions Are Obtainable

In this chapter we consider certain basic types of first-order equations for which exact
solutions may be obtained by definite procedures. The purpose of this chapter is to gain
ability to recognize these various types and to apply the corresponding methods of
solutions. Of the types considered here, the so-called exact equations considered in
Section 2.1 are in a sense the most basic, while the separable equations of Section 2.2 are
in a sense the “easiest.” The most important, from the point of view of applications, are
the separable equations of Section 2.2 and the linear equations of Section 2.3. The
remaining types are of various very special forms, and the correponding methods
of solution involve various devices. In short, we might describe this chapter as a col-
lection of special “methods,” “devices,” “tricks,” or “recipes,” in descending order of
kindness!

2.1 EXACT DIFFERENTIAL EQUATIONS AND INTEGRATING FACTORS

A. Standard Forms of First-Order Differential Equations

The first-order differential equations to be studied in this chapter may be expressed in
either the derivative form

d
== 1) 1)
X
or the differential form
M(x, y)dx + N(x,y)dy =0. 2.2)

25
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An equation in one of these forms may readily be written in the other form. For
example, the equation

dy _x*+y?
dx x—y
is of the form (2.1). It may be written
(x*+y?) dx +(y —x)dy =0,
which is of the form (2.2). The equation
(sinx + y)dx + (x + 3y)dy =0,
which is of the form (2.2), may be written in the form (2.1) as

dy  sinx+y
dx  x+3y’

In the form (2.1) it is clear from the notation itself that y is regarded as the dependent
variable and x as the independent one; but in the form (2.2) we may actually regard
either variable as the dependent one and the other as the independent. However, in
this text, in all differential equations of the form (2.2) in x and y, we shall regard y
as dependent and x as independent, unless the contrary is specifically stated.

B. Exact Differential Equations
DEFINITION

Let F be a function of two real variables such that F has continuous first partial
derivatives in a domain D. The total differential dF of the function F is defined by the
formula

_Fxy) 4 Oy dy

dF
69 =71 dy

for all (x, y) € D.

» Example 2.1

Let F be the function of two real variables defined by
F(x, y) = xy? + 2x3y
for all real (x, y). Then

O0F(x, y) )
ox yo+6x%y,

and the total differential dF is defined by
dF(x, y) = (y? + 6x%y) dx + (2xy + 2x3) dy

for all real (x, y).
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DEFINITION

The expression

M(x, y)dx + N(x, y) dy (2.3)

is called an exact differential in a domain D if there exists a function F of two real vari-
ables such that this expression equals the total differential dF(x, y) for all (x,y) € D.
That is, expression (2.3) is an exact differential in D if there exists a function F such
that

OF(x, y)

-———=M(x,y) and
0x

0F(x, y)
dy

= N(x, y)

for all (x, y)e D.
If M(x, y)dx + N(x, y) dy is an exact differential, then the differential equation

M(x, y)dx + N(x,y)dy =0

is called an exact differential equation.

» Example 2.2

The differential equation
y2dx +2xydy =0 (2.4

is an exact differential equation, since the expression y? dx + 2xy dy is an exact
differential. Indeed, it is the total differential of the function F defined for all (x, y)
by F(x, y) = xy?, since the coefficient of dx is dF(x, y)/(dx) = y? and that of dy is
0F(x, y)/(0y) = 2xy. On the other hand, the more simple appearing equation

ydx + 2xdy =0, 2.9)
obtained from (2.4) by dividing through by y, is not exact.

In Example 2.2 we. stated without hesitation that the differential equation (2.4) is
exact but the differential equation (2.5) is not. In the case of Equation (2.4), we verified
our assertion by actually exhibiting the function F of which the expression y? dx +
2xy dy is the total differential. But in the case of Equation (2.5), we did not back up
our statement by showing that there is no fucntion F such that y dx + 2x dy is its total
differential. It is clear that we need a simple test to determine whether or not a given
differential equation is exact. This is given by the following theorem.

THEOREM 2.1

Consider the differential equation
M(x, y)dx + N(x, y) dy =0, (2.6)

where M and N have continuous first partial derivatives at all points (x, y) in a rectangular
domain D.



28 FIRST-ORDER EQUATIONS FOR WHICH EXACT SOLUTIONS ARE OBTAINABLE

1. If the differential equation (2.6) is exact in D, then

IM(x,y) _ ON(x,y)
dy  ox

2.7
for all (x, y) € D.
2. Conversely, if

OM(x,y) _ ON(x, y)

dy 0x

for all (x, y) € D, then the differential equation (2.6) is exact in D. .

Proof. Part 1. Ifthe differential equation (2.6)isexact in D,then M dx + N dyisan
exact differential in D. By definition of an exact differential, there exists a function F
such that

OF(x, y)
Ox

for all (x, y) e D. Then

0’F(x,y) 0M(x,y) and 0°F(x,y) ON(x, )
dyox  dy oxdy  ox

OF(x, y)
dy

= M(x,y) and =N(x,y)

for all (x, y) € D. But, using the continuity of the first partial derivatives of M and N, we
have

0*F(x,y) 0*F(x,)

Jy 0x 0x 0y

and therefore
IM(x,y) ON(x,y)

Jy 0x

for all (x, y) € D.
Part 2. This being the converse of Part 1, we start with the hypothesis that

OM(x, y) _ ON(x,y)
dy  ox

for all (x, y) € D, and set out to show that M dx + N dy = 0 is exact in D. This means
that we must prove that there exists a function F such that

OF(x, y)

T M(x, y) (2.8)
and
M = N(x, y) 2.9)
dy

for all (x, y) € D. We can certainly find some F(x, y) satisfying either (2.8) or (2.9), but
what about both? Let us assume that F satisfies (2.8) and proceed. Then

F(x,y) = fM(X, y) 0x + ¢(), (2.10)



2.1 EXACT DIFFERENTIAL EQUATIONS AND INTEGRATING FACTORS 29

where | M(x, y) 0x indicates a partial integration with respect to x, holding y constant,
and ¢ is an arbitrary function of y only. This ¢(y) is needed in (2.10) so that F(x, y)
given by (2.10) will represent all solutions of (2.8). It corresponds to a constant of inte-
gration in the “one-variable” case. Differentiating (2.10) partially with respect to y,
we obtain

aF(x, »_-9 JM( d¢(y)‘
Now if (2.9) is to be satisfied, we must have

N(x,y) = jM(x 0x +M (2.11)
and hence

do(y)

0
&y N(X,Y)—an(X,Y) 0x

Since ¢ is a function of y only, the derivative d¢/dy must also be independent of x. That
is, in order for (2.11) to hold,

X, Y) —%JM(x, y) 0x (2.12)

must be independent of x.
We shall show that
0 0
—I|N —— | M ox|=0.
ax[ )= j (x.y) x]
We at once have

0 0 _ON(x,y) 2* [
5;|:N(x9y)_'a_yJ‘M(x7y)ax:|_ ax axayd M(x7y)ax

If (2.8) and (2.9) are to be satisfied, then using the hypothesis (2.7), we must have

02 0%F(x,y) 0%*F(x,y) 0% [
M(x, y) 0x = = =>—
0x Oy 0x Oy Jy 0x Jy 0x

M(x, y) 0x

Thus we obtain

0 ON(x,y) @*
5;[1\’(% y)— JM( } Tox  dyox jM(X, y) 0x

and hence

0 ! 0 _ ON(x, y) _ OM(x, y)
—a—;[N(x,y)——a—;JM(x,y)ax:l— e ay

But by hypothesis (2.7),
OM(x,y) _ ON(x,y)
dy  ox
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for all (x, y) € D. Thus

0 0
al:N(x,y)_a_yJ‘M(x’Y)axil =0

for all (x, y) € D, and so (2.12) is independent of x. Thus we may write

M
o) = [ [ W - [P0 00y

Substituting this into Equation (2.10), we have

F(x,y) = fM(x, y) 0x + J[N(x, y) — faM;;’ Y) (?xJ dy. (2.13)
This F(x, y) thus satisfies both (2.8) and (2.9) for all (x, y) e D,andsoM dx + Ndy =0
is exact in D. Q.E.D.

Students well versed in the terminology of higher mathematics will recognize that
Theorem 2.1 may be stated in the following words: A necessary and sufficient condition
that Equation (2.6) be exact in D is that condition (2.7) hold for all (x, y) e D. For
students not so well versed, let us emphasize that condition (2.7),

OM(x, y) ON(x,y)
ay  ox

is the criterion for exactness. If (2.7) holds, then (2.6) is exact; if (2.7) does not hold, then
(2.6) is not exact.

» Example 2.3
We apply the exactness criterion (2.7) to Equations (2.4) and (2.5), introduced in
Example 2.2. For the equation
y2dx +2xydy=0 (2.4
we have
M(x,y)=y%  Nlx,y)=2xy,
IM(x,y) _, _ N(x.)

dy V=T

for all (x, y). Thus Equation (2.4) is exact in every rectangular domain D. On the other
hand, for the equation

ydx +2xdy =0, (2.5)
we have
M(X, y)= Y, N(x’ y)=2x’

M, Y) _ o,y INKY)
Jy 0x

for all (x, y). Thus Equation (2.5) is not exact in any rectangular domain D.
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» Example 2.4

Consider the differential equation
(2x sin y + y3e*) dx + (x% cos y + 3yZe*)dy = 0.
Here
M(x, y) = 2x sin y + y3e*,
N(x, y) = x% cos y + 3y2e*,
M (x, y) ON(x, y)
Jy Ox

in every rectangular domain D. Thus this differential equation is exact in every such
domain.

=2xcos y + 3yle* =

These examples illustrate the use of the test given by (2.7) for determining whether or
not an equation of the form M(x, y) dx + N(x, y) dy = Oisexact. It should be observed
that the equation must be in the standard form M(x, y) dx + N(x, y) dy = Oin order to
use the exactness test (2.7). Note this carefully: an equation may be encountered in the
nonstandard form M(x, y) dx = N(x, y) dy, and in this form the test (2.7) does not

apply.

C. The Solution of Exact Differential Equations

Now that we have a test with which to determine exactness, let us proceed to solve exact
differential equations. If the equation M(x, y) dx + N(x,y)dy =0 is exact in a
rectangular domain D, then there exists a function F such that

OF OF(x,
ﬂ = M(x,y) and (x, y) = N(x,y) forall(x,y)eD.
Ox dy
Then the equation may be written
0F(x, y) O0F(x, y) .
d = 1 F =0.
o X + P dy=0 orsimply dF(x,y)=0

The relation F(x, y) = cis obviously a solution of this, where c is an arbitrary constant.
We summarize this observation in the following theorem.

THEOREM 2.2

Suppose the differential equation M(x, y) dx + N(x, y) dy = 0 satisfies the differentia-
bility requirements of Theorem 2.1 and is exact in a rectangular domain D. Then a one-
parameter family of solutions of this differential equation is given by F(x, y) = c, where F
is a function such that
OF(x, y)

——= = M(x,y) and

0F (x, y)
0x 0

= N(x,y) forall(x,y)eD.

and c is an arbitrary constant.
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Referring to Theorem 2.1, we observe that F(x, y) is given by formula (2.13).
However, in solving exact differential equations it is neither necessary nor desirable to
use this formula. Instead one obtains F(x, y) either by proceeding as in the proof of
Theorem 2.1, Part 2, or by the so-called “method of grouping,” which will be explained
in the following examples.

» Example 2.5

Solve the equation
(3x2 4 4xy) dx + (2x* + 2y) dy = 0.
Our first duty is to determine whether or not the equation is exact. Here
M(x,y) = 3x? + 4xy,  N(x,y) = 2x2 + 2y,
OM(x, y) ON(x, y)

T oax, T oy

dy O0x

for all real (x, y), and so the equation is exact in every rectangular domain D. Thus we
must find F such that

OF(x, y)
0x

From the first of these,

OF(x, y)

= N(x, y) = 2x% + 2y.
dy

= M(x,y) = 3x? + 4xy and

F(x,y) = JM(x, y)0x + ¢(y) = J(3x2 + 4xy) 0x + ¢(y)

=x3 4+ 2x%y + ¢(y).

Then

OF(x.y) _ 52, 490)

dy dy
But we must have
F
d g;’ M _ N(x,y) = 2x? + 2y.
Thus
d

2x% + 2y =2x* + ___‘Zi)y)

or
do(y)
iy 2y.

Thus ¢(y) = y? + ¢o, where ¢, is an arbitrary constant, and so

F(x,y) = x>+ 2x%y + y? + ¢o.
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Hence a one-parameter family of solution is F(x, y) = ¢, or
x?+2x%y + y? + ¢o = ¢;.
Combining the constants ¢, and ¢, we may write this solution as
x*+ 2%y + yr =g,

where c = ¢; — cyisanarbitrary constant. The student will observe that there is no loss
in generality by taking ¢, = 0 and writing ¢(y) = y2. We now consider an alternative
procedure.

Method of Grouping. We shall now solve the differential equation of this exam-
ple by grouping the terms in such a way that its left member appears as the sum of
certain exact differentials. We write the differential equation

(3x2 + 4xy) dx + (2x* + 2y)dy =0
in the form
3x%dx + (4xy dx + 2x% dy) + 2y dy = 0.
We now recognize this as
d(x?) + d(2x%y) + d(y?) = d(0),
where c is an arbitrary constant, or
d(x> + 2x%y + y?) =d(c).
From this we have at once
x4+ 2x%y 4+ yr=c.

Clearly this procedure is much quicker, but it requires a good “working knowledge” of
differentials and a certain amount of ingenuity to determine just how the terms should
be grouped. The standard method may require more “work” and take longer, but it is
perfectly straightforward. It is recommended for those who like to follow a pattern and
for those who have a tendency to jump at conculsions.

Just to make certain that we have both procedures well in hand, we shall consider an
initial-value problem involving an exact differential equation.

» Example 2.6

Solve the initial-value problem

(2x cos y + 3x2y)dx + (x> — xZsiny — y)dy = 0,

y(©0) = 2.
We first observe that the equation is exact in every rectangular domain D, since
oM ((x, . ON (x,
%= —2xs1ny+3x2=%

for all real (x, y).
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Standard Method. We must find F such that

F
OF(x, y) = M(x, y) = 2x cos y + 3x2y
Ox
and
F .
TN _ N,y = x* — x?siny - .
dy
Then
IJ(X, y) = J\M(x, y) ax + ¢(y)
= f(Zx cos y + 3x2y) 0x + ¢(y)
=x2cosy+ x>y + ¢(y),
OF(xy) _ —x2siny+x3+m-
dy dy
But also
mzN(x,y)=x3—x25iny_y
dy
and so
dgly) _
dy
and hence
2
B0 =~ + o
Thus
2
F(x,y)=x?cos y + x’y — = + ¢co.

2

Hence a one-parameter family of solutions is F(x, y) = ¢, which may be expressed as
2

xzcosy+x3y—y7=c.

Applying the initial condition y = 2 when x = 0, we find ¢ = — 2. Thus the solution of
the given initial-value problem is
2

xzcosy+x3y—y2—= -2

Method of Grouping. We group the terms as follows:

(2x cos y dx — x% sin y dy) + (3x%y dx + x> dy) — ydy = 0.
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Thus we have
d(x%cos y) +d(x3y) — d(y?) =d(c);

and so

2

xzcosy+x3y—y7=c

1s a one-parameter family of solutions of the differential equation. Of course the initial
condition y(0) = 2 again yields the particular solution already obtained.

D. Integrating Factors

Given the differential equation

M(x, y)dx + N(x, y)dy =0,

OM(x,y) _ ON(x, )
ay ox
then the equation is exact and we can obtain a one-parameter family of solutions by
one of the procedures explained above. But if
M(x, y) 4 ON(x, y)
Jy ox

then the equation is not exact and the above procedures do not apply. What shall we do
in such a case? Perhaps we can multiply the nonexact equation by some expression that
will transform it into an essentially equivalent exact equation. If so, we can proceed to
solve the resulting exact equation by one of the above procedures. Let us consider
again the equation

ydx + 2x dy =0, (2.5)

which was introduced in Example 2.2. In that example we observed that thisequation is
not exact. However, if we multiply Equation (2.5) by y, it is transformed into the
essentially equivalent equation

y2dx + 2xy dy =0, 2.4)

which is exact (see Example 2.2). Since this resulting exact equation (2.4) is integrable,
we call y an integrating factor of Equation (2.5). In general, we have the following
definition:

DEFINITION

If the differential equation
M(x, y)dx + N(x,y)dy =0 (2.14)
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is not exact in a domain D but the differential equation
u(x, YYM(x, y) dx + p(x, y)N(x, y) dy = 0 (2.15)

is exact in D, then u(x, y) is called an integrating factor of the differential equation (2.14).

» Example 2.7

Consider the differential equation
(3y + 4xy?) dx + (2x + 3x2y)dy = 0. (2.16)
This equation is of the form (2.14), where

M(x, y) = 3y + 4xy?, N(x, y) = 2x + 3x2y,

oM ON

X9 _ 5, 8xy, X9 _ 5. 6xy

dy 0
Since

OM(x, y) % ON(x, y)
dy 0x

except for (x, y) such that 2xy + 1 = 0, Equation (2.16) is not exact in any rectangular
domain D.

Let u(x, y) = x?y. Then the corresponding differential equation of the form (2.15) is
(3x%y? +4x3y?) dx + (2x3y + 3x*y?)dy = 0.
This equation is exact in every rectangular domain D, since

oL u(x, yM(x, y)] 2 OLux, y)N(x, y)]
% =6x%y + 12x3y2 = .

for all real (x, y). Hence u(x, y) = x2y is an integrating factor of Equation (2.16).

Multiplication of a nonexact differential equation by an integrating factor thus
transforms the nonexact equation into an exact one. We have referred to this result-
ing exact equation as “essentially equivalent” to the original. This so-called essentially
equivalent exact equation has the same one-parameter family of solutions as the non-
exact original. However, the multiplication of the original equation by the integrating
factor may result in either (1) the loss of (one or more) solutions of the original, or (2) the
gain of (one or more) functions which are solutions of the “new” equation but not of the
original, or (3) both of these phenomena. Hence, whenever we transform a nonexact
equation into an exact one by multiplication by an integrating factor, we should check
carefully to determine whether any solutions may have been lost or gained. We shall
illustrate an important special case of these phenomena when we consider separable
equations in Section 2.2. See also Exercise 22 at the end of this section.

The question now arises: How is an integrating factor found? We shall not attempt to
answer this question at this time. Instead we shall proceed to a study of the important
class of separable equations in Section 2.2 and linear equations in Section 2.3. We shall
see that separable equations always possess integrating factors that are perfectly
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obvious, while linear equations always have integrating factors of a certain special
form. We shall return to the question raised above in Section 2.4. Our object here has
been merely to introduce the concept of an integrating factor.

Exercises

In Exercises 1-10 determine whether or not each of the given equations is exact; solve
those that are exact.

. 3x+2y)dx+(2x+ y)dy=0.
(y*+3)dx + (2xy — 4)dy = 0.

(2xy + 1) dx + (x> + 4y)dy = 0.

(Bx%y +2)dx — (x> + y)dy = 0.

(6xy + 2y% — 5)dx + (3x% 4+ 4xy — 6) dy = 0.
(0% + l)cos rdr + 20 sinr df = 0.

A AT B o I

(y sec? x + sec x tan x) dx + (tan x + 2y) dy = 0.

xZ
+ )dx+<F+y)dy:0

Q2
9. ( )ds+(st2s>dt=0
2y%2 + 1

10. T dx + (3x'2y"2 — 1) dy = 0.

M

Solve the initial-value problems in Exercises 11-16.

1. (2xy—3)dx + (x> +4y)dy=0, y(l)=2.

12. Bx%y? — 3+ 2x)dx + (2x3y — 3xy2 + 1)dy =0, y(—-2)=1.

13. (2ysinx cos x + y?sin x) dx + (sin® x — 2y cos x) dy =0,  y(0) = 3.
14. (ye* + 2e* + y*)dx + (e* + 2xy)dy =0,  y(0) = 6.

_ 2_ >
15. (3 y)d +<y zx)dy=0, y=1)=2.
x?2 Xy

1 + 8xy?/3 2xH3y23 _ x1/3
x2/3y1/3 dx + y4/3 dy =0, y(l) = 8.

17. In each of the following equations determine the constant A such that the
equation is exact, and solve the resulting exact equation:

(@) (x?+ 3xy)dx + (Ax?* + 4y)dy = 0.

1 1 Ax + 1
—+—=)d
(b) (x2+y2> x+< 3 )dy 0.

16.
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18.

19.

20.

21.

22

23.

24.

In each of the following equations determine the constant 4 such that the
equation is exact, and solve the resulting exact equation:

(@) (Ax2y + 2y?)dx + (x* + 4xy)dy = 0.

Ay y 1 1

—+=]d — ——]dy=0.
(b) <x3 +x2> x + <x2 x) y=0
In each of the following equations determine the most general function N(x, y)
such that the equation is exact:

(@ (x*+ xy*)dx + N(x,y)dy = 0.

(b) (x72y 2 +xy 3)dx + N(x,y)dy =0.

In each of the following equations determine the most general function M(x, y)
such that the equation is exact:

(@ M(x,y)dx + (2x2y® + x*y)dy = 0.

(b) M(x, y)dx + 2ye* + y2e3*)dy = 0.

Consider the differential equation

(4x + 3y?)dx + 2xy dy = 0.

—_
E)
~

Show that this equation is not exact.

S

Find an integrating factor of the form x", where n is a positive integer.

—_
O
~

Multiply the given equation through by the integrating factor found in (b)
and solve the resulting exact equation.

Consider the differential equation
(y* + 2xy)dx — x> dy = 0.
(a) Show that this equation is not exact.

(b) Multiply the given equation through by y", where n is an integer, and then
determine n so that y” is an integrating factor of the given equation.

(c) Multiply the given equation through by the integrating factor found in (b)
and solve the resulting exact equation.

(d) Show that y = 0is a solution of the original nonexact equation but is not a
solution of the essentially equivalent exact equation found in step (c).

() Graph several integral curves of the original equation, including all those
whose equations are (or can be written) in some “special” form.

Consider a differential equation of the form
[y +xf(x* + y*)]dx + [yf (x* + y?) —x]dy = 0.
(a) Show that an equation of this form is not exact.
(b) Show that 1/(x? + y?)is an integrating factor of an equation of this form.
Use the result of Exercise 23(b) to solve the equation

[y+x(x2+ y¥)?)dx + [y(x* + y?)2 —x]dy = 0.
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2.2 SEPARABLE EQUATIONS AND EQUATIONS REDUCIBLE TO THIS FORM
A. Separable Equations

DEFINITION

An equation of the form

F(x)G(y) dx + f(x)g(y) dy =0 (2.17)

is called an equation with variables separable or simply a separable equation.

For example, the equation (x — 4)y* dx — x*(y? — 3)dy = 0 is a separable equa-
tion.

In general the separable equation (2.17) is not exact, but it possesses an obvious
integrating factor, namely 1/f(x)G(y). For if we multiply Equation (2.17) by this
expression, we separate the variables, reducing (2.17) to the essentially equivalent
equation

F& 4 g(y) dy =

2.18
70 Tt 60 (218)

This equation is exact, since

2L 212
oy Lf(x) ~ox [ G(y)
Denoting F(x)/f(x) by M(x) and g(y)/G(y) by N(y), Equation (2.18) takes the form

M(x) dx + N(y)dy = 0. Since M is a function of x only and N is a function of y only,
we see at once that a one-parameter family of solutions is

fM(x)dx+jN(y)dy=c, (2.19)

where cis the arbitrary constant. Thus the problem of finding such a family of solutions
of the separable equation (2.17) has reduced to that of performing the integrations
indicated in Equation (2.19). It is in this sense that separable equations are the simplest
first-order differential equations.

Since we obtained the separated exact equation (2.18) from the nonexact equation
(2.17) by multiplying (2.17) by the integrating factor 1/f(x)G(y), solutions may have
been lost or gained in this process. We now consider this more carefully. In formally
multiplying by the integrating factor 1/f(x)G(y), we actually divided by f(x)G(y). We
did this under the tacit assumption that neither f(x) nor G(y) is zero; and, under this
assumption, we proceeded to obtain the one-parameter family of solutions given by
(2.19). Now, we should investigate the possible loss or gain of solutions that may have
occurred in this formal process. In particular, regarding y as the dependent variable as
usual, we consider the situation that occurs if G(y) is zero. Writing the original dif-
ferential equation (2.17) in the derivative form

d
fmmw§+Fmaw=a
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we immediately note the following: If y, is any real number such that G(y,) = 0, then
y = Yo is a (constant) solution of the original differential equation; and this solution
may (or may not) have been lost in the formal separation process.

In finding a one-parameter family of solutions a separable equation, we shall
always make the assumption that any factors by which we divide in the formal
separation process are not zero. Then we must find the solutions y = y, of the
equation G(y) = 0 and determine whether any of these are solutions of the original
equation which were lost in the formal separation process.

» Example 2.8

Solve the equation
(x —4)y*dx — x3(y* — 3)dy = 0.

The equation is separable; separating the variables by dividing by x> y*, we obtain

(x—4)dx_(y?=3)dy _

x3 y4

0

or
(x 2 —4x " dx —(y"2 =3y 4dy=0.

Integrating, we have the one-parameter family of solutions
12

1
x x* 'y vy

where c is the arbitrary constant.

In dividing by x?y* in the separation process, we assumed that x> # 0 and y* # 0.
We now consider the solution y = 0 of y* = 0. Itis not a member of the one-parameter
family of solutions which we obtained. However, writing the original differential
equation of the problem in the derivative form

dy  (x—4)y*

dx  x3(y* =3y
it is obvious that y = 0 is a solution of the original equation. We conclude that it is a
solution which was lost in the separation process.

» Example 2.9

Solve the initial-value problem that consists of the differential equation

xsin ydx + (x2 + 1)cos ydy = 0 (2.20)
and the initial condition
n
= —, . l
y() =3 @21)

We first obtain a one-parameter family of solutions of the differential equation (2.20).
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Separating the variables by dividing by (x2 + 1) sin y, we obtain

x cos y
+——dy=0.
1 sin y Y

x dx cos y
——dy = ¢,
fx2+l+J51ny V=t

where ¢, is an arbitrary constant. Recall that

du u if u=>0
— =1 C d = . -
Ju nful + and [ul {—u if u<O.

Thus

Then, carrying out the integrations, we find

LIn(x* + 1) + In|sin y| = ¢,. (2.22)
We could leave the family of solutions in this form, but we can put it in a neater form in
the following way. Since each term of the left member of this equation involves the
logarithm of a function, it would seem reasonable that something might be accom-
plished by writing the arbitrary constant ¢, in the form In |¢,|. This we do, obtaining

LIn(x®> + 1) + In|sin y| = In|¢,].
Multiplying by 2, we have
In(x*+ 1)+ 2In|siny| =21n|c|.

Since

21n |sin y| = In (sin y)?,
and

2In|¢e,|=Inc?=Ine,
where

c=c} >0,

we now have
In(x*+ 1)+ Insin*y=Inc.
Since In A + In B = In AB, this equation may be written
In(x2 + 1)sin®’y =Inec.
From this we have at once
(x*+ 1)sin? y =c. (2.23)
Clearly (2.23) is of a neater form than (2.22).
In dividing by (x2 + 1)sin y in the separation process, we assumed that sin y # 0.
Now consider the solutions of sin y = 0. These are given by y=nn (n =0, +1,
+2,...). Writing the original differential equation (2.20) in the derivative form, it is

clear that each of these solutions y = nn(n =0, +1, +£2,...) of sin y = 0 is a constant
solution of the original differential equation. Now, each of these constant solutions
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y = nmis a member of the one-parameter family (2.23) of solutions of (2.20) for ¢ = 0.
Thus none of these solutions was lost in the separation process.
We now apply the initial condition (2.21) to the family of solutions (2.23). We have

(1% + 1)sin? Toe
2
and so ¢ = 2. Therefore the solution of the initial-value problem under consideration is
(x* + Dsin? y = 2.
B. Homogeneous Equations

We now consider a class of differential equations that can be reduced to separable
equations by a change of variables.

DEFINITION

The first-order differential equation M(x, y) dx + N(x, y)dy = 0 is said to be homo-
geneous if, when written in the derivative form (dy/dx) = f(x, y), there exists a function g
such that f(x, y) can be expressed in the form g(y/x).

»  Example 2.10
The differential equation (x* — 3y?) dx + 2xy dy = 0 is homogeneous. To see this, we
first write this equation in the derivative form

dy 3y*—x?

dx  2xy

=% 3y x 3\ 11
2xy  2x 2y 2\x) 2\y/x)’

we see that the differential equation under consideration may be written as

dy _3(y\_1( 1
dx  2\x) 2\y/x)

in which the right member is of the form g(y/x) for a certain function g.

Now observing that

» Example 2.11

The equation

(y+/x*+ y)dx —xdy=0

is homogeneous. When written in the form

dy y+yx*+y’

dx x
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the right member may be expressed as
or

depending on the sign of x. This is obviously of the form g(y/x).

Before proceeding to the actual solution of homogeneous equations we shall
consider slightly different procedure for recognizing such equations. A function F is
called homogeneous of degree nif F(tx, ty) = t"F(x, y). This means that if tx and ty are
substituted for x and y, respectively, in F(x, y), and if ¢" is then factored out, the other
factor that remains is the original expression F(x, y) itself. For example, the function F
given by F(x, y) = x> + y? is homogeneous of degree 2, since

F(tx, ty) = (tx)* + (ty)* = t3(x> + y?) = t?F(x, y).

Now suppose the functions M and N in the differential equation M(x, y) dx +
N(x, y)dy = 0 are both homogeneous of the same degree n. Then since M(tx, ty) =
t"M(x, y), if we let t = 1/x, we have

M(l . x,l . y) = (l)” M(X, y)
X X X

Clearly this may be written more simply as

(2=
X X

and from this we at once obtain

] -n
M(x, y) = (;> M(l,%).
N(x, y) = (%>_N(1§>

Now writing the differential equation M(x, y) dx + N(x, y) dy = 0 in the form
dy  Mx,y)

dx  N(x,y)’

o () () ()

) )

Clearly the expression on the right is of the form g(y/x), and so the equation M(x, y)
dx + N(x, y) dy = 0 is homogeneous in the sense of the original definition of homo-

Likewise, we find

we find
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geneity. Thus we conclude that if M and N in M(x, y) dx + N(x, y) dy = 0-are both
homogeneous functions of the same degree n, then the differential equation is a
homogeneous differential equation.

Let us now look back at Examples 2.10 and 2.11 in this light. In Example 2.10,
M(x, y) = x? — 3y? and N(x, y) = 2xy. Both M and N are homogeneous of degree 2.
Thus we know at once that the equation (x2 — 3y?) dx + 2xy dy = 0is ahomogeneous
equation. In Example 2.11, M(x, y) = y + /x> + y? and N(x, y) = —x. Clearly N is
homogeneous of degree 1. Since

M(tx,ty) =ty + /(tx)® + (ty)? = t(y + /x* + y?) = t'M(x, y),

we see that M is also homogeneous of degree 1. Thus we conclude that the equation
(y+/x*+ y¥)dx—xdy=0
is indeed homogeneous.

We now show that every homogeneous equation can be reduced to a separable
equation by proving the following theorem.

THEOREM 2.3

If
M(x, y)dx + N(x,y)dy =0 (2.24)

is a homogeneous equation, then the change of variables y = vx transforms (2.24) into a
separable equation in the variables v and x.

Proof. Since M(x, y) dx + N(x, y) dy = 0 is homogeneous, it may be written in the
form

Let y = vx. Then

Y_yyxd
dx d
and (2.24) becomes
dv
v+ X x g(v)
or

[v—g@]dx + xdv=0.
This equation is separable. Separating the variables we obtain

d_ dx_

+ 0. (2.29)
v—g) x

Q.E.D.
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Thus to solve a homogeneous differential equation of the form (2.24), we let y = vx
and transform the homogeneous equation into a separable equation of the form (2.25).

From this, we have
dv dx
+|l—=¢
v —g(v) X

where c is an arbitrary constant. Letting F(v) denote

J dv
v—g(v)

and returning to the original dependent variable y, the solution takes the form

F<X>+ln|x| =c.
X

» Example 2.12

Solve the equation
(x* —3y?)dx + 2xydy = 0.

We have already observed that this equation is homogeneous. Writing it in the form

d 3
dy __x .
dx 2y 2x
and letting y = vx, we obtain
b+ x dv 1 4 3v
dx 20 2’
or
xd_v 1 N v
dx v 2
or, finally,
. dv  v?—1
dx v

This equation is separable. Separating the variables, we obtain

2vdv_d_x
-1 x

Integrating, we find
Injp2 — 1] =In|x| + In]c|,
and hence

v — 1] = Jex],
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where ¢ is an arbitrary constant. The reader should observe that no solutions were lost
in the separation process. Now, replacing v by y/x we obtain the solutions in the
form

2
Y- 1‘ = Jex|

x2

or
ly? = x?| = lex|x?.
If y > x > 0, then this may be expressed somewhat more simply as

y? —x?=cx>.

»  Example 2.13

Solve the initial-value problem

(y+ x* + y?)dx — xdy =0,
y(1) =0.

We have seen that the differential equation is homogeneous. As before, we write it in the

form
dy y+x*+y?

dx X

Since the initial x value is 1, we consider x > 0 and take x = . /x? and obtain

dy _y i (XY
dx x x)

We let y = vx and obtain

dv 5
v+x—=v4+./14+0v
dx
or
dv
— =1 +v?
xdx

Separating variables, we find
dv dx

Jvi+1 T ox

Using tables, we perform the required integrations to obtain

Injv+ . /v?+1|=In]|x| +In|c|,
v+ /P + 1 =cx.

or
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Now replacing v by y/x, we obtain the general solution of the differential equation in
the form

2

+ —2+1=cx
X

= =
<

or

y+/x%+y? =cx?

The initial condition requires that y = 0 when x = 1. This gives ¢ = 1 and hence

y+/x*+ y?=x?

from which it follows that

y=3(*—1.

Exercises

Solve each of the differential equations in Exercises 1-14.

I. dxydx + (x* + 1)dy =0.

2. (xy+2x+ y+2)dx + (x> +2x)dy =0.

3. 2r(s* + 1)dr + (r* + 1)ds = 0.

4. csc ydx +secxdy =0.

5. tanf@dr + 2rdf =0.

6. (" + Ncosudu + e’(sinu + 1)dv =0.

7. (x+4)(y*+ )dx + y(x* + 3x + 2)dy = 0.
8 (x+ y)dx —xdy=0.

9. (2xy + 3y?)dx — (2xy + x?)dy = 0.

10. v3du+ (u? —uv?)dv =0.

11. <xtanX+y>dx—xdy=0.
X
12. (2s% + 2st + t?)ds + (s> + 2st — t*) dt = 0.
13, (x3 4+ y2/x? + y?)dx — xy /x* + y*dy=0.
14. (\/x+y+\/x—y)dx+(\/x—y—\/x+y)dy=0.
Solve the initial-value problems in Exercises 15-20.

15 (p+2dx+ yx+4)dy=0, y(-3)=—1.

16. 8cos? ydx + csc? xdy =0, y(%):%

17. (3x + 8)(y? + 4)dx — 4y(x? + 5x + 6)dy = 0, y(1) = 2.
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18. (x* +3y%)dx —2xydy=0, y(2)=6.
19. (2x — 5y)dx + (4x — y)dy =0, y(1) = 4.
20. (3x% 4 9xy + 5y?) dx — (6x* + 4xy) dy =0, y(2) = —6.
21. (a) Show that the homogeneous equation
(Ax + By)dx + (Cx + Dy)dy =0
is exact if and only if B = C.
(b) Show that the homogeneous equation
(Ax? + Bxy + Cy?)dx + (Dx* + Exy + Fy*)dy =0
is exact if and only if B = 2D and E = 2C.

22. Solve each of the following by two methods (see Exercise 21(a)):
(@ (x+2y)dx+(2x— y)dy =0.
(b) (B3x — y)dx —(x + y)dy =0.
23.  Solve each of the following by two methods (see Exercise 21(b)):
(@) (x? +2y?)dx + (4xy — y*)dy =0.
(b) (2x% + 2xy + y?)dx + (x2 + 2xy)dy = 0.
24. (a) Provethatif M dx + N dy = 0Ois a homogeneous equation, then the change

of variables x = uy transforms this equation into a separable equation in the
variables u and x.

(b) Use the result of (a) to solve the equation of Example 2.12 of the text.
() Use the result of (a) to solve the equation of Example 2.13 of the text.

25. Suppose the equation M dx + N dy = 0 is homogeneous. Show that the trans-
formation x = r cos 8, y = r sin 0 reduces this equation to a separable equation in
the variables r and 0.

26. (a) Use the method of Exercise 25 to solve Exercise 8.
(b) Use the method of Exercise 25 to solve Exercise 9.

27. Suppose the equation
Mdx+ Ndy=0 (A)

is homogeneous.
(a) Show that Equation (A) is invariant under the transformation

x=kE  y=kn, (B)

where k is a constant.
(b) Show that the general solution of Equation (A) can be written in the form

x= c¢<§), ©

where c is an arbitrary constant.
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() Use the result of (b) to show that the solution (C) is also invariant under the
transformation (B).

(d) Interpret geometrically the results proved in (a) and (c).

2.3 LINEAR EQUATIONS AND BERNOULLI EQUATIONS
A. Linear Equations

In Chapter 1 we gave the definition of the linear ordinary differential equation of order
n; we now consider the linear ordinary differential equation of the first order.

DEFINITION

A first-order ordinary differential equation is linear in the dependent variable y and the
independent variable x if it is, or can be, written in the form

d
% + P(x)y = Q(x). (2.26)

For example, the equation
d
x—y+(x+ )y =x3
dx

is a first-order linear differential equation, for it can be written as

d 1
—y+<l +—>y=x2,
dx x
which is of the form (2.26) with P(x) = 1 + (1/x) and Q(x) = x2.
Let us write Equation (2.26) in the form
[P(x)y — Q(x)] dx + dy = 0. (2.27)
Equation (2.27) is of the form
M(x, y) dx + N(x, y)dy = 0,

where
M(x, y) = P(x)y — Q(x) and N(x,y)=1.
Since
M) _ p ang ONGN) o
dy Ox

Equation (2.27) is not exact unless P(x) = 0, in which case Equation (2.26) degenerates
into a simple separable equation. However, Equation (2.27) possesses an integrating
factor that depends on x only and may easily be found. Let us proceed to find it. Let us
multiply Equation (2.27) by u(x), obtaining

[u(x)P(x)y — u(x)Q(x)] dx + u(x)dy = 0. (2.28)
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By definition, u(x) is an integrating factor of Equation (2.28) if and only if Equation
(2.28) is exact; that is, if and only if

0 0
e [u(x)P(x)y — u(x)Q(x)] = ix Lu(x)]
This condition reduces to
HIPO) = &[], (2.29)
X

In (2.29); P is a known function of the independent variable x, but u is an unknown
function of x that we are trying to determine. Thus we write (2.29) as the differential
equation

du

#P(x)=a

in the dependent variable y and the independent variable x, where P is a known
function of x. This differential equation is separable; separating the variables, we have

d
& P(x) dx.
U
Integrating, we obtain the particular solution
Inju| = fP(x) dx
or

=l P dx (2.30)

where it is clear that u > 0. Thus the linear equation (2.26) possesses an integrating
factor of the form (2.30). Multiplying (2.26) by (2.30) gives

e.“’(x)dx % + ejP(x}dx P(X)y — Q(x)ejp(x)dx’
which is precisely
d
;i; [ef P(x)dxy] — Q(x)e]l’(x)dx.

Integrating this we obtain the solution of Equation (2.26) in the form
ejP(x)dxy — feIP(x)de(x) dx + c,
where c is an arbitrary constant.
Summarizing this discussion, we have the following theorem:

THEOREM 2.4

The linear differential equation

gl + P(x)y = Q(x) (2.26)
x
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has an integrating factor of the form

ej P(x) dx'

A one-parameter family of solutions of this equation is
yejP(x)dx — J‘ejP(x)de(x) dx + c;
that is,

y = e’“'"‘"”‘[je“’"‘"”‘Q(x) dx + c].

Furthermore, it can be shown that this one-parameter family of solutions of the linear
equation (2.26) includes all solutions of (2.26).

We consider several examples.

» Example 2.14

dy 2x + 1 -
A = x 31
dx+< . >y e (2.31)
Here
1
P(x)=2x+
X

and hence an integrating factor is

exp[JP(x) dx] = exp[j(zx: 1>dx:| = exp(2x + In |x])

= exp(2x) exp(In | x|) = x exp(2x).*

Multiplying Equation (2.31) through by this integrating factor, we obtain

d
xez"—i +e¥2x+ 1)y=x
or
. 2x = x.
Ix (xe“*y) = x

Integrating, we obtain the solutions
2

x
xez"y=7+c

or

where c is an arbitrary constant.

* The expressions e* and exp x are identical.
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» Example 2.15

Solve the initial-value problem that consists of the differential equation
(x2+1) % +4xy=x (2.32)

and the initial condition
y@2)=1 (2.33)

The differential equation (2.32) is not in the form (2.26). We therefore divide by x? + 1
to obtain

d_y 4 4x X
x x+1’ e+ 1
Equation (2.34) is in the standard form (2.26), where

4x
x4+l

(2.34)

P(x) =

An integrating factor is

exp[JP(x) dx:l = exp<J~ 4x dx) = exp[ln(x2 + 1)2] = (x2 + 1)2.

x? 41

Multiplying Equation (2.34) through by this integrating factor, we have
2 2 4y 2 2
(x*+1) a+4x(x + Dy=x(x*+1)
or
d 2 2 3
—[(x*+ 1)yl =x"+x.
dx

We now integrate to obtain a one-parameter family of solutions of Equation (2.23) in
the form

x4 2
(x* + 1)2y=7+7+c.
Applying the initial condition (2.33), we have
25=6+c.
Thus ¢ = 19 and the solution of the initial-value problem under consideration is

x*  x?

(x2+1)2y=7+7+19.

» Example 2.16

Consider the differential equation

y2dx + (3xy — 1)dy = 0. (2.35)
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Solving for dy/dx, this becomes

dy __y?

dx 1—3xy’

which is clearly not linear in y. Also, Equation (2.35) is not exact, separable, or
homogeneous. It appears to be of a type that we have not yet encountered; but let us
look a little closer. In Section 2.1, we pointed out that in the differential form of a first-
order differential equation the roles of x and y are interchangeable, in the sense that
either variable may be regarded as the dependent variable and the other as the
independent variable. Considering differential equation (2.35) with this in mind, let us
now regard x as the dependent variable and y as the independent variable. With this
interpretation, we now write (2.35) in the derivative form

dx 1-3xy
dy  y?
or
dx 3 1
T lx=— (2.36)
dy "y~ y?

Now observe that Equation (2.36) is of the form

& PO)x=00)
y

and so is linear in x. Thus the theory developed in this section may be applied to
Equation (2.36) merely by interchanging the roles played by x and y. Thus an inte-

grating factor is
3
eprP(y) dy] = exv(j; dy) =exp(In | y|*) = y°.

Multiplying (2.36) by y* we obtain

dx
3 3 2y —
y _dy+ yx=y

or
d 3
—[y’x] =y.
dy[y 1=y

Integrating, we find the solutions in the form

2

3y =2
y°x 2-&-c

or

where ¢ is an arbitrary constant.
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B. Bernoulli Equations

We now consider a rather special type of equation that can be reduced to a linear
equation by an appropriate transformation. This is the so-called Bernoulli equation.

DEFINITION

An equation of the form

d
=+ Plx)y = Q(x)y" (2:37)
X
is called a Bernoulli differential equation.

We observe that if n = 0 or 1, then the Bernoulli equation (2.37) is actually a linear
equation and is therefore readily solvable as such. However, in the general case in which
n # 0 or 1, this simple situation does not hold and we must proceed in a different
manner. We now state and prove Theorem 2.5, which gives a method of solution in the
geﬁeral case.

THEOREM 2.5

Suppose n # 0 or 1. Then the transformation v = y* ~" reduces the Bernoulli equation

dy

o T POy =00y 2.37)
X

to a linear equation in v.

Proof. We first multiply Equation (2.37) by y~", thereby expressing it in the
equivalent form

d
v L Pyt = 0). (2.38)
dx
If weletv = y!™" then
dv Y
d_x =(1 —n)y dx

and Equation (2.38) transforms into

1 dv
1 —ndx * Pogr =0
or, equivalently, |
dv
™ + (1 — n)P(x)v = (1 — n)Q(x).

Letting
Py(x) = (1 — n)P(x)
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and
0:(x) = (I — mQ(x),
this may be written

d
T P = Q4 (x).

which is linear in v. Q.E.D.

» Example 2.17

dy 3

_— —3 . 2-
Ix +y=xy (2.39)
This is a Bernoulli differential equation, where n = 3. We first multiply the equation

through by y ~3, thereby expressing it in the equivalent form

dy
34y
Y ix
If we let v =y! ™" = y~2 then dv/dx = —2y~*(dy/dx) and the preceding differential
equation transforms into the linear equation

+y 2=1x

Writing this linear equation in the standard form

d_v — 2= —2x, (2.40)
dx

we see that an integrating factor for this equation is

ejP(x)dx — e—]de —2x.

=e
Multiplying (2.40) by e~ %*, we find
e % d Qe ¥p= —2xe ¥
dx
or
d
Ix (e”**v) = —2xe™ %~

Integrating, we find
e =4 P2x + 1)+ ¢,
v=x+ 4%+ ce?,

where ¢ is an arbitrary constant. But
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Thus we obtain the solutions of (2.39) in the form
1 1 2x
7 =X+35+ce.

Note. Consider the equation

af(y)d
T+ Pef) = Q) (41

where f is a known function of y. Letting v = f(y), we have
do_dvdy _df(y) dy
dx dydx dy dx’

and Equation (2.41) becomes

dv
ot P(x)v = Q(x),

which is linear in v. We now observe that the Bernoulli differential equation (2.37)is a
special case of Equation (2.41). Writing (2.37) in the form

d
y I PR = Q)

and then multiplying through by (1 — n), we have

d
(1= my™ 22+ Pyt " = Q)

where P,(x) = (1 — n)P(x) and Q,(x) = (1 — n)Q(x). This is of the form (2.41), where
f(y) = y' ™" letting v = y' ", it becomes

X 4 P09 = 04,

which is linear in v. For other special cases of (2.41), see Exercise 37.

Exercises

Solve the given differential equations in Exercises 1-18.

d
1. d—y+2=6x2. 2. x“—y+2x3y=1.
dx x dx
dy 2,3 dy
.= = % . —— +4xy = 8x.
3 dx+3y 3x‘e 4 dx+ xy = 8x
5 d_x+1_l 6 (u2+1)@+4uv—3u
Codt 2 ' du '
dy 2x+1
- =x—1
7 dx+x+1 X



2.3 LINEAR EQUATIONS AND BERNOULLI EQUATIONS 57

8. (x2+x—2)d—y+3(x+l)y=x—l.
dx

9. xdy+(xy+y—1)dx=0.
10. ydx + (xy*+x—y)dy=0.

dr
11. — = .
d0+rtan9 cos 0

12. cos 6 dr + (rsin 8 — cos* 0) d6 = 0.
13. (cos? x — y cos x) dx — (1 + sin x) dy = 0.

14. (ysin 2x — cos x)dx + (1 + sin? x)dy = 0.

d 2 d
5. L_Y_ ¥V 16. x—y+ y= —2x5y*
dx x x dx

d t+1 t+1
17. dy + (4y — 8y ?)xdx = 0. 8. & t oyt

a T xt

Solve the initial-value problems in Exercises 19-30.

19. X

—— — 2y = 2x*, y(2) = 8.
x

20. % +3x2y=x%  y(0)=2.

21. e[y —3(* + 1)*]dx + (e* + 1)dy =0, y(0) = 4.
22. 2x(y + 1)dx —(x*+ 1)dy=0, y(1)= -5

23. dr + rtan 0 = cos? 6, r(£> =1.

do 4
dx .
24. yri Xx = sin 2t, x(0) = 0.
dy 'y x _
25. dx +§;—y3, y(l)—2
dy 32 ‘
26. x=—+ y=(xy)°%, y(1) =4
dx
dy 2, 0<x<1, _
27. FrR e S(x), where f(x)= {0’ x> 1, 0 =0
dy 5 0<x<10,
28. E+y—f(x), where f(x)—{l’ x> 10, y(0) =6
dy e 0<x<2, B
29. In +y = f(x), where f(x)= {e"z, x> 2, y(0) = 1.

2x, 0<x<2,

0) = 4.
4, x=>2, y(0)

30. (x+2)j—;‘:+y=f(x), where f(x)={
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31.

32.

33.

34.

35.

Consider the equation a(dy/dx) + by = ke™**, where a, b, and k are positive
constants and A is a nonnegative constant.

(@) Solve this equation.
(b) Show that if 2 = 0 every solution approaches k/b as x — oo, but if 1 >0
every solution approaches 0 as x — oo.

Consider the differential equation

dy
It Py=0.

(@) Show that if f and g are two solutions of this equation and ¢, and c, are
arbitrary constants, then ¢, f + ¢, g is also a solution of this equation.

(b) Extending the result of (a), show that if f,, f,,..., f, are n solutions of this
equation and ¢y, ¢,,...,c, are n arbitrary constants, then

n
2 <k
k=1
is also a solution of this equation..
Consider the differential equation

dy _
ol P(x)y =0, (A)

where P is continuous on a real interval I.

(@) Show that the function f such that f(x) = 0 for all x € I is a solution of this
equation.

(b) Show that if f is a solution of (A) such that f(x,) = 0 for some x, € I, then
f(x)=0forall xel.

(c) Show thatif f and g are two solutions of (A)such that f(x,) = g(x,)for some
Xo € I, then f(x) = g(x) for all x € I.

(@) Prove thatif f and g are two different solutions of

dy

= = A
2 TPy =0, (A)
then f — g is a solution of the equation
dy
Ix + P(x)y =0.

(b) Thusshow thatif f and g are two different solutions of Equation (A) and c is
an arbitrary constant, then

cf—-9+f

is a one-parameter family of solutions of (A).

(a) Let f; be a solution of

Y 4 Py =0
X
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and f, be a solution of

d
=+ Py = 0 (%),

where P, Q,, and Q, are all defined on the same real interval I. Prove that
fi + f,is asolution of

d
=+ Py = 019 + (9

onl.
(b) Use the result of (a) to solve the equation

d .
d_i)+y=2sinx+55m2x‘

36. (a) Extend the result of Exercise 35(a) to cover the case of the equation

d n
d—+Px)y= Z

where P, Q,(k = 1,2,...,n) are all defined on the same real interval I.
(b) Use the result obtained in (a) to solve the equation

d b}
2Loyy= Z sin kx.
dx =1

37.  Solve each of the following equations of the form (2.41):
d 1.
(a) cosydy —smy = 1.
b (y+ I)E + x(y? + 2y) = x.

38. The equation
YV _ 4y + B c A
2 = AX)yT + Blx)y + C(x) (A)
is called Riccati’s equation.

(@) Show that if A(x) =0 for all x, then Equation (A) is a linear equation,
whereas if C(x) = 0 for all x, then Equation (A) is a Bernoulli equation.

(b) Show that if f is any solution of Equation (A), then the transformation
1
Y—f+;
reduces (A) to a linear equation in v.

In each of Exercises 39-41, use the result of Exercise 38(b) and the given solution to
find a one-parameter family of solutions of the given Riccati equation:
dy

39, = (1 = x)y% + 2x — 1)y — x; given solution f(x) = 1.
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40. % = —y% + xy + 1; given solution f(x) = x.
41. % = —8xy? + dx(4x + 1)y — (8x3 + 4x? — 1); given solution f(x) = x.

Exercises: Miscellaneous Review
Solve each of the differential equations in Exercises 1-14. Several can be solved by at
least two different methods.

1. 6x%ydx —(x*+ 1)dy=0.
(3x2y? — x)dy + 2xy3 — y)dx = 0.
(y—1dx+x(x+1)dy=0.
(x* = 2y)dx — xdy = 0.
Bx —=5y)dx + (x + y)dy =0.
eyrdx + (e**y — 2y)dy = 0.
(8x3y — 12x3) dx + (x* + 1) dy = 0.
(2x% 4+ xy 4+ y?)dx + 2x2dy = 0.

® NS AW

dy _4x’y® —3x%y
dx — x3—2x%

d
10. (x + 1)% +xy=e "

0 dy 2x—=Ty
“dx 3y —8x’
12. x2%+ xy = xy>.

dy
3 20 — 6y
13. (x +1)dx+6xy 6x°.

dy 2x*+y?
14 =—=—=.
dx 2xy—x

Solve the initial value problems in Exercises 15-24.

15. (x*+y¥)dx —2xydy=0, y(l)=2

16. 2(y* +4)dx + (1 —x?)ydy=0, y(3)=0.

17. (e¥*y? —2x)dx + e**ydy =0, y(0)=2.

18. (3x? + 2xy?)dx + (2x%y + 6y?)dy =0,  y(1) = 2.

d
19, 4xy% =y241, Y2 =1
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dy 2x+ 7Ty
20, == , 1)=2.
dx 2x -2y y)
dy xy
.= = , V15 =2
21 dx x*+1 W )

1, 0<x<2,
0, x>2,

22. % +y=f(x), where f(x)= {

y(0) = 0.
2x, 0<x<2,

0) = 4.
4, x>2, y©0)

23. (x+2)%+y=f(x), where f(x)={

d 3
m.ﬁ%+w=%, y1) = 1.

2.4 SPECIAL INTEGRATING FACTORS AND TRANSFORMATIONS

We have thus far encountered five distinct types of first-order equations for which
solutions may be obtained by exact methods, namely, exact, separable, homogeneous,
linear, and Bernoulli equations. In the case of exact equations, we follow a definite
procedure to directly obtain solutions. For the other four types definite procedures for
solution are also available, but in these cases the procedures are actually not quite so
direct. In the cases of both separable and linear equations we actually multiply by
appropriate integrating factors that reduce the given equations to equations that are of
the more basic exact type. For both homogeneous and Bernoulli equations we make
appropriate transformations that reduce such equations to equations that are of the
more basic separable and linear types, respectively.

This suggests two general plans of attack to be used in solving a differential equation
that is not of one of the five types mentioned. Either (1) we might multiply the given
equation by an appropriate integrating factor and directly reduce it to an exact
equation, or (2) we might make an appropriate transformation that will reduce the
given equation to an equation of some more basic type (say, one of the five types
already studied). Unfortunately no general directions can be given for finding an
appropriate integrating factor or transformation in all cases. However, there is a
variety of special types of equations that either possess special types of integrating
factors or to which special transformations may be applied. We shall consider a few of
these in this section. Since these types are relatively unimportant, in most cases we shall
simply state the relevant theorem and leave the proof to the exercises.

A. Finding Integrating Factors

The so-called separable equations considered in Section 2.2 always possess integrating
factors that may be determined by immediate inspection. While it is true that some
nonseparable equations also possess integrating factors that may be determined “by
inspection,” such equations are rarely encountered except in differential equations texts
on pages devoted to an exposition of this dubious “method.” Even then a considerable
amount of knowledge and skill are often required.
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Let us attempt to attack the problem more systematically. Suppose the equation
M(x,y)dx + N(x,y)dy =0 (2.42)

is not exact and that u(x, y) is an integrating factor of it. Then the equation
pu(x, YYM(x, y) dx + p(x, y)N(x, y)dy =0 (2.43)

is exact. Now using the criterion (2.7) for exactness, Equation (2.43)is exact if and only if
2 Lt )M, 9] = = [t NG 9)]
6y'u’y s Y —axﬂ,y » V).

This condition reduces to

N(x, y)

M(x, y)

ou(x, y) _ ou(x, y) _ [0M (x,y) _ON(x,y)
0x

Here M and N are known functions of x and y, but x is an unknown function of x and y
that we are trying to determine. Thus we write the preceding condition in the form

OM(x,y) _ON(x, y)]#

(2.44)

u ou
N(x,y)a—M(x,y);?;—[ 3 I

Hence u is an integrating factor of the differential equation (2.42) if and only if it is a
solution of the differential equation (2.44). Equation (2.44) is a partial differential
equation for the general integrating factor u, and we are in no position to attempt to
solve such an equation. Let us instead attempt to determine integrating factors of
certain special types. But what special types might we consider? Let us recall that the
linear differential equation
24 Py =00

always possesses the integrating factor ef*™®¢* which depends only upon x. Perhaps
other equations also have integrating factors that depend only upon x. We therefore
multiply Equation (2.42) by u(x), where u depends upon x alone. We obtain

Hx)M(x, y) dx + p(x)N(x, y) dy = 0.

This is exact if and only if

0 0
py Lux)M(x, Y] === [N (x, y)]

Now M and N are known functions of both x and y, but here the intergrating factor u
depends only upon x. Thus the above condition reduces to

OM(x, ON(x, d
u() g”=mm—%ﬂ+wa%?

or

(2.45)

dp(x) 1 [0M(x, y) _ON(x, y)] dx.

ux)  Nxy| oy o
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If

1 OM(x,y) ON(x,y)
N(x, y) dy T ox

involves the variable y, this equation then involves two dependent variables and we
again have difficulties. However, if

1 OM(x,y) ON(x,y)
N(x, y) dy T ox

depends upon x only, Equation (2.45) is a separated ordinary equation in the single
independent variable x and the single dependent variable u. In this case we may
integrate to obtain the integrating factor

_ 1 OM(x,y) ON(x,y)
ulx) = exp{JN(x, o [ 3y T ox ]dx}.

In like manner, if

1 ON(x,y) 0M(x,y)
M(x, y) ox 0y

depends upon y only, then we may obtain an integrating factor that depends only on y.
We summarize these observations in the following theorem.

THEOREM 2.6

Consider the differential equation
M(x, y)dx + N(x, y)dy = 0. (2.42)
If

1 [6M(x, ») 9N, Y)] (2.46)

N(x, y) dy O0x

depends upon x only, then

1 OM(x,y) ON(x,y)
exp{fN(x, o) |: 3y i ]dx} (2.47)

is an integrating factor of Equation (2.42). If
! [0N(x, )  OM(x, y)]

M, )| ox oy (2:4%)

depends upon y only, then

1 [oN(x,y) M(x )],
eXPU M(x,y)[ ox  dy ]dy} (2.49)

is an integrating factor of Equation (2.42).

We emphasize that, given a differential equation, we have no assurance in general
that either of these procedures will apply. It may well turn out that (2.46) involves y
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and (2.48) involves x for the differential equation under consideration. Then we must
seek other procedures. However, since the calculation of the expressions (2.46) and
(2.48) is generally quite simple, it is often worthwhile to calculate them before trying
something more complicated.

» Example 2.18

Consider the differential equation
(2x2 + y)dx + (x*y — x)dy = 0. (2.50)

Let us first observe that this equation is not exact, separable, homogeneous, linear,
or Bernoulli. Let us then see if Theorem 2.6 applies. Here M(x, y) = 2x* + y, and
N(x, y) = x2y — x, and the expression (2.46) becomes

1 _2l-xp) 2
y_x[l—(2xy—1)]——x(xy_l)— >

x2

This depends upon x only, and so

2 1
exp(——f— dx) =exp(—2In|x|) =—
X X
is an integrating factor of Equation (2.50). Multiplying (2.50) by this integrating factor,

we obtain the equation ,
2+ 2 )dx + l)d 0 2.51)
-5 X - = U .
2 y %, y (

The student may readily verify that Equation (2.51)is indeed exact and that the solution

1S
2
y y
2 z _ L
X + ) .

=c

More and more specialized results concerning particular types of integrating factors
corresponding to particular types of equations are known. However, instead of going
into such special cases we shall now proceed to investigate certain useful
transformations.

B. A Special Transformation

We have already made use of transformations in reducing both homogeneous and
Bernoulli equations to more tractable types. Another type of equation that can be
reduced to a more basic type by means of a suitable transformation is an equation of
the form

(ayx +byy +¢y) dx + (ax + byy + ¢;) dy = 0.

We state the following theorem concerning this equation.
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THEOREM 2.7

Consider the equation
(ayx +byy+c))dx +(a,x + b,y +¢;)dy =0, (2.52)

where a,, by, c,, a,, b,, and c, are constants.

Case 1. If a,/a, # b,/b,, then the transformation
x=X +h,
y=Y +k
where (h, k) is the solution of the system
ah+bk+c, =0,
a,h+b,k+c, =0,
reduces Equation (2.52) to the homogeneous equation
(@ X+b,Y)dX + (a, X +b,Y)dY =0
in the variables X and Y.

Case 2. If a,/a; = b,/b, = k, then the transformation z = a,;x + b,y reduces the
equation (2.52) to a separable equation in the variables x and z.

Examples 2.19 and 2.20 illustrate the two cases of this theorem.

» Example 2.19

(x—2y+1)dx+ @dx—3y—6)dy=0. (2.53)
Herea, =1,b;, = —2,a, =4,b, = —3,and so
a, b, 3 a,
—~=4 but ===#-—"=,
a, ! b, 2="éal

Therefore this is Case 1 of Theorem 2.7. We make the transformation
x=X +h,
y=Y +k,
where (h, k) is the solution of the system
h—2k+1=0,
4h — 3k -6 =0.
The solution of this system is h = 3, k = 2, and so the transformation is
x=X+3,
y=Y +2
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This reduces Equation (2.53) to the homogeneous equation
(X —2Y)dX + (4X —3Y)dY =0. (2.54)

Now following the procedure in Section 2.2 we first put this homogeneous equation in
the form
dY 1-2(Y/X)
dX ~ 3(Y/X) -4
and let Y = vX to obtain
dv 1-2
v+ X 217 = ——-—30 — 4

This reduces to

(Bv—4)dv __Ei{

Ww-w—-1 X (2:35)

Integrating (we recommend the use of tables here), we obtain

3v—-3
1] 2 _ 9y 1] —3 - _
7In |30 - 20— 1| —31n 311 In|X|+Inj|c,l,
or
3v—33 ct
2_ 912 _in 2l T2 (L
In(3v* — 2v — 1) — In T ln(X4>,
or
BGo+1°| . [t
In v—1 =In X))
or, finally,

X4 @v+ 1)’ =clv—1],

where ¢ = c}. These are the solutions of the separable equation (2.55). Now replacing
v by Y/X, we obtain the solutions of the homogeneous equation (2.54) in the form

13Y + X|® =c|Y — X|.

Finally, replacing X by x — 3 and Y by y — 2 from the original transformation, we
obtain the solutions of the differential equation (2.53) in the form

13y =2+ (x=3)P =cly—-2-x+3|
or

|x +3y =9 =cly —x + 1].

» Example 2.20

(x + 2y + 3)dx + (2x + 4y — 1) dy = 0. (2.56)
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Herea, = 1,b, = 2,a, = 2,b, = 4,and a,/a, = b,/b, = 2. Therefore, this is Case 2 of
Theorem 2.7. We therefore let

z=x+ 2y,

and Equation (2.56) transforms into

(z+3)dx + (Qz — 1)(dz > d") =0

or
Tdx + 2z —1)dz=0,
which is separable. Integrating, we have
Ix+z*—z=c
Replacing z by x + 2y we obtain the solution of Equation (2.56) in the form
Tx+(x+2y)2 —(x+2y)=c
or

x? + 4xy + 4y* + 6x — 2y =c.

C. Other Special Types and Methods; An Important Reference

Many other special types of first-order equations exist for which corresponding special
methods of solution are known. We shall not go into such highly specialized types
in this book. Instead we refer the reader to the book Differentialgleichungen:
Losungsmethoden und Losungen, by E. Kamke (Chelsea, New York, 1948). This re-
markable volume contains discussions of a large number of special types of equations
and their solutions. We strongly suggest that the reader consult this book whenever he
encounters an unfamiliar type of equation. Of course one may encounter an equation
for which no exact method of solution is known. In such a case one must resort to
various methods of approximation. We shall consider some of these general methods
in Chapter 8.

Exercises

Solve each differential equation in Exercises 1-4 by first finding an integrating factor.
1. (5xy +4y? + 1)dx + (x2 + 2xy)dy = 0.
2. (2x + tan y)dx + (x — x> tan y) dy = 0.
3. [Yix+ 1)+ yldx + (2xy + 1)dy = 0.
4. (2xy* + y)dx + (2y* — x)dy = 0.
In each of Exercises 5 and 6 find an integrating factor of the form x?y? and solve.
5. (4xy* + 6y)dx + (5x%y + 8x)dy = 0.
6. (8x2y* —2y*ydx + (5x3y? — 8xy3)dy = 0.



68

FIRST-ORDER EQUATIONS FOR WHICH EXACT SOLUTIONS ARE OBTAINABLE

Solve each differential equation in Exercises 7-10 by making a suitable transformation.

7.
8.
9.
10.

Bx+2y+)dx+(2x+y+1)dy=0.
Bx—y+1)dx—(6x—2y—3)dy=0.
(x—2y—3)dx+2x+y—1)dy=0.
(10x — 4y + 12)dx — (x + 5y + 3)dy = 0.

Solve the initial-value problems in Exercises 11-14.

11
12.
13.
14.
15.
16.
17.

18.

19.

20.

(6x +4y + 1)dx + (4x +2y +2)dy=0, y3)=3.
Bx—y—6dx+(x+y+2dy=0, y2) = =2
2x+3y+1)dx+@x+6y+1)dy=0, y(—=2)=2.
@x+3y+Ddx+(x+y+1)dy=0, y(3) = —4.
Prove Theorem 2.6.
Prove Theorem 2.7.
Show that if u(x, y) and v(x, y) are integrating factors of

M(x, y)dx + N(x,y)dy =0 (A)
such that u(x, y)/v(x, y) is not constant, then

K(x, y) = cv(x, y)

is a solution of Equation (A) for every constant c.

Show that if the equation
M(x, y)dx + N(x, y)dy =0 (A)

is homogeneous and M(x, y)x + N(x, y)y # 0, then 1/[M(x, y)x + N(x, y)y] is
an integrating factor of (A).

Show that if the equation M(x, y) dx + N(x, y) dy = 0is both homogeneous and
exact and if M(x, y)x + N(x, y)y is not a constant, then the solution of this
equation is M(x, y)x + N(x, y)y = ¢, where c is an arbitrary constant.

An equation that is of the form
y=px+ f(p), (A)

where p = dy/dx and f is a given function, is called a Clairaut equation. Given
such an equation, proceed as follows:

1. Differentiate (A) with respect to x and simplify to obtain
' dp
(p]-==0. B
D+ (P 32 (B)

Observe that (B) is a first-order differential equation in x and p.

2. Assume x + f'(p) # 0, divide through by this factor, and solve the resulting
equation to obtain

p=c ©

where c is an arbitrary constant.
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3. Eliminate p between (A) and (C) to obtain
y=cx+ f(c). (D)

Note that (D) is a one-parameter family of solutions of (A) and compare the form
of differential equation (A) with the form of the family of solutions (D).

4. Remark. Assumingx + f'(p) = 0and then eliminating p between (A) and
x + f'(p) = 0 may lead to an “extra” solution that is not a member of the one-
parameter family of solutions of the form (D). Such an extra solution is usually
called a singular solution. For a specific example, see Exercise 21.

Consider the Clairaut equation

d
y = px + p%, where p =Y
dx

(@) Find a one-parameter family of solutions of this equation.

(b) Proceed as in the Remark of Exercise 20 and find an “extra” solution that is
not a member of the one-parameter family found in part (a).

() Graph the integral curves corresponding to several members of the one-
parameter family of part (a); graph the integral curve corresponding to the
“extra” solution of part (b); and describe the geometric relationship between
the graphs of the members of the one-parameter family and the graph of the
“extra” solution.
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Applications of First-Order Equations

In Chapter 1 we pointed out that differential equations originate from the mathemati-
cal formulation of a great variety of problems in science and engineering. In this
chapter we consider problems that give rise to some of the types of first-order ordinary
differential equations studied in Chapter 2. First, we formulate the problem mathemat-
ically, thereby obtaining a differential equation. Then we solve the equation and
attempt to interpret the solution in terms of the quantities involved in the original
problem.

ORTHOGONAL AND OBLIQUE TRAJECTORIES

A. Orthogonal Trajectories
DEFINITION

Let
F(x,y,c)=0 (3.1)

be a given one-parameter family of curves in the xy plane. A curve that intersects the
curves of the family (3.1) at right angles is called an orthogonal trajectory of the given

Sfamily.
» Example 3.1

Consider the family of circles

x% + y?=c? (3.2
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with center at the origin and radius c. Each straight line through the origin,
y = kx, (3.3)

is an orthogonal trajectory of the family of circles (3.2). Conversely, each circle of the
family (3.2) is an orthogonal trajectory of the family of straight lines (3.3). The families
(3-2) and (3.3) are orthogonal trajectories of each other. In Figure 3.1 several members
of the family of circles (3.2), drawn solidly, and several members of the family of
straight lines (3.3), drawn with dashes, are shown.

The problem of finding the orthogonal trajectories of a given family of curves arises
in many physical situations. For example, in a two-dimensional electric field the lines of
force (flux lines) and the equipotential curves are orthogonal trajectories of each other.

We now proceed to find the orthogonal trajectories of a family of curves

F(x, y,c) = 0. 3.1)

We obtain the differential equation of the family (3.1) by first differentiating Equation
(3.1) implicitly with respect to x and then eliminating the parameter ¢ between the
derived equation so obtained and the given equation (3.1) itself. We assume that the
resulting differential equation of the family (3.1) can be expressed in the form

Y _ fixy). (3.4)

dx
Thus the curve C of the given family (3.1) which passes through the point (x, y) has
the slope f(x, y) there. Since an orthogonal trajectory of the given family intersects
each curve of the family at right angles, the slope of the orthogonal trajectory to C at
(x, y)is

o
fey)

=¥

Figure 3.1
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Thus the differential equation of the family of orthogonal trajectories is

d 1
- o (3.5)
A one-parameter family
G(x, y,0)=0
or
y=F(x0)

of solutions of the differential equation (3.5) represents the family of orthogonal
trajectories of the original family (3.1), except possibly for certain trajectories that are
vertical lines.

We summarize this procedure as follows:

Procedure for Finding the Orthogonal Trajectories of a
Given Family of Curves

Step 1. From the equation

F(x, y,¢)=0 3.1)
of the given family of curves, find the differential equation

dy

=10y (34)

of this family.

Step 2. In the differential equation dy/dx = f(x, y) so found in Step 1, replace
f(x, y) by its negative reciprocal —1/ f(x, y). This gives the differential equation
dy 1

dx — f(x,y)

3.5)

of the orthogonal trajectories.

Step 3. Obtain a one-parameter family
G(x,y,c)=0 or y=F(x,0)

of solutions of the differential equation (3.5), thus obtaining the desired family of
orthogonal trajectories (except possibly for certain trajectories that are vertical lines
and must be determined separately).

Caution. In Step 1, in finding the differential equation (3.4) of the given family, be
sure to eliminate the parameter ¢ during the process.

» Example 3.2

In Example 3.1 we stated that the set of orthogonal trajectories of the family of circles
x2+yt=c? (3.2
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is the family of straight lines
y = kx. (3.3

Let us verify this using the procedure outlined above.

Step 1. Differentiating the equation

x4+ y?=c? (3.2)
of the given family, we obtain
dy
—=0.
xX+y dx

From this we obtain the differential equation

dy x
=_= .6
I y (3.6)

of the given family (3.2). (Note that the parameter ¢ was automatically eliminated in this
case.)

Step 2. Wereplace —x/y by its negative reciprocal y/x in the differential equation
(3.6) to obtain the differential equation

dy 'y

— == 3.7

dx x (3.7)
of the orthogonal trajectories.

Step 3. We now solve the differential equation (3.7). Separating variables, we have

dy dx
CRE
integrating, we obtain
y = kx. (3.3

This is a one-parameter family of solutions of the differential equation (3.7) and thus
represents the family of orthogonal trajectories of the given family of circles (3.2)
(except for the single trajectory that is the vertical line x = 0 and this may be deter-
mined by inspection).

» Example 3.3

Find the orthogonal trajectories of the family of parabolas y = cx2.
Step 1. We first find the differential equation of the given family
y =cx? (3.8

Differentiating, we obtain

= lex. (3.9)
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YA

=Y

Figure 3.2

Eliminating the parameter ¢ between Equations (3.8) and (3.9), we obtain the differ-
ential equation of the family (3.8) in the form

2
dy 2 (3.10)
dx x
Step 2. We now find the differential equation of the orthogonal trajectories by
replacing 2y/x in (3.10) by its negative reciprocal, obtaining

d_y_x

= 11
dx 2y (3.1

Step3. We now solve the differential equation (3.11). Separating variables, we have
2ydy = —x dx.
Integrating, we obtain the one-parameter family of solutions of (3.11) in the form
x2 + 2p? = k2,

where k is an arbitrary constant. This is the family of orthogonal trajectories of (3.8); it
is clearly a family of ellipses with centers at the origin and major axes along the x axis.
Some members of the original family of parabolas and some of the orthogonal
trajectories (the ellipses) are shown in Figure 3.2.

B. Oblique Trajectories

DEFINITION

Let
F(x,y,c)=0 (3.12)
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be a one-parameter family of curves. A curve that intersects the curves of the family (3.12)
at a constant angle o. # 90° is called an oblique trajectory of the given family.

Suppose the differential equation of a family is

d

y .,
I J(x, y). (3.13)

Then the curve of the family (3.13) through the point (x, y) has slope f(x, y) at (x, y) and
hence its tangent line has angle of inclination tan™'[ f(x, y)] there. The tangent line
of an oblique trajectory that intersects this curve at the angle « will thus have angle
of inclination

tan"'[f(x, y)] + «
at the point (x, y). Hence the slope of this oblique trajectory is given by

tan{tan Lf(x 9]+ “} T 11— f(x, ytana’

Thus the differential equation of such a family of oblique trajectories is given by

dy  f(x,y) +tana

dx 1 — f(x, y)tan o’

Thus to obtain a family of oblique trajectories intersecting a given family of curves at
the constant angle « # 90°, we may follow the three steps in the above procedure (page
72) for finding the orthogonal trajectories, except that we replace Step 2 by the fol-
lowing step:

Step 2. In the differential equation dy/dx = f(x, y) of the given family, replace
f(x, y) by the expression

f(x,y)+ tana

1 — f(x, y)tan o’ G14)

» Example 3.4

Find a family of oblique trajectories that intersect the family of straight lines y = cx at
angle 45°.

Step 1. From y = cx, we find dy/dx = c. Eliminating c, we obtain the differential
equation

(3.15)
of the given family of straight lines.

Step 2. We replace f(x, y) = y/x in Equation (3.15) by

f(x,y)+tana  y/x+1 x+y
1 —f(x,ptana 1 —y/x x—y




76

APPLICATIONS OF FIRST-ORDER EQUATIONS

(tan o = tan 45° = 1 here). Thus the differential equation of the desired oblique
trajectories is

dy x4y

dx  x—y

(3.16)

Step 3. We now solve the differential equation (3.16). Observing that it is a
homogeneous differential equation, we let y = vx to obtain

u+x@—l+v
dx 1—-v

After simplifications this becomes

v—1dv  dx
¥+1  x
Integrating we obtain
LIn(@? + 1) — arctanv = —In|x| —In|c|

or
In ¢2x%(v? + 1) — 2 arctan v = 0.

Replacing v by y/x, we obtain the family of oblique trajectories in the form

Inc?(x* + y?) -2 arctan% =0.

Exercises

In Exercises 1-9 find the orthogonal trajectories of each given family of curves. In each
case sketch several members of the family and several of the orthogonal trajectories on
the same set of axes.

1. y=cx3 2. y*=cx

3. ex?+y*=1. 4, y=e~

5. y=x—1+ce ™ 6. x—y=cx2

7. x4+ y?=cx3 8 x*2=2y—1+ce .

2
y c
10. Find the orthogonal trajectories of the family of ellipses having center at the
origin, a focus at the point (c, 0), and semimajor axis of length 2c.

11. Find the orthogonal trajectories of the family of circles which are tangent to the y
axis at the origin.

12. Find the value of K such that the parabolas y = ¢,x? + K are the orthogonal
trajectories of the family of ellipses x* + 2y% — y = c,.
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13. Find the value of n such that the curves x" + y" = ¢, are the orthogonal
trajectories of the family

X

Y=1_ cyx’

14. A given family of curves is said to be self-orthogonal if its family of orthogonal
trajectories is the same as the given family. Show that the family of parabolas
y? = 2¢x + ¢? is self-orthogonal.

15. Find a family of oblique trajectories that intersect the family of circles x?+y*=
c? at angle 45°.

16. Find afamily of oblique trajectories that intersect the family of parabolas y? = ¢x
at angle 60°.

17. Find a family of oblique trajectories that intersect the family of curves x+y=
cx? at angle o such that tan o = 2.

3.2 PROBLEMS IN MECHANICS

A. Introduction

Before we apply our knowledge of differential equations to certain problems in
mechanics, let us briefly recall certain principles of that subject. The momentum of a
body is defined to be the product mv of its mass m and its velocity v. The velocity v and
hence the momentum are vector quantities. We now state the following basic law of
mechanics:

Newton’s Second Law. The time rate of change of momentum of a body is
proportional to the resultant force acting on the body and is in the direction of this
resultant force.

In mathematical language, this law states that

d
a(mv) = KF,

where m is the mass of the body, v is its velocity, F is the resultant force acting upon it,
and K is a constant of proportionality. If the mass m is considered constant, this

reduces to
m d_v = KF
dt ’
or
F
a=K ot (3.17)
or

F = kma, (3.18)
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where k = 1/K and a = dv/dt is the acceleration of the body. The form (3.17) is a direct
mathematical statement of the manner in which Newton’s second law is usually
expressed in words, the mass being considered constant. However, we shall make use of
the equivalent form (3.18). The magnitude of the constant of proportionality k depends
upon the units employed for force, mass, and acceleration. Obviously the simplest
systems of units are those for which k = 1. When such a system is used (3.18) reduces to

F = ma. (3.19)

Itis in this form that we shall use Newton’s second law. Observe that Equation (3.19) is
a vector equation.

Several systems of units for which k = 1 arein use. In this text we shall use only three:
the British gravitational system (British), the centimeter-gram-second system (cgs), and
the meter-kilogram-second system (mks). We summarize the various units of these
three systems in Table 3.1.

Recall that the force of gravitational attraction that the earth exerts on a body is
called the weight of the body. The weight, being a force, is expressed in force units. Thus
in the British system the weight is measured in pounds; in the cgs system, in dynes; and
in the mks system, in newtons.

Let us now apply Newtons’s second law to a freely falling body (a body falling
toward the earth in the absence of air resistance). Let the mass of the body be m and let
w denote its weight. The only force acting on the body is its weight and so this is the
resultant force. The acceleration is that due to gravity, denoted by g, which is
approximately 32 ft/sec? in the British system, 980 cm/sec? in the cgs system, and
9.8 m/sec? in the mks system (for points near the earth’s surface). Newton’s second law
F = ma thus reduces to w = mg. Thus

w
m=—, 3.20
p (3.20)

a relation that we shall frequently employ.

Let us now consider a body B in rectilinear motion, that is, in motion along a straight
line L. On L we choose a fixed reference point as origin O, a fixed direction as posi-
tive, and a unit of distance. Then the coordinate x of the position of B from the origin O
tells us the distance or displacement of B. (See Figure 3.3.) The instantaneous velocity of
B is the time rate of change of x:

. dx
Cdt’
TABLE 3.1
British System cgs System mks System

force pound dyne newton
mass slug gram kilogram
distance foot centimeter meter
time second second second

acceleration ft/sec? cm/sec? m/sec?
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=F )
y

Figure 3.3

and the instantaneous acceleration of B is the time rate of change of v:

i _d*x
dt — dt*’

a =

Note that x,v, and a are vector quantities. All forces, displacements, velocities, and
accelerations in the positive direction on L are positive quantities; while those in the
negative direction are negative quantities.

If we now apply Newton’s second law F = ma to the motion of B along L, noting
that

dv_dvt_ii_vd_v
dt  dxdt dx’

we may express the law in any of the following three forms:

mj—'t’ —F, (3.21)
d2
m dt—f =F, (3.22)
my Z—z —F, (3.23)

where F is the resultant force acting on the body. The form to use depends upon the way
in which F is expressed. For example, if F is a function of time ¢ only and we desire to
obtain the velocity v as a function of ¢, we would use (3.21); whereas if F is expressed as a
function of the displacement x and we wish to find v as a function of x, we would
employ (3.23).

B. Falling Body Problems

We shall now consider some examples of a body falling through air toward the earth. In
such a circumstance the body encounters air resistance as it falls. The amount of air
resistance depends upon the velocity of the body, but no general law exactly expressing
this dependence is known. In some instances the law R = kv appears to be quite
satisfactory, while in others R = kv? appears to be more exact. In any case, the con-
stant of proportionality k in turn depends on several circumstances. In the ex-
amples that follow we shall assume certain reasonable resistance laws in each case.
Thus we shall actually be dealing with idealized problems in which the true resis-
tance law is approximated and in which certain comparatively negligible factors are
disregarded.
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» Example 3.5
A body weighing 8 Ib falls from rest toward the earth from a great height. As it falls, air
resistance act upon it, and we shall assume that this resistence (in pounds) is

numerically equal to 2v, where v s the velocity (in feet per second). Find the velocity and
distance fallen at time ¢ seconds.

Formulation. We choose the positive x axis vertically downward along the path of
the body B and the origin at the point from which the body fell. The forces acting on the
body are:

1. F,,its weight, 8 1b, which acts downward and hence is positive.
2. F,, the air resistance, numerically equal to 2v, which acts upward and hence is the
negative quantity —2v.

See Figure 3.4, where these forces are indicated.

Newton’s second law, F = ma, becomes

—-—=8—-"20 (3.24)

Since the body was initially at rest, we have the initial condition

v(0) = 0. (3.25)
OT__
A
x
Fz = —-2v
B p—L
F, =8
Y
Y+
Y
Earth

Figure 3.4
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Solution. Equation (3.24) is separable. Separating variables, we have

dv

=4 dt.
8 =~ 2v

Integrating we find
—31In|8 — 2v| = 4t + c,,
which reduces to

8 —2v=ce

Applying the condition (3.25) we find ¢, = 8. Thus the velocity at time ¢ is given by

v=4(1 —e™®). (3.26)
Now to determine the distance fallen at time t, we write (3.26) in the form

dx

- = 4 l o8t

and note that x(0) = 0. Integrating the above equation, we obtain
x=4(t +4e %) + c,.
Since x = 0 when t = 0, we find ¢, = —4 and hence the distance fallen is given by
x =4t +4e ¥ -} (3.27)

Interpretation of Results. Equation (3.26) shows us that as t — o0, the velocity v
approaches the limiting velocity 4(ft/sec). We also observe that this limiting velocity is
approximately attained in a very short time. Equation (3.27) states that as t — 00, x also
— 00. Does this imply that the body will plow through the earth and continue forever?
Of course not; for when the body reaches the earth’s surface its motion will certainly
cease. How then do we reconcile this obvious end to the motion with the statement of
Equation (3.27)? It is simple; when the body reaches the earth’s surface, the differential
equation (3.24) and hence Equation (3.27) no longer apply!

» Example 3.6

A skydiver equipped with parachute and other essential equipment falls from rest
toward the earth. The total weight of the man plus the equipment is 160 1b. Before the
parachute opens, the air resistance (in pounds) is numerically equal to $v, where v is the
velocity (in feet per second). The parachute opens 5 sec after the fall begins; after it
opens, the air resistance (in pounds) is numerically equal to §v?, where v is the velocity
(in feet per second). Find the velocity of the skydiver (A) before the parachute opens,
and (B) after the parachute opens.

Formulation. We again choose the positive x axis vertically downward with the
origin at the point where the fall began. The statement of the problem suggests that we
break it into two parts: (A) before the parachute opens; (B) after it opens.

We first consider problem (A). Before the parachute opens, the forces acting upon the
skydiver are:

1. F,, the weight, 160 b, which acts downward and hence is positive.
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2. F,, the air resistance, numerically equal to 4v, which acts upward and hence is the
negative quantity —3v.

We use Newton’s second law F = ma, where F = F, + F,, let m = w/g, and take
g = 32. We obtain
dv
dt
Since the skydiver was initially at rest, v = 0 when ¢ = 0. Thus, problem (A), concerned
with the time before the parachute opens, is formulated as follows:

5 % =160 — 4. (3.28)

v(0) = 0. (3.29)

We now turn to the formulation of problem (B). Reasoning as before, we sce that
after the parachute opens, the forces acting upon the skydiver are:

5 160 — 4v.

1. F, = 160, exactly as before.
2. F, = —3v*(instead of —4v).

Thus, proceeding as above, we obtain the differential equation
dv
dt
Since the parachute opens 5 sec after the fall begins, we have v = v, when t = 5, where

v, is the velocity attained when the parachute opened. Thus, problem (B), concerned
with the time after the parachute opens, is formulated as follows:

5 160 — $v2.

d
5 d—'t’ = 160 — §02, (3.30)
o(5) = v,. (3.31)

Solution. We shall first consider problem (A). We find a one-parameter family of
solution of

dv

5 i 160 — 3v. (3.28)
Separating variables, we obtain
dv
v e

Integration yields
In(v — 320) = —i4t + ¢,
which readily simplifies to the form
v =1320 + ce”"'°.
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Applying the initial condition (3.29) that v = 0 at t = 0, we find that ¢ = —320. Hence
the solution to problem (A) is

v =320(1 — ™19, (3.32)
which is valid for 0 < ¢t < 5. In particular, where ¢ = 5, we obtain
v, = 320(1 — e™1?) ~ 126, (3.33)

which is the velocity when the parachute opens.
Now let us consider problem (B). We first find a one-parameter family of solutions of
the differential equation

dv
5 i 160 — 3v? (3.30)

Simplifying and separating variables, we obtain

dv __ﬂ
2 —25 8

Integration yields
1. v—16 t

2v+16 8%
or
e
This readily simplifies to the form
z ; :2 = ce ¥, (3.34)
and solving this for v we obtain
v= M:—tl). (3.35)

1 —ce

Applying the initial condition (3.31) that v = v, at t = 5, where v, is given by (3.33) and
is approximately 126, to (3.34), we obtain

20-4t (3.36)

which is valid for ¢ > 5.

Interpretation of Results. Let us first consider the solution of problem (A), given
by Equation (3.32). According to this, as t - oo, v approaches the limiting velocity
320 ft/sec. Thus if the parachute never opened, the velocity would have been approx-
imately 320 ft/sec at the time when the unfortunate skydiver would have struck the
earth! But, accordingto the statement of the problem, the parachute does open 5 sec
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after the fall begins (we tacitly and thoughfully assume 5 « T, where T is the time
when, the Ranth. is rrachedl),. Then, wirRiag '@ R Wikicm A pidden ), Bajwticm
(3.36), we see that as t — oo, v approaches the limiting velocity 16 ft/sec. Thus, assuming
that the parachute opens at a considerable distance above the earth, the velocity is
approximately 16 ft/sec when the earth is finally reached. We thus obtain the well-
known fact that the velocity of impact with the open parachute is a small fraction of
the impact velocity that would have occured if the parachute had not opened. The
calculations in this problem are somewhat complicated, but the moral is clear: Make
certain that the parachute opens!

C. Frictional Forces

If a body moves on a rough surface, it will encounter not only air resistance but also
another resistance force due to the roughness of the surface. This additional force is
called friction. It is shown in physics that the friction is given by uN, where

1. uis a constant of proportionality called the coefficient of friction, which depends
upon the roughness of the given surface; and
2. N isthe normal (that is, perpendicular) force which the surface exerts on the body.

We now apply Newton’s second law to a problem in which friction is involved.

» Example 3.7

An object weighing 48 Ib is released from rest at the top of a plane metal slide that is
inclined 30° to the horizontal. Air resistance (in pounds) is numerically equal to one-
half the velocity (in feet per second), and the coefficient of friction is one-quarter.

A. What is the velocity of the object 2 sec after it is released?
B. If the slide is 24 ft long, what is the velocity when the object reaches the bottom?

Formulation. The line of motion is along the slide. We choose the origin at the top
and the positive x direction down the slide. If we temporarily neglect the friction and air
resistance, the forces acting upon the object A are:

1. Its weight, 48 b, which acts vertically downward; and
2. The normal force, N, exerted by the slide which acts in an upward direction
perpendicular to the slide. (See Figure 3.5.)
The components of the weight parallel and perpendicular to the slide have magnitude
48 sin 30° = 24
and
48 cos 30° = 24./3,

respectively, The components perpendicular to the slide are in equilibrium and hence
the normal force N has magnitude 24\/3.
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o

Figure 3.5

Now, taking into consideration4he friction and air resistance, we see that the forces
acting on the object as it moves along the slide are the following:

1. F,, the component on the weight parallel to the plane, having numerical value 24.
Since this force acts in the positive (dlownward) direction along the slide, we have
Fl = 24.

2. F,,thefrictional force, having numerical value uN = %(24ﬁ). Since thisactsin the
negative (upward) direction along the side, we have

F,=—6.3.

3. F,, the air resistance, having numerical value $v. Since v > 0 and this also acts in
the negative direction, we have

We apply Newton’s second law F = ma. Here F = F, + F, + F; =24 — 6\/3 1
and m = w/g = % = 3. Thus we have the differential equation

3d

Ed—'t’ =24-6,/3—4u. (3.37)

Since the object is released from rest, the initial condition is
v(0) = 0. (3.38)
Solution. Equation (3.37) is separable; separating variables we have
dv dt
8-12/3-v 3
Integrating and simplifying, we find
v=48—12/3 — e,
The condition (3.38) gives ¢, = 48 — 12\/3. Thus we obtain
v=(48 — 12./3)(1 — ™). (3.39)
Question A is thus answered by letting ¢ = 2 in Equation (3.39). We find
v(2) = (48 — 12\/3)(1 — e~ 23) & 10.2(ft/sec).
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In order to answer question B, we integrate (3.39) to obtain
x = (48 — 12./3)(t + 3¢ ") + ¢,

Since x(0) = 0,¢, = —(48 — 12\/3)(3). Thus the distance covered at time ¢ is given by
X = (48 — 12./3)(t + 3™ - 3).

Since the slide is 24 ft long, the object reaches the bottom at the time T determined from
the transcendental equation

24 = (48 — 12,/3)(T + 3¢~ 77 - 3),
which may be written as

47423
13

3¢ T3 = T.

The value of T that satisfies this equation is approximately 2.6. Thus from Equation
(3.39) the velocity of the object when it reaches the bottom is given approximately by

(48 — 12./3)(1 — e7°®) ~ 12.3 (ft/sec).

Exercises

1. A stone weighing 4 Ib falls from rest toward the earth from a great height. As it
falls it is acted upon by air resistance that is numercially equal to v (in pounds),
where v is the velocity (in feet per second).

(a) Find the velocity and distance fallen at time ¢ sec.

(b) Find the velocity and distance fallen at the end of 5 sec.

2. A ball weighing 6 1b is thrown vertically downward toward the earth from a height
of 1000 ft with an initial velocity of 6 ft/sec. As it falls it is acted upon by air
resistance that is numerically equal to $v (in pounds), where-w is the velocity (in feet
per second).

(a) What is the velocity and distance fallen at the end of one minute?
(b) With what velocity does the ball strike the earth?

3. A ball weighing 2 Ib is thrown vertically upward from a point 6 ft above the
surface of the earth with an initial velocity of 20 ft/sec. As it rises it is acted upon

by air resistance that is numerically equal to g v (in pounds), where v is the
velocity (in feet per second). How high will the ball rise?

4. A ship which weighs 32,000 tons starts from rest under the force of a constant
propeller thrust of 100,000 Ib. The resistance in pounds is numerically equal to
8000v, where v is in feet per second.

(a) Find the velocity of the ship as a function of the time.

(b) Find the limiting velocity (that is, the limit of v as t - + o0).

(c) Find how long it takes the ship to attain a velocity of 80% of the limiting
velocity.

5. A body of mass 100 g is dropped from rest toward the earth from a height of
1000 m. As it falls, air resistance acts upon it, and this resistance (in newtons) is
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11.

12.
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proportional to the velocity v (in meters per second). Suppose the limiting velocity
is 245 m/sec.

(a) Find the velocity and distance fallen at time ¢ secs.
(b) Find the time at which the velocity is one-fifth of the limiting velocity.

An object of mass 100 gis thrown vertically upward from a point 60 cm above the
earth’s surface with an initial velocity of 150 cm/sec. It rises briefly and then falls
vertically to the earth, all of which time it is acted on by air resistance that is
numerically equal to 200v (in dynes), where v is the velocity (in cm/sec).

(a) Find the velocity 0.1 sec after the object is thrown.
(b) Find the velocity 0.1 sec after the object stops rising and starts falling.

Two people are riding in a motorboat and the combined weight of individuals,
motor, boat, and equipment is 640 lb. The motor exerts a constant force of 20 Ib
on the boat in the direction of motion, while the resistance (in pounds) is
numerically equal to one and one-half times the velocity (in feet per second). If the
boat started from rest, find the velocity of the boat after (a) 20 sec, (b) 1 min.

A boat weighing 150 Ib with a single rider weighing 170 b is being towed in a
certain direction at the rate of 20 mph. At time ¢t = 0 the tow rope is suddenly cast
off and the rider begins to row in the same direction, exerting a force equivalent to
aconstant force of 12 1b in this direction. The resistance (in pounds) is numerically
equal to twice the velocity (in feet per second).

(a) Find the velocity of the boat 15 sec after the tow rope was cast off.

(b) How many seconds after the tow rope is cast off will the velocity be one-half
that at which the boat was being towed?

A bullet weighing 1 oz is fired vertically downward from a stationary helicopter
with a muzzle velocity of 1200 ft/sec. The air resistance (in pounds) is numerically
equal to 16 ~°v?, where v is the velocity (in feet per second). Find the velocity of the
bullet as a function of the time.

A shell weighing 1 1b is fired vertically upward from the earth’s surface with a
muzzle velocity of 1000 ft/sec. The air resistance (in pounds) is numerically equal
to 10~ *v?, where v is the velocity (in feet per second).

(a) Find the velocity of the rising shell as a function of the time.
(b) How long will the shell rise?

An object weighing 16 1b is dropped from rest on the surface of a calm lake and
thereafter starts to sink. While its weight tends to force it downward, the
buoyancy of the object tends to force it back upward. If this buoyancy force is one
of 6 Ib and the resistance of the water (in pounds)is numerically equal to twice the
square of the velocity (in feet per second), find the formula for the velocity of the
sinking object as a function of the time.

An object weighing 12 1b is placed beneath the surface of a calm lake. The
buoyancy of the object is 30 Ib; because of this the object begins to rise. If
the resistance of the water (in pounds) is numerically equal to the square of the
velocity (in feet per second) and the object surfaces in 5 sec, find the velocity of the
object at the instant when it reaches the surface.
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13.

14.

15.

16.

17.

18.

A man is pushing a loaded sled across a level field of ice at the constant speed of
10 ft/sec. When the man is halfway across the ice field, he stops pushing and lets
the loaded sled continue on. The combined weight of the sled and its load is 80 1b;
the air resistance (in pounds) is numerically equal to 2v, where v is the velocity of
the sled (in feet per second); and the coefficient of friction of the runners on the ice
is 0.04. How far will the sled continue to move after the man stops pushing?

A girl onher sled has just slid down a hill onto a level field of ice and is starting to
slow down. At the instant when their speed is 5 ft/sec, the girl’s father runs up and
begins to push the sled forward, exerting a constant force of 15 1b in the direction
of motion. The combined weight of the girl and the sled is 96 1b, the air resistance
(in pounds) is numerically equal to one-half the velocity (in feet per second), and
the coefficient of friction of the runners on the ice is 0.05. How fast is the sled
moving 10 sec after the father begins pushing?

A case of canned milk weighing 24 1b is released from rest at the top of a plane
metal slide which is 30 ft long and inclined 45° to the horizontal. Air resistance (in
pounds) is numerically equal to one-third the velocity (in feet per second) and the
coefficent of friction is 0.4.

(a) What is the velocity of the moving case 1 sec after it is released?
(b) What is the velocity when the case reaches the bottom of the slide?

A boy goes sledding down a long 30° slope. The combined weight of the boy and
his sled is 72 1b and the air resistance (in pounds) is numerically equal to twice their
velocity (in feet per second). If they started from rest and their velocity at the end
of 5 sec is 10 ft/sec, what is the coefficient of friction of the sled runners on the
snow?

An object weighing 32 b is released from rest 50 ft above the surface of a calm
lake. Before the object reaches the surface of the lake, the air resistance (in pounds)
is given by 2v, where v is the velocity (in feet per second). After the object passes
beneath the surface, the water resistance (in pounds) is given by 6v. Further, the
object is then buoyed up by a buoyancy force of 8 Ib. Find the velocity of the
object 2 sec after it passes beneath the surface of the lake.

A rocket of mass m is fired vertically upward from the surface of the earth with
initial velocity v = v,. The only force on the rocket that we consider is the
gravitational attraction of the earth. Then, according to Newton’s law of
gravitation, the acceleration a of the rocket is given by a = —k/x2, where k > 0
is a constant of proportionality and x is the distance “upward” from the center
of the earth along the line of motion. At time ¢ = 0, x = R (where R is the radius
of the earth), a = —g (where g is the acceleration due to gravity), and v = v,
Express a = dv/dt as in Equation (3.23), apply the appropriate initial data, and
note that v satisfies the differential equation
dv gR?

v— .
dx x?

Solve this differential equation, apply the appropriate initial condition, and thus

express v as a function of x. In particular, show that the minimum value of v, for

which the rocket will escape from the earth is,/2gR. This is the so-called veloc-
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ity of escape; and using R = 4000 miles, g = 32 ft/sec?, one finds that this is
approximately 25,000 mph (or 7 mi/sec).

19. A body of mass m is in rectilinear motion along a horizontal axis. The resultant
force acting on the body is given by —kx, where k > 0 is a constant of
proportionality and x is the distance along the axis from a fixed point O. The body
has initial velocity v = v, when x = x,. Apply Newton’s second law in the form
(3.23) and thus write the differential equation of motion in the form

dv
— = —kx.
mo X
Solve the differential equation, apply the initial condition, and thus express the
square of the velocity v as a function of the distance x. Recalling that v = dx/dt,
show that the relation between v and x thus obtained is satisfied for all time ¢ by

2
x = /x§+mTU°sin<\/§t+¢),

where ¢ is a constant.

3.3 RATE PROBLEMS

In certain problems the rate at which a quantity changes is a known function of the
amount present and/or the time, and it is desired to find the quantity itself. If x denotes
the amount of the quantity present at time ¢, then dx/dt denotes the rate at which the
quantity changes and we are at once led to a differential equation. In this section we
consider certain problems of this type.

A. Rate of Growth and Decay

» Example 3.8

The rate at which radioactive nuclei decay is proportional to the number of such nuclei
that are present in a given sample. Half of the original number of radioactive nuclei
have undergone disintegration in a period of 1500 years.

1. What percentage of the original radioactive nuclei will remain after 4500 years?
2. In how many years will only one-tenth of the original number remain?

Mathematical Formulation. Let x be the amount of radioactive nuclei present
after t years. Then dx/dt represents the rate at which the nuclei decay. Since the nuclei
decay at a rate proportional to the amount present, we have

dx
_— = Kx, 3.40
i (3.40)
where K is a constant of proportionality. The amount x is clearly positive; further, since
x is decreasing, dx/dt < 0. Thus, from Equation (3.40), we must have K < 0. In order to
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emphasize that x is decreasing, we prefer to replace K by a positive constant preceded

by a minus sign. Thus we let k = — K > 0 and write the differential equation (3.40) in
the form

dx

— = —kx. 3.41

o x (3.41)
Letting x, denote the amount initially present, we also have the initial condition

x(0) = xq. (3.42)

We know that we shall need such a condition in order to determine the arbitrary
constant that will appear in a one-parameter family of solutions of the differential
equation (3.41). However, we shall apparently need something else, for Equation (3.41)
contains an unknown constant of proportionality k. This “something else” appears in
the statement of the problem, for we are told that half of the original number
disintegrate in 1500 years. Thus half also remain at that time, and this at once gives the
condition

x(1500) = 3x,. (3.43)
Solution. The differential equation (3.41) is clearly separable; separating variables,
integrating, and simplifying, we have at once

x =ce ™.

Applying the initial condition (3.42), x = x, when ¢t = 0, we find that ¢ = x, and hence
we obtain
X = xge X, (3.44)

We have not yet determined k. Thus we now apply condition (3.43), x = $x, when
t = 1500, to Equation (3.44). We find

1x, = xoe 1500k
or
(e7%y1500 = 4
or finally
ek =(F)1s00, (3.45)

From this equation we could determine k explicitly and substitute the result into
Equation (3.44). However, we see from Equation (3.44) that we actually do not need k
itself but rather only e ¥, which we have just obtained in Equation (3.45). Thus we
substitute e ~* from (3.45) into (3.44) to obtain

X = xo(e—k)t = xo[(_é,)l/ISOO]f
or
x = X, (3)"130°. (3.46)

Equation (3.46) gives the number x of radioactive nuclei that are present at time t.
Question 1 asks us what percentage of the original number will remain after 4500 years.
We thus let t = 4500 in Equation (3.46) and find

x = Xo(3)® = §xo.
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Thus, one-eighth or 12.59] of the original number remain after 4500 years. Question 2
asks us when only one-tenth will remain. Thus we let x = 14X, in Equation (3.46) and
solve for t. We have

& = (31500,

Using logarithms, we then obtain

In(d) = In(3)15%° = —< In(),
From this it follows at once that
t _Ingg
1500 1Ini
or

_ 1500In 10

) = 4985 (years).

B. Population Growth

We next consider the growth of a population (for example, human, an animal species,
or a bacteria colony) as a function of time. Note that a population actually increases
discontinuously by whole number amounts. However, if the population is very large,
such individual increases in it are essentially negligible compared to the entire pop-
ulation itself. In other words, the population increase is approximately continuous.
We shall therefore assume that this increase is indeed continuous and in fact that the
population is a continuous and differentiable fucntion of time.

Given a population, we let x be the number of individuals in it at time ¢. If we assume
that the rate of change of the population is proportional to the number of individuals
in it at any time, we are led to the differential equation

dx
dt
where k is a constant of proportionality. The population x is positive and is increasing
and hence dx/dx > 0. Therefore, from (3.47), we must have k > 0. Now suppose that at

time t, the population is x,. Then, in addition to the differential equation (3.47), we
have the initial condition

kx, (3.47)

x(ty) = Xo- (3.48)
The differential equation (3.47) is separable. Separating variables, integrating, and
simplifying, we obtain
x = cet,

Applying the initial condition (3.48), x = x, at t = t,, to this, we have x, = ce*". From
this we at once find ¢ = x,e ~¥° and hence obtain the unique solution

X = xoekt " (3.49)

of the differential equation (3.47), which satisfies the initial condition (3.48).
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From (3.49) we see that a population governed by the differential equation (3.47) with
k > 0and initial condition (3.48) is one that increases exponentially with time. This law
of population growth is called the Malthusian law. We should now inquire whether or
not there are cases in which such a model for population growth is indeed realistic. In
answer to this, it can be shown that this model, with a suitable value of k, is remarkably
accurate in the case of the human population of the earth during the last several
decades (see Problem 8(b)). It is also known to be outstandingly accurate for certain
mammalian species, with suitable k, under certain realizable conditions and for certain
time periods. On the other hand, turning back to the case of the human population of
the earth, it can be shown that the Malthusian law turns out to be quite unreasonable
when applied to the distant future (see Problem 8(e)). It is also completely unrealistic for
other populations (for example, bacteria colonies) when applied over sufficiently long
periods of time. The reason for this is not hard to see. For, according to (3.49), a
population modeled by this law always increases and indeed does so at an ever
increasing rate; whereas observation shows that a given population simply does not
grow indefinitely.

Population growth is represented more realistically in many cases by assuming that
the number of individuals x in the population at time ¢ is described by a differential
equation of the form
Z—f =kx — Ax?, (3.50)
where k > 0 and A > 0 are constants. The additional term — Ax? is the result of some
cause that tends to limit the ultimate growth of the population. For example, such a
cause could be insufficient living space or food supply, when the population becomes
sufficiently large. Concerning the choice of — Ax? for the term representing the effect of
the cause, one can argue as follows: Assuming the cause affects the entire population of
x members, then the effect on any one individual is proportional to x. Thus the effect on
all x individuals in the population would be proportional to x - x = x2.

We thus assume that a population is described by a differential equation of the form
(3.50), with constants k > 0 and A > 0, and an initial condition of the form (3.48). In
most such cases, it turns out that the constant 1 is very small compared to the constant
k. Thus for sufficiently small x, the term kx predominates, and so the population grows
very rapidly for a time. However, when x becomes sufficiently large, the term — Ax? s of
comparatively greater influence, and the result of this is a decrease in the rapid growth
rate. We note that the differential equation (3.50) is both a separable equation and a
Bernoulli equation. The law of population growth so described is called the logistic law
of growth. We now consider a specific example of this type of growth.

» Example 3.9

The population x of a certain city satisfies the logistic law

dx 1 1

ey y2
ar 100" T (108~ (351

where time ¢ is measured in years. Given that the population of this city is 100,000 in
1980, determine the population as a function of time for t > 1980. In particular, answer
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the following questions:

(a) What will be the population in 2000?

(b) In what year does the 1980 population double?

(c) Assuming the differential equation (3.51) applies for all t > 1980, how large will
the population ultimately be?

Solution. We must solve the separable differential equation (3.51) subject to the
initial solution

x(1980) = 100,000. (3.52)
Separating variables in (3.51), we obtain

dx
(10)"2x — (10)~8x2

=dt

and hence

dx

(10)"2x[1 — (10) °x] d.

Using partial fractions, this becomes

1 (10)°° ~
IOOI:; + W] dx = dt.

Integrating, assuming 0 < x < 10%, we obtain

100{ln x — In[1 — (10)"°x]} =t + ¢,

and hence
x 1
In 1—(10)"6)6 =100l +C;
Thus we find
X — pt/100
1—(0)ox ¢

Solving this for x, we finally obtain

ceﬁlOO

* T T+ (10) Cee0”

(3.53)

Now applying the initial condition (3.52) to this, we have

CelQﬁ

0y =——
(19) 1 + (10)~6ce'®-®’
from which we obtain

_ (10)° _ (10)°
- 819‘8[1 _ (10)5(10)—6] - 9p19-8"

C

Substituting this value for ¢ back into (3.53) and simplifying, we obtain the solution in
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the form

(10)°
= 1 + 9g19-8-1/100"

(3.54)

This gives the population x as a function of time for ¢ > 1980.
We now consider the questions (a), (b), and (c) of the problem. Question (a) asks for
the population in the year 2000. Thus we let ¢ = 2000 in (3.54) and obtain
X = T39002 % 119,495.
Question (b) asks for the year in which the population doubles. Thus we let
x = 200,000 = 2(10)* in (3.54) and solve for ¢. We have

(10)°
2(10)° = 1 1 9g198-7100°
from which

19.8 -t/100

4
e 9,

and hence

t ~ 2061.

Question (c) asks how large the population will ultimately be, assuming the differential
equation (3.51) applies for all ¢t > 1980. To answer this, we evaluate lim x as t — oo using
the solution (3.54) of (3.51). We find

(10)°

C. Mixture Problems

We now consider rate problems involving mixtures. A substance S is allowed to flow
into a certain mixture in a container at a certain rate, and the mixture is kept uniform by
stirring. Further, in one such situation, this uniform mixture simultaneously flows out
of the container at another (generally different) rate; in another situation this may not
be the case. In either case we seek to determine the quantity of the substance S present
in the mixture at time ¢.

Letting x denote the amount of S present at time ¢, the derivative dx/dt denotes the
rate of change of x with respect to ¢. If IN denotes the rate at which S enters the mixture
and OUT the rate at which it leaves, we have at once the basic equation

dax

— =IN - OUT 3.55
7 (3.55)

from which to determine the amount x of S at time ¢. We now consider examples.
» Example 3.10

A tank initially contains 50 gal of pure water. Starting at time ¢ = 0 a brine containing
21b of dissolved salt per gallon flows into the tank at the rate of 3 gal/min. The mixture
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is kept uniform by stirring and the well-stirred mixture simultaneously flows out of the
tank at the same rate.

1. How much salt is in the tank at any time ¢ > 0?
2. How much salt is present at the end of 25 min?
3. How much salt is present after a long time?

Mathematical Formulation. Let x denote the amount of salt in the tank at time ¢.
We apply the basic equation (3.55),

d—x =IN - OUT.
dt

The brine flows in at the rate of 3 gal/min, and each gallon contains 2 Ib of salt. Thus
IN = (2 Ib/gal)(3 gal/min) = 6 Ib/min.

Since the rate of outflow equals the rate of inflow, the tank contains 50 gal of the
mixture at any time ¢. This 50 gal contains x Ib of salt at time ¢, and so the concentration
of salt at time ¢ is s5x Ib/gal. Thus, since the mixture flows out at the rate of 3 gal/min, we
have

: X . 3x .
OUT = <% lb/gal>(3 gal/min) = 50 Ib/min.
Thus the differential equation for x as a function of ¢ is
—=6—-—_. (3.56)
Since initially there was no salt in the tank, we also have the initial condition
x(0) = 0. (3.57)

Solution. Equation (3.56) is both linear and separable. Separating variables, we
have
dx 3

100 —x 50 %

Integrating and simplifying, we obtain
x = 100 + ce™ 3%,

Applying the condition (3.57), x = 0 at t = 0, we find that ¢ = —100. Thus we have
x = 100(1 — e~ 359), (3.58)

This is the answer to question 1. As for question 2, at the end of 25 min, t = 25, and
Equation (3.58) gives
x(25) = 100(1 — e~ %) &~ 78(Ib).

Question 3 essentially asks us how much salt is present as t — 0. To answer this we let
t - oo in Equation (3.58) and observe that x — 100.
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» Example 3.11

A large tank initially contains 50 gal of brine in which there is dissolved 10 Ib of salt.
Brine containing 2 1b of dissolved salt per gallon flows into the tank at the rate of
5 gal/min. The mixture is kept uniform by stirring, and the stirred mixture simulta-
neously-flows out at the slower rate of 3 gal/min. How much salt is in the tank at any
time ¢t > 0?

Mathematical Formulation. Let x = the amount of salt at time t. Again we shall
use Equation (3.55):

al =IN - OUT.
dt

Proceeding as in Example 3.10,
IN = (2 Ib/gal)(5 gal/min) = 10 Ib/min;
also, once again
OUT = (C Ib/gal)(3 gal/min),

where C 1b/gal denotes the concentration. But here, since the rate of outflow is different
from that of inflow, the concentration is not quite so simple. At time ¢ = 0, the tank
contains 50 gal of brine. Since brine flows in at the rate of 5 gal/min but flows out at the
slower rate of 3 gal/min, there is a net gain of 5 — 3 = 2 gal/min of brine in the tank.
Thus at the end of ¢ minutes the amount of brine in the tank is

50 + 2t gal.
Hence the concentration at time ¢ minutes is

X

50+ 2 o/eab
and so
OUT = —>*__ Ibp/min.
50 + 2t

Thus the differential equation becomes

‘fi—’t‘ =10 - 5()37:_‘%. (3.59)
Since there was initially 10 1b of salt in the tank, we have the initial condition

x(0) = 10. (3.60)

Solution. The differential equation (3.59) is not separable but it is linear. Putting it
in standard form,
dx 3

PRI TR
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we find the integrating factor

3
- = 0 3/2‘
exp(Jzt 350 dt) (2t + 50)

Multiplying through by this, we have

or

Thus

or

(2t + 50)32 ‘—% + 3(2t + 50)'/2x = 10(2t + 50)*?

d
T [(2t + 50)*2x] = 10(2t + 50)*2.
(2t + 50)¥2x = 2(2t + 50)° + ¢

C
X=4(I+25)+m.

Applying condition (3.60), x = 10 at t = 0, we find

or

C

10 = 100 + —z
T 50

¢ = —(90)(50)*? = —22,500,/2.

Thus the amount of salt at any time ¢ > 0 is given by

22,500,/2
=4+ 100 -~V 2
X =4t 2t + 5077

Exercises

1.

Assume that the rate at which radioactive nuclei decay is proportional to the
number of such nuclei that are present in a given sample. In a certain sample 109
of the original number of radioactive nuclei have undergone disintegration in a
period of 100 years.

(a) What percentage of the original radioactive nuclei will remain after 1000
years?

(b) In how many years will only one-fourth of the original number remain?
A certain chemical is converted into another chemical by a chemical reaction. The
rate at which the first chemical is converted is proportional to the amount of this

chemical present at any instant. Ten percent of the original amount of the first
chemical has been converted in 5 min.

(a) What percent of the first chemical will have been converted in 20 min?
(b) In how many minutes will 60% of the first chemical have been converted?
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3. A chemical reaction converts a certain chemical into another chemical, and the
rate at which the first chemical is converted is proportional to the amount of this
chemical present at any time. At the end of one hour, 50 gm of the first chemical
remain; while at the end of three hours, only 25 gm remain.

(@) How many grams of the first chemical were present initially?
(b) How many grams of the first chemical will remain at the end of five hours?
(¢) In how many hours will only 2 gm of the first chemical remain? )

4. A chemical reaction converts a certain chemical into another chemical, and the
rate at which the first chemical is converted is proportional to the amount of this
chemical present at any time. At the end of one hour, two-thirds kg of the first
chemical remains, while at the end of four hours, only one-third kg remains.

(a) What fraction of the first chemical remains at the end of seven hours?
(b) When will only one-tenth of the first chemical remain?

5. Assume that the population of a certain city increases at a rate proportional to the
number of inhabitants at any time. If the population doubles in 40 years, in how
many years will it triple?

6. The population of the city of Bingville increases at a rate proportional to the
number of its inhabitants present at any time . If the population of Bingville was
30,000 in 1970 and 35,000 in 1980, what will be the population of Bingville in
1990?

7. In a certain bacteria culture the rate of increase in the number of bacteria is
proportional to the number present.
(a) If the number triples in 5 hr, how many will be present in 10 hr?
(b) When will the number present be 10 times the number initially present?

8. Assume that the rate of change of the human population of the earth is pro-
portional to the number of people on earth at any time, and suppose that this
population is increasing at the rate of 29 per year. The 1979 World Almanac gives
the 1978 world population estimate as 4,219 million; assume this figure is in fact

correct.
(a) Using this data, express the human population of the earth as a function of
time.

(b) According to the formula of part (a), what was the population of the earth in
1950? The 1979 World Almanac gives the 1950 world population estimate as
2,510 million. Assuming this estimate is very nearly correct, comment on the
accuracy of the formula of part (a) in checking such past populations.

() According to the formula of part (a), what will be the population of the earth
in 2000? Does this seem reasonable?

(d) According to the formula of part (a), what was the population of the earth in
1900? The 1979 World Almanac gives the 1900 world population estimate as
1,600 million. Assuming this estimate is very nearly correct, comment on the
accuracy of the formula of part (a) in checking such past populations.

(e) According to the formula of part (a), what will be the population of the earth
in 2100? Does this seem reasonable?
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The human population of a certain island satisfies the logistic law (3.50) with
k =0.03, A = 3(10) "8, and time ¢ measured in years.

(a) If the population in 1980 is 200,000, find a formula for the population in
future years.

(b) According to the formula of part (a), what will be the population in the year
20007

(c) What is the limiting value of the population as t - o0?

This is a general problem about the logistic law of growth. A population satisfies
the logistic law (3.50) and has x, members at time ¢,,.

(a) Solve the differential equation (3.50) and thus express the population x as a
function of t.

(b) Show that as ¢t — oo, the population x approaches the limiting value k/A4.
(c) Show that dx/dt is increasing if x < k/24 and decreasing if x > k/24.

(d) Graph x as a function of ¢ for t > ¢,

(e) Interpret the results of parts (b), (c), and (d).

The human population of a certain small island would satisfy the logistic law
(3.50), with k = g5, A = (10)"%, and t measured in years, provided the annual
emigration from the island is neglected. However, the fact is that every year 100
people become disenchanted with island life and move from the island to the
mainland. Modify the logistic differential equation (3.50) with the given k and 4 so
as to include the stated annual emigration. Assuming that the population in 1980
is 20,000, solve the resulting initial-value problem and thus find the pop-
ulation of the island as a function of time.

Under natural circumstances the population of mice on a certain island would
increase at a rate proportional to the number of mice present at any time,
provided the island had no cats. There were no cats on the island from the
beginning of 1970 to the beginning of 1980, and during this time the mouse
population doubled, reaching an all-time high of 100,000 at the beginning of
1980. At this time the people of the island, alarmed by the increasing number of
mice, imported a number of cats to kill the mice. If the indicated natural rate of
increase of mice was thereafter offset by the work of the cats, who killed 1000 mice
a month, how many mice remained at the beginning of 19817

An amount of invested money is said to draw interest compounded continuously if
the amount of money increases at a rate proportional to the amount present.
Suppose $1000 is invested and draws interest compounded continuously, where
the annual interest rate is 6%,.

(a) How much money will be present 10 years after the original amount was
invested?

(b) How long will it take the original amount of money to double?

Suppose a certain amount of money is invested and draws interest compounded
continuously.

(a) If the original amount doubles in two years, then what is the annual interest
rate?
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15.

16.

17.

18.

19.

20.

21.

(b) If the original amount increases 509 in six months, then how long will it take
the original amount to double?

A tank initially contains 100 gal of brine in which there is dissolved 20 1b of salt.
Starting at time t = 0, brine containing 3 1b of dissolved salt per gallon flows into
the tank at the rate of 4 gal/min. The mixture is kept uniform by stirring and the
well-stirred mixture simultaneously flows out of the tank at the same rate.

(a) How much salt is in the tank at the end of 10 min?
(b) When is there 160 1b of salt in the tank?

A large tank initially contains 100 gal of brine in which 10 Ib of salt is dissolved.
Starting at ¢ = 0, pure water flows into the tank at the rate of 5 gal/min. The
mixture is kept uniform by stirring and the well-stirred mixture simultaneously
flows out at the slower rate of 2 gal/min.

(@) How much salt is in the tank at the end of 15 min and what is the
concentration at that time?

(b) If the capacity of the tank is 250 gal, what is the concentration at the instant
the tank overflows?

A tank initially contains 100 gal of pure water. Starting at t =0, a brine
containing 4 Ib of salt per gallon flows into the tank at the rate of 5 gal/min. The
mixture is kept uniform by stirring and the well-stirred mixture flows out at the
slower rate of 3 gal/min.

(a) How much salt is in the tank at the end of 20 min?
(b) When is there 50 b of salt in the tank?

A large tank initially contains 200 gal of brine in which 15 Ib of salt is dissolved.
Starting at t = 0, brine containing 4 1b of salt per gallon flows into the tank at the
rate of 3.5 gal/min. The mixture is kept uniform by stirring and the well-stirred
mixture leaves the tank at the rate of 4 gal/min.

(a) How much salt is in the tank at the end of one hour?
(b) How much salt is in the tank when the tank contains only 50 gal of brine?

A 500 liter tank initially contains 300 liters of fluid in which there is cissolved
50 gm of a certain chemical. Fluid containing 30 gm per liter of the dissolved
chemical flows into the tank at the rate of 4 liters/min. The mixture is kept
uniform by stirring, and the stirred mixture simultaneously flows out at the rate of
2.5 liters/min. How much of the chemical is in the tank at the instant it overflows?

A 200 liter tank is initially full of fluid in which there is dissolved 40 gm of a
certain chemical. Fluid containing 50 gm per liter of this chemical flows into the
tank at the rate of 5 liters/min. The mixture is kept uniform by stirring, and the
stirred mixture simultaneously flows out at the rate of 7 liters/min. How much of
the chemical is in the tank when it is only half full?

The air in a room whose volume is 10,000 cu ft tests 0.159 carbon dioxide.
Starting at t = 0, outside air testing 0.05%; carbon dioxide is admitted at the rate
of 5000 cu ft/min.

(a) What is the percentage of carbon dioxide in the air in the room after 3 min?
(b) When does the air in the room test 0.19 carbon dioxide?
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The air in a room 50 ft by 20 ft by 8 ft tests 0.2%, carbon dioxide. Starting at t = 0,
outside air testing 0.05% carbon dioxide is admitted to the room. How many
cubic feet of this outside air must be admitted per minute in order that the air in
the room test 0.1% at the end of 30 min?

Newton’s law of cooling states that the rate at which a body cools is proportional
to the difference between the temperature of the body and that of the medium in
which it is situated. A body of temperature 80 °F is placed at time t =0 in a
medium the temperature of which is maintained at 50 °F. At the end of 5 min, the
body has cooled to a temperature of 70 °F.

(a) What is the temperature of the body at the end of 10 min?
(b) When will the temperature of the body be 60 °F?

A body cools from 60 °C to 50 °C in 15 min in air which is maintained to 30 °C.
How long will it take this body to cool from 100 °C to 80 °C in air that is main-
tained at 50 °C? Assume Newton’s law of cooling (Exercise 23).

The rate at which a certain substance dissolves in water is proportional at the
product of the amount undissolved and the difference ¢, — c,, where ¢, is the
concentration in the saturated solution and c, is the concentration in the actual
solution. If saturated, 50 gm of water would dissolve 20 gm of the substance. If
10 gm of the substance is placed in 50 gm of water and half of the substance is
then dissolved in 90 min, how much will be dissolved in 3 hr?



—— CHAPTER FOUR—/

Explicit Methods of Solving Higher-Order
Linear Differential Equations

The subject of ordinary linear differential equations is one of great theoretical and
practical importance. Theoretically, the subject is one of simplicity and elegance.
Practically, linear differential equations originate in a variety of applications to science
and engineering. Fortunately many of the linear differential equations that thus occur
are of a special type, linear with constant coefficients, for which explicit methods of
solution are available. The main purpose of this chapter is to study certain of these
methods. First, however, we need to consider certain basic theorems that will be used
throughout the chapter. These theorems are stated and illustrated in Section 4.1, but
proofs are omitted in this introductory section. By far the most important case is that of
the second-order linear differential equation, and we shall explicitly consider and
illustrate this case for each important concept and result presented. In the final section
of the chapter we return to this fundamental theory and present theorems and proofs in
this important special case. Proofs in the general case are given in Chapter 11.

4.1 BASIC THEORY OF LINEAR DIFFERENTIAL EQUATIONS
A. Definition and Basic Existence Theorem
DEFINITION

A linear ordinary differential equation of order n in the dependent variable y and the
independent variable x is an equation that is in, or can be expressed in, the form

dn—ly

dy _
W + + an—l(x) + an(x)y - F(X), (41)

dx

+ a,(x)

102
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where ay is not identically zero. We shall assume that aq, a,,...,a, and F are continuous
real functionsonarealintervala < x < band that a,(x) # 0 foranyxona < x < b. The
right-hand member F(x) is called the nonhomogeneous term. If F is identically zero,
Equation (4.1) reduces to

n n—l

ao(x) d y —+ al(x) y +-+a,._ 1(x) + a,(x)y=0 4.2)

dnl

and is then called homogeneous.

For n =2, Equation (4.1) reduces to the second-order nonhomogeneous linear
differential equation

%mdﬁ+au) +a,(x)y = F(x) 4.3)

and (4.2) reduces to the corresponding second-order homogeneous equation

2
aanjf+@uﬂy+%an 0. (4.4)

Here we assume that a,,a,,a,, and F are continuous real functions on a real interval
a < x < band that ay(x) # 0forany xona < x < b.

» Example 4.1
The equation
d? dy
e JZ; + 3x ix + x3y =e*

is a linear ordinary differential equation of the second order.

» Example 4.2

The equation

dy d*y dy .
dx—3+ d2+3x Ix — S5y =sinx

is a linear ordinary differential equation of the third order.

We now state the basic existence theorem for initial-value problems associated with
and nth-order linear ordinary differential equation:

THEOREM 4.1

Hypothesis

1. Consider the nth-order linear differential equation

n n-l

W) T2 b a0 e Wy =0, @D

dx"
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where ag,a,,...,a, and F are continuous real functions on a real interval a < x < b and
ag(x) #0 forany xona < x < b.

2. Let x, be any point of the interval a < x < b, and let cy,c,,...,c,— be narbitrary
real constants.

Conclusion. There exists a unique solution f of (4.1) such that

f(x0) = co, f'(Xo) = €150y [T Vx0) = €y
and this solution is defined over the entire interval a < x < b.

Suppose that we are considering an nth-order linear differential equation (4.1), the
coefficients and nonhomogeneous term of which all possess the continuity require-
ments set forth in Hypothesis 1 of Theorem 4.1 on a certain interval of the x axis. Then,
given any point x, of this interval and any n real numbers ¢,,¢c,,...,c,—, the theorem
assures us that there is precisely one solution of the differential equation that assumes
the value ¢, at x = x, and whose kth derivative assumes the value c, for each k =
1,2,...,n— 1 at x = x,. Further, the theorem asserts that this unique solution is
defined for all x in the above-mentioned interval.

For the second-order linear differential equation,

2

ao(x)jx_{ + a,(x) Z_i) + a,(x)y = F(x), (4.3)
the requirements of Hypothesis 1 of Theorem 4.1 are that ay,a,,a,, and F be
continuous on a real interval a < x < b and that a,(x) # O for any x on this interval.
Then, if x, is any point of the intervala < x < band ¢, and ¢, are any two real numbers,
the theorem assures us that there is precisely one solution f of the second-order
differential equation (4.3) which assumes the value ¢, at x = x, and whose first
derivative assumes the value ¢, at x = x,:

fxo)=c¢or  [f(x0) =cy. (4.5)

Moreover, the theorem asserts that this unique solution f of Equation (4.3) which
satisfies conditions (4.5) is defined for all x on the interval a < x < b.

» Example 4.3

Consider the initial-value problem

d? d

dT)z)-l— 3xd—§+x3y=e",
y(1) =2,
y'(1) = -5.

The coefficients 1,3x, and x3, as well as the nonhomogeneous term e*, in this second-
order differential equation are all continuous for all values of x, — o0 < x < co. The
point x, here is the point 1, which certainly belongs to this interval; and the real
numbers ¢, and ¢, are 2 and — 5, respectively. Thus Theorem 4.1 assures us that a
solution of the given problem exists, is unique, and is defined for all x, — o0 < x < co.
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» Example 4.4

Consider the initial-value problem

2?+x2 y +3x2:z — 5y =sin x,
y4) =3
y'(@4) =S5,
y'4)=—3

Here we have a third-order problem. The coefficients 2, x, 3x2, and —5, as well as the
nonhomogeneous term sin x, are all continuous for all x, — o0 < x < c0. The point
X, = 4 certainly belongs to this interval; the real numbers ¢,, ¢,, and c, in this prob-
lem are 3, 5, and —7, respectively. Theorem 4.1 assures us that this problem also has
a unique solution which is defined for all x, —o0 < x < o0.

A useful corollary to Theorem 4.1 is the following:

COROLLARY

Hypothesis. Let f be a solution of the nth-order homogeneous linear differential
equation

a" ! d
G0(x) S + @10 o=t 4+ A1) 5+ )y =0 @2)

such that

f(x0) =0, f'(x) = 0,...,f" P(xo) =0,

where X, is a point of the interval a < x < b in which the coefficients ay,a,,...,a, are
all continuous and ay(x) # 0.

Conclusion. Then f(x) =0 forall xona < x < b.

Let us suppose that we are considering a homogeneous equation of the form (4.2), all
the coefficients of which are continuous on a certain interval of the x axis. Suppose
further that we have a solution f of this equation which is such that f and its firstn — 1
derivatives all equal zero at a point x, of this interval. Then this corollary states that
this solution is the “trivial” solution f such that f(x) =0 for all x on the above-
mentioned interval.

» Example 4.5

The unique solution f of the third-order homogeneous equation

d’y _d’y dy
d—3+2d—2+4xd—+xy 0
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which is such that

f@Q=5@=r5=0,

is the trivial solution f such that f(x) = 0 for all x.

B. The Homogeneous Equation

We now consider the fundamental results concerning the homogeneous equation
n n—1

d
ao(x)d—x{ + a,(x) y ++a,_ (x) Z—i + a,(x)y = 0. 4.2)

dxn—l

We first state the following basic theorem:

THEOREM 4.2 BASIC THEOREM ON LINEAR HOMOGENEOUS
DIFFERENTIAL EQUATIONS

Hypothesis. Let f,,f,,..., [, be any m solutions of the homogeneous linear differ-
ential equation (4.2).

Conclusion. Then c, f; + ¢, fo+ "+ cu S is also a solution of (4.2), where
C1,Cz,-..,Cy are m arbitrary constants.

Theorem 4.2 states that if m known solutions of (4.2) are each multiplied by an
arbitrary constant and the resulting products are then added together, the resulting
sum is also a solution of (4.2). We may put this theorem in a very simple form by means
of the concept of linear combination, which we now introduce.

DEFINITION

If fi,fs,-.s fm are m given functions, and c,,c,,...,c,, are m constants, then the ex-
pression

clfl +C2f2+”'+cmfm

is called a linear combination of f, f5,..., fin-

In terms of this concept, Theorem 4.2 may be stated as follows:

THEOREM 4.2 (RESTATED)

Any linear combination of solutions of the homogeneous linear differential equation (4.2)
is also a solution of (4.2).

In particular, any linear combination

afiterfattemfa
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of m solutions f,,f5,..., [, of the second-order homogeneous linear differential
equation
d2

d
a0(x) 5 + () 75+ 4 () =0 (@4)

is also a solution of (4.4).

» Example 4.6

The student will readily verify that sin x and cos x are solutions of

d*y
dx—2+y—0.

Theorem 4.2 states that the linear combination ¢, sin x + ¢, cos x is also a solution for
any constants ¢, and c¢,. For example, the particular linear combination

5sin x + 6 cos x

is a solution.

» Example 4.7

The student may verify that e*, ¢ ", and e?* are solutions of
d? d? d
SR S A A Y )
dx dx? dx
Theorem 4.2 states that the linear combination ¢, e* + ¢, e * + ¢5 e**is also a solution
for any constants ¢, ¢,, and c¢;. For example, the particular linear combination
2e* — 3e ™ 4 Ze?*

is a solution.

We now consider what constitutes the so-called general solution of (4.2). To
understand this we first introduce the concepts of linear dependence and linear
independence.

DEFINITION

The n functions fy, f,,..., f, are called linearly dependent on a < x < b if there exist
constants ¢,,C,,...,C,, not all zero, such that

e fi(x) + 2 fo(x) + 0 + ¢, fu(x) =0

for all x such that a < x < b.
Inparticular, two functions f, andf, arelinearly dependent ona < x < bif there exist
constants ¢y, c,, not both zero, such that

¢ fi(x) + c2f5(x) =0

for all x such that a < x < b.
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» Example 4.8
We observe that x and 2x are linearly dependent on the interval 0 < x < 1. For there
exist constants ¢, and c,, not both zero, such that

ax +¢,(2x)=0

for all x on the interval 0 < x < 1. For example, let ¢, = 2,¢, = — 1.

» Example 4.9
We observe that sin x, 3 sin x, and —sin x are linearly dependent on the interval
—1 < x < 2. For there exist constants ¢, c,,c5, hot all zero, such that

¢y sin x + ¢,(3 sin x) + ¢3(—sin x) =0

for all x on the interval — 1 < x < 2. For example, let ¢; = 1,¢, = 1,¢; = 4.

DEFINITION

The n functions f, f5,..., f, are called linearly independent on the intervala < x < b if
they are not linearly dependent there. That is, the functions fi, f,,..., f, are linearly
independent on a < x < b if the relation

e fi(x) + e fo(x) + 0+ ¢ fu(x) =0
for all x such that a < x < b implies that
cp=c¢cy==¢,=0.

In other words, the only linear combination of fi, f,,..., f, that is identically zero on
a < x < b is the trivial linear combination

In particular, two functions f, and f, are linearly independent on a < x < b if the
relation

c1f1(x) + ¢ f(x) =0
for all x on a < x < b implies that

C1=C2=0.

» Example 4.10

We assert that x and x? are linearly independent on 0 < x < 1, since ¢;x + ¢,x% =0
for all x on 0 < x < 1 implies that both ¢, =0 and ¢, = 0. We may verify this in
the following way. We differentiate both sides of ¢,;x + ¢,x? =0 to obtain ¢, +
2c,x = 0, which must also hold for all x on 0 < x < 1. Then from this we also have
¢1x + 2¢,x% = 0 for all such x. Thus we have both

cix+c¢,x2=0 and c¢;x+ 2c,x?=0 (4.6)
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for all x on 0 < x < 1. Subtracting the first from the second gives c,x? = 0 for all x on
0 < x < 1, which at once implies ¢, = 0. Then either of (4.6) show similarly that ¢, = 0.

The next theorem is concerned with the existence of sets of linearly independent

solutions of an nth-order homogeneous linear differential equation and with the
significance of such linearly independent sets.

THEOREM 4.3

The nth-order homogeneous linear differential equation

ar dr! d
Go(x) S + @ (%) o=t o Gy () T+ a,()y =0 (42)
dx" dx" dx
always possesses n solutions that are linearly independent. Further, if f, f,,..., f,aren

linearly independz=nt solutions of (4.2), then every solution f of (4.2) can be expressed as a
linear combination

cfitcefat o+,

of these n linearly independent solutions by proper choice of the constants cy,c,,...,C,.
Given an nth-order homogeneous linear differential equation, this theorem assures

us first that a set of n linearly independent solutions actually exists. The existence of

such a linearly independent set assured, the theorem goes on to tell us that any solution

whatsoever of (4.2) can be written as a linear combination of such a linearly inde-

pendent set of n solutions by suitable choice of the constants cy,c,,...,c
For the second-order homogeneous linear differential equation

ne

2

a9 P+ asy =0, (44)

aO(x) d 2

Theorem 4.3 first assures us that a set of two linearly independent solutions exists. The
existence of such a linearly independent set assured, let f; and f, be a set of two linearly
independent solutions. Then if f is any solution of (4.4), the theorem also assures us
that f can be expressed as a linear combination ¢, f; + ¢, f, of the two linearly
independent solutions f; and f, by proper choice of the constants ¢, and c,.

» Example 4.11

We have observed that sin x and cos x are solutions of

d?y

-— + 0 4.7
pril (4.7)
for all x, —oc < x < co. Further, one can show that these two solutions are linearly
independent. Now suppose f is any solution of (4.7). Then by Theorem 4.3 f can be
expressed as a certain linear combination ¢, sin x + ¢, cos x of the two linearly
independent solutions sin x and cos x by proper choice of ¢, and c,. That is, there exist

two particular constants ¢; and ¢, such that

f(x) =c,sinx + ¢, cos x (4.8)
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forall x, — o0 < x < c0. For example, one can easily verify that f(x) = sin(x + n/6)is a
solution of Equation (4.7). Since

sin x+E —sinxcosn+cosxsinn— 3sinx+lcosx
6 6 6 2 2 ’

we see that the solution sin(x + n/6) can be expressed as the linear combination

N
=5 sinx + €08 X
of the two linearly independent solutions sin x and cos x. Note that thisis of the form in

the right member of (4.8) with ¢, = \/3/2 and ¢, = 4.

Now let f, f5,..., f, be a set of n linearly independent solutions of (4.2). Then by
Theorem 4.2 we know that the linear combination

afitef+ o+t 4.9)

where ¢,,¢,,...,c, are n arbitrary constants, is also a solution of (4.2). On the other
hand, by Theorem 4.3 we know that if f is any solution of (4.2), then it can be expressed
as a linear combination (4.9) of the n linearly independent solutions f}, f5,..., f,, by a
suitable choice of the constants ¢,,c,,...,c,. Thus a linear combination (4.9) of the
n linearly independent solutions fi,f5,...,f, in which ¢,,c,,...,c, are arbitrary
constants must include all solutions of (4.2). For this reason, we refer to a set of n
linearly independent solutions of (4.2) as a “fundamental set” of (4.2) and call a
“general” linear combination of r linearly independent solutions a “general solution”
of (4.2), in accordance with the following definition:

DEFINITION

If fi,fa,--., [, are n linearly independent solutions of the nth-order homogeneous linear
differential equation
dny dn— ly dy
ao(x)ﬁ+al(x)aﬁ+"' +a,,_1(x)a+a,,(x)y =0 4.2)
ona < x < b, then the set f,, f,,..., f, is called a fundamental set of solutions of (4.2)
and the function f defined by

f(x) = cyfi(x) + o fo(x) +  + ¢, fulX), a<x<b,

where cy,¢,,...,c, are arbitrary constants, is called a general solution of (4.2) on
a<x<b.

Therefore, if we can find n linearly independent solutions of (4.2), we can at once
write the general solution of (4.2) as a general linear combination of these n solutions.
For the second-order homogeneous linear differential equation

2

d d
a0(x) 75 + 41(%) 72 + a4,y = 0, (44)

a fundamental set consists of two linearly independent solutions. If f; and f, are a
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fundamental set of (4.4) on a < x < b, then a general solution of (44)ona < x < bis
defined by
e f1(x) + e2f2(x), a<x<b,

where ¢, and ¢, are arbitrary constants.

» Example 4.12

We have observed that sin x and cos x are solutions of

d*y
— 4+y=0

ax? Y
for all x, — o0 < x < co0. Further, one can show that these two solutions are linearly
independent. Thus, they constitute a fundamental set of solutions of the given
differential equation, and its general solution may be expressed as the linear

combination
cy sin X + ¢, cos x,

where ¢, and c, are arbitrary constants. We write this as y = ¢, sin x + ¢, cos x.

» Example 4.13

The solutions e*, e "*, and e** of

d’y _d’y dy

——-2—=—--"-++2y=0

dx? x? dx
may be shown to be linearly independent forall x, — 00 < x < c0. Thus,e*,e”*,and e
constitute a fundamental set of the given differential equation, and its general solution
may be expressed as the linear combination

2x

cre* 4+ c e + cye?,
where ¢y, c,, and c; are arbitrary constants. We write this as
y=cie*+ce * + cje*.

The next theorem gives a simple criterion for determining whether or not n solutions
of (4.2) are linearly independent. We first introduce another concept.

DEFINITION

Let fi, f,,..., f, be nreal functions each of which has an (n — 1)st derivative on a real
interval a < x < b. The determinant

fi f2 e
Wit foonfy =0 T2

’

T ey
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in which primes denote derivatives, is called the Wronskian of these n functions. We
observe that W(f,, f,,...,[,) is itself a real function defined ona < x < b. Its value at x
is denoted by W( f1,f5,..., [, )(x) or by W[ fi{x),/>(X),...,[.(x)].

THEOREM 4.4

The n solutions f,, f,,..., f, of the nth-order homogeneous linear differential equation
(4.2) are linearly independent on a < x < b if and only if the Wronskian of f, f,...,f,
is different from zero for some x on the interval a < x < b.

We have further:

THEOREM 4.5

The Wronskian of n solutions fi, f,,..., f, of (4.2) is either identically zeroona < x < b
or else is never zeroona < x < b.

Thus if we can find n solutions of (4.2), we can apply the Theorems 4.4. and 4.5 to
determine whether or not they are linearly independent. If they are linearly inde-
pendent, then we can form the general solution as a linear combination of these n
linearly independent solutions.

In the case of the general second-order homogeneous linear differential equation

d? d
a9 5 + @ () 72 + ay(x)y =0, @4)

the Wronskian of two solutions f; and f, is the second-order determinant

i f2
fv 12
By Theorem 4.4, two solutions f; and f, of (4.4) are linearly independent ona < x < b
if and only if their Wronskian is different from zero for some x on a < x < b; and by
Theorem 4.5, this Wronskian is either always zero or never zero on a < x < b. Thus if

W fi(x), f(x)]#0 on a<x<b, solutions f; and f, of (4.4) are linearly independent
ona < x < band the general solution of (4.4) can be written as the linear combination

¢y f[i(x) + ¢, fr(x),

where ¢, and ¢, are arbitrary constants.

W(flafz)= =f1f’2_f'1f2-

» Example 4.14

We apply Theorem 4.4 to show that the solutions sin x and cos x of
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are linearly independent. We find that

sin x COS X

W(sin x, cos x) = = —sin*x—cos?’x=—1#0

cosx —sinx

for all real x. Thus, since W (sin x, cos x) # 0 for all real x, we conclude that sin x and
cos x are indeed linearly independent solutions of the given differential equation on
every real interval.

» Example 4.15

The solutions e*, e *, and e** of
d’y d’y dy
dx3 dx? X + ey

are linearly independent on every real interval, for

e* e™* e 1 1 1
W™ e ™ e**)=e* —e™* 2e¥* =e?|1 —1 2= —6e** %0
e,x e—x 4e2x 1 1 4

for all real x.

Exercises

1. Theorem 4.1 applies to one of the following problems but not to the other.
Determine to which of the problems the theorem applies and state precisely the
conclusion which can be drawn in this case. Explain why the theorem does not
apply to the remaining problem.

d’ d

@ SZ+55+6y=ei  yO=5 yO=1
d*y d

0 SF+5T 6= O=5  y)=T

2. Answer orally: What is the solution of the following initial-value problem? Why?

d’y dy ,
m+xa+xy—0, y(1) =0, y'(1)=0.
3. Prove Theorem 4.2 for the case m = n = 2. That is, prove that if f;(x)and f,(x)
are two solutions of

ag(x) 2

then ¢, f (x) + ¢, f,(x) is also a solution of this equation, where ¢, and c, are
arbitrary constants.
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4. Consider the differential equation

d’y dy

(a) Show that each of the functions e* and e3* is a solution of differential
equation (A) on the interval a < x < b, where a and b are arbitrary real
numbers such that a < b.

(b) What theorem enables us to conclude at once that each of the functions
5¢* + 2e3*, 6e* — 4e3* and —7e* + 5e3*

is also a solution of differential equation (A) ona < x < b?
(c) Each of the functions

3e*, —4e*, S5¢*, and 6e*
is also a solution of differential equation (A) on a < x < b. Why?

5. Again consider the differential equation (A) of Exercise 4.

(a) Use the definition of linear dependence to show that the four functions of
part (c) of Exercise 4 are linearly dependent on a < x < b.

(b) Use Theorem 4.4 to show that each pair of the four solutions of differential
equation (A) listed in part (c) of Exercise 4 are linearly dependent on
as<x<bh

6. Again consider the differential equation (A) of Exercise 4.

(a) Use the definition of linear independence to show that the two functions e*
and e>* are linearly independent on a < x < b.

(b) Use Theorem 4.4 to show that the two solutions e* and ¢** of differential
equation (A) are linearly independent on a < x < b.
7. Consider the differential equation

2
ZX—JZ) -5 % + 6y =0.
(a) Show that e**and e3* are linearly independent solutions of this equation on
the interval — o0 < x < c0.
(b) Write the general solution of the given equation.
(c) Find the solution that satisfies the conditions y(0) = 2, y'(0) = 3. Explain
why this solution is unique. Over what interval is it defined?

8. Consider the differential equation

(a) Show that e* and xe* are linearly independent solutions of this equation on
the interval — o0 < x < o0.

(b) Write the general solution of the given equation.

(c) Find the solution that satisfies the condition y(0) = 1, y’(0) = 4. Explain why
this solution is unique. Over what interval is it defined?



11.

12.

13.

4.1 BASIC THEORY OF LINEAR DIFFERENTIAL EQUATIONS 1 15

Consider the differential equation

2
szJZ’ 2x3—+2y 0.

(a) Show that x and x? are linearly independent solutions of this equation on
the interval 0 < x < o0.
(b) Write the general solution of the given equation.

(c) Find the solution that satisfies the conditions y(1) = 3, y’(1) = 2. Explain
why this solution is unique. Over what interval is this solution defined?

Consider the differential equation

d*y dy
2 — —
d2+xdx 4y = 0.

(a) Showthatx?and 1/x?are linearly independent solutions of this equation on
the interval 0 < x < oo.
(b) Write the general solution of the given equation.

(c) Find the solution that satisfies the conditions y(2) = 3, y'(2) = — 1. Explain
why this solution is unique. Over what interval is this solution defined?

Consider the differential equation

2
d’y de

dx_z_ E+4y=0.

(a) Show that each of the functions e*, e**, and 2e* — 3e** is a solution of this
equation on the interval — oo < x < 0.

(b) Show that the solutions ¢* and e** are linearly independent on — o0 <
X < 0.

(c) Show that the solutions e* and 2e* — 3e** are also linearly independent on
—00 < X < 00.

(d) Are the solutions e** and 2e* — 3e** still another pair of linearly indepen-
dent solutions on — o0 < x < o0? Justify your answer.

Given that e " *, e3*, and e** are all solutions of

dy dy dy
T3 6o 5+ 12y =0,

show that they are linearly independent on the interval — oo < x < oo and write
the general solution.

Given that x, x2, and x* are all solutions of

3
x33x—)3)—4 2Zy+8xj—x—8y=0,

show that they are linearly independent on the interval 0 < x < oo and write the
general solution.
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C. Reduction of Order

In Section 4.2 we shall begin to study methods for obtaining explicit solutions of
higher-order linear differential equations. There and in later sections we shall find that
the following theorem on reduction of order is often quite useful.

THEOREM 4.6

Hypothesis. Let f be a nontrivial solution of the nth-order homogeneous linear dif-
ferential equation

n n—1

d d d
ao(x)zlx—}:,+a1(x)dxn—_}:+“'+a,,_1(x)£+a,,(x)y=0, 4.2)

Conclusion. The transformation y = f(x)v reduces Equation (4.2) to an (n — 1)st-
order homogeneous linear differential equation in the dependent variable w = dv/dx.

This theorem states that if one nonzero solution of the nth-order homogeneous lin-
ear differential equation (4.2) is known, then by making the appropriate transforma-
tion we may reduce the given equation to another homogeneous linear equation that is
one order lower than the original. Since this theorem will be most useful for us in
connection with second-order homogeneous linear equations (the case where n = 2),
we shall now investigate the second-order case in detail. Suppose f is a known
nontrivial solution of the second-order homogeneous linear equation

L d
ao(x)dx—{ + al(x)ﬁ + ay(x)y = 0. (4.10)

Let us make the transformation

y =S, (4.11)

where f is the known solution of (4.10) and v is a function of x that will be determined.
Then, differentiating, we obtain

d d

= W+ G, @12)
2 2 d
=0T+ W G+ 1w @13)

Substituting (4.11), (4.12), and (4.13) into (4.10), we obtain
2 d
ao 705+ 27 2 4 57000 |+ ] 100 G+ 700 |+ atofon =0
or
2 d
009 5 + Dag0f () + ay (1] 5

+ [a0(¥)f"(x) + a1 (x)f"(x) + a,(x)f(x)]v = 0.
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Since f'is a solution of (4.10), the coefficient of vis zero, and so the last equation reduces
to

dZ
aO(x)f(x)dx_Z + [2a0(x) f'(x) + a, (x)f(x)] :_;’C —o.

Letting w = dv/dx, this becomes

d
ao(x)f(x) % + [2a0(x)f'(x) + a;(x)f(x)]w = 0. (4.14)

Thisis a first-order homogeneous linear differential equation in the dependent variable
w. The equation is separable; thus assuming f(x) # 0 and a,(x) # 0, we may write

v [0 e
w [2 769 +ao(x)}d"'

Thus integrating, we obtain

In|w| = —In[f(x)]? —f"l(") dx + In[c|

ag(x)

c exp[ — J:;g; dx}
[f(x)]? '

This is the general solution of Equation (4.14); choosing the particular solution for
which ¢ = 1, recalling that dv/dx = w, and integrating again, we now obtain

a;(x)
- d
v= Jexp[ JaO(x) x:| dx.

[f()]?

or

w =

Finally, from (4.11), we obtain

exp[—jal(x) dx]
y = f(x) J 9000 14y (4.15)

The function defined in the right member of (4.15), which we shall henceforth denote by
g, is actually a solution of the original second-order equation (4.10). Furthermore, this
new solution g and the original known solution f are linearly independent, since

fx) gt | _|f) fx
f'x) g [ fx) SO + f(x

= [f(x)]*' = exp[—fal(x) dx] #0.

ag(x)

W(f g)(x) =

Thus the linear combination

e f+cyg

is the general solution of Equation (4.10). We now summarize this discussion in the
following theorem.
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THEOREM 4.7

Hypothesis. Let f be a nontrivial solution of the second-order homogeneous
linear differential equation

> d
ao(x)dx—}z) + al(x)% +ay(x)y = 0. (4.10)

Conclusion 1. The transformation y = f(x)v reduces Equation (4.10) to the first-
order homogeneous linear differential equation

ao(x)f(x) Z—: + [2a0(x) f'(x) + a;(x) f(x)]w = 0 (4.14)
in the dependent variable w, where w = dv/dx.

Conclusion 2. The particular solution

a(x)
exp|: - Jm dx:I
[f(x)]?

of Equation (4.14) gives rise to the function v, where

ay(x)
exp[ — J dx}
v(x) = J o (x) dx.

w =

[f(0)]?

The function g defined by g(x) = f(x)v(x) is then a solution of the second-order equation
(4.10).

Conclusion 3. The original known solution f and the “new” solution g are linearly
independent solutions of (4.10), and hence the general solution of (4.10) may be expressed
as the linear combination

c f+c,g

Let us emphasize the utility of this theorem and at the same time clearly recognize its
limitations. Certainly its utility is by now obvious. It tells us that if one solution of the
second-order equation (4.10) is known, then we can reduce the order to obtain a linearly
independent solution and thereby obtain the general solution of (4.10). But the
limitations of the theorem are equally obvious. One solution of Equation (4.10) must
already be known to us in order to apply the theorem. How does one “already know” a
solution? In general one does not. In some cases the form of the equation itself or
related physical considerations suggest that there may be a solution of a certain special
form: for example, an exponential solution or a linear solution. However, such cases are
not too common and if no solution at all can be so ascertained, then the theorem will
not aid us.

We now illustrate the method of reduction of order by means of the following
example.
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» Example 4.16

Given that y = x is a solution of

(x2 +1)——2x3—+2y 0, (4.16)

find a linearly independent solution by reducing the order.

Solution. First observe that y = x does satisfy Equation (4.16). Then let

y = x0.

Then
dy dv d*y d*v dv
dYae TV A st

Substituting the expressions for y, dy/dx, and d*y/dx? into Equation (4.16), we obtain
d2 d d
(x* + 1)f x +2—v —2x x—v+v +2xv=0
dx dx

2
dv
x(x2+l):—2+2dx 0.

Letting w = dv/dx we obtain the first-order homogeneous linear equation

or

x(x? + I)Z—: + 2w =0.

Treating this as a separable equation, we obtain

d_w_ 2dx
w o x(x*+1)

dw 2 2x
—=|—=+—=—]dx
w x x“+1

Integrating, we obtain the general solution

or

_ cx2+1)

x2

Choosing ¢ = 1, we recall that dv/dx = w and integrate to obtain the function v given
by

1
v(x) =x -

Now forming g = fv, where f(x) denotes the known solution x, we obtain the function g

defined by
1 2
g(x)—x(x—;)—x -1
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By Theorem 4.7 we know that this is the desired linearly independent solution. The
general solution of Equation (4.16) may thus be expressed as the linear combination
¢y X + ¢,(x? — 1) of the linearly independent solutions f and g. We thus write the
general solution of Equation (4.16) as

y= Clx + CZ(XZ - 1).

D. The Nonhomogeneous Equation

We now return briefly to the nonhomogeneous equation

n n—l

ao(x) 4y riaa al(x) Y

dnl

The basic theorem dealing with this equation is the following.

+ - +a,- 1(x) +a(x)y F(x). 4.1)

THEOREM 4.8

Hypothesis

(1) Let v be any solution of the given (nonhomogeneous) nth-order linear differential
equation (4.1). (2) Let u be any solution of the corresponding homogeneous equation

dn dn—ly

d
() & L a,x)y=0. 4.2)

ao(x) == Ix

+ +an—l(x)

Conclusion. Then u + v is also a solution of the given (nonhomogeneous) equation
4.1).

» Example 4.17

Observe that y = x is a solution of the nonhomogeneous equation

d’y
+ =
dx? y=x
and that y = sin x is a solution of the corresponding homogeneous equation
d*y
— =0.
dx? Y
Then by Theorem 4.8 the sum
sin x + x

is also a solution of the given nonhomogeneous equation
d*y
—+y=x
ax? Y

The student should check that this is indeed true.
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Now let us apply Theorem 4.8 in the case where v is a given solution y, of the
nonhomogeneous equation (4.1) involving no arbitrary constants, and u is the general
solution

Ye=C1Y1+Cy+ 0+ CuYy

of the corresponding homogeneous equation (4.2). Then by this theorem,

Vet Vp
is also a solution of the nonhomogeneous equation (4.1), and it is a solution involving n
arbitrary constants c,, c,,..., ¢,. Concerning the significance of such a solution, we

now state the following result.

THEOREM 4.9

Hypothesis

(I) Let y, be a given solution of the nth-order nonhomogeneous linear equation (4.1)
involving no arbitrary constants. (2) Let

Ye=C1 +C2y2 + +Cnyn
be the general solution of the corresponding homogeneous equation (4.2).

Conclusion. Then every solution ¢ of the nth-order nonhomogeneous equation (4.1)
can be expressed in the form

y(.‘ + yp’
that is,

CiY1 +Cy,++CYa+ Yy

for suitable choice of the n arbitrary constants ¢, c,,..., c,.

This result suggests that we call a solution of Equation (4.1) of the form y, + y,, a
general solution of (4.1), in accordance with the following definition:

DEFINITION

Consider the nth-order (nonhomogeneous) linear differential equation
dn - ly

d
St a0 T My =Fx) @)

dry
ao(x)ﬁ + a,(x)
and the corresponding homogeneous equation

n—1

dr d d
ao(x)le" +a,(x) dx"—_yl o ta, (%) % +a,(x)y=0. @4.2)

1. The general solution of (4.2)is called the complementary function of Equation (4.1).
We shall denote this by y..
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2. Any particular solution of (4.1) involving no arbitrary constants is called a particular
integral of (4.1). We shall denote this by y,.

3. The solution y. +y, of (4.1), where y, is the complementary function and y, is a
particular integral of (4.1), is called the general solution of (4.1).

Thus to find the general solution of (4.1), we need merely find:

1. The complementary function, that is, a “general” linear combination of n linearly
independent solutions of the corresponding homogeneous equation (4.2); and

2. A particular integral, that is, any particular solution of (4.1) involving no arbitrary
constants.

» Example 4.18

Consider the differential equation
d?y
—+y=x
axz Y
The complementary function is the general solution
Y. = ¢, sin x + ¢, COS X

of the corresponding homogeneous equation

d?y
d7+y—0.

A particular integral is given by
Vp = X.
Thus the general solution of the given equation may be written
Y=Y+ Yy, =¢ysinx + ¢, COS X + X.
In the remaining sections of this chapter we shall proceed to study methods of
obtaining the two constituent parts of the general solution.
We point out that if the nonhomogeneous member F(x) of the linear differential

equation (4.1) is expressed as a linear combination of two or more functions, then the
following theorem may often be used to advantage in finding a particular integral.

THEOREM 4.10

Hypothesis

1. Let f, be a particular integral of

n n—1

d d d
Q00 T + @ () Ty + o A () )y =R @)
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2. Let f, be a particular integral of

dr At d
a,(x) Ex—y" + a,(x)dx"—_f o ta, (%) d—)yc +a,(x)y = FXx). (4.18)

Conclusion. Then k, f, + k, f, is a particular integral of

d"y dn- ly dy
a0() 75 + @0 e 4, (X) 4,00 = ki Fy(x) + ko (o),
(4.19)
where k, and k, are constants.
» Example 4.19
Suppose we seek a particular integral of
d*y ,
el +y=3x+5tanx. (4.20)
We may then consider the two equations
T = 421
FEE (4.21)
and
dZ
dx—{ +y=tanx 4.22)

We have already noted in Example 4.18 that a particular integral of Equation (4.21) is
given by

y=x.

Further, we can verify (by direct substitution) that a particular integral of Equation
(4.22) is given by

y = —(cos x)In |sec x + tan x|.
Therefore, applying Theorem 4.10, a particular integral of Equation (4.22) is
y = 3x — 5(cos x)In |sec x + tan x|.

This example makes the utility of Theorem 4.10 apparent. The particular integral y = x
of (4.21) can be quickly determined by the method of Section 4.3 (or by direct
inspection!), whereas the particular integral

y = —(cos x)In |sec x + tan x|

of (4.22) must be determined by the method of Section 4.4, and this requires
considerably greater computation.
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Exercises

1.

Given that y = x is a solution of

d’y dy
227 7 4 —
X 3 4x I +4y =0,
find a linearly independent solution by reducing the order. Write the general
solution.

Given that y = x + 1 is a solution of

d*y

dx?
find a linearly independent solution by reducing the order. Write the general
solution.

3(x + l)d—y+3y=0,

2
x+1) I

Given that y = x is a solution of

d’y dy
Z-1)-5—-2x—+2y=0,
(x )dx2 2xdx+y 0
find a linearly independent solution by reducing the order. Write the general
solution.

Given that y = x is a solution of

d’y dy
(x*—x+ l)dx—z—(x2+x)a+(x+ 1)y =0,
find a linearly independent solution by reducing the order. Write the general
solution.

Given that y = e?* is a solution of

2

d’y
dx?
find a iinearly independent solution by reducing the order. Write the general
solution.

2x+1) 4(x+l)d—y+4y=0,
dx

Given that y = x? is a solution of

d’y dy
(x3 = xz)dx—z— (x® +2x? — 2x)d_x + (2x* 4+ 2x —2)y =0,
find a linearly independent solution by reducing the order. Write the general
solution.
Prove Theorem 4.8 for the case n = 2. That is, prove that if u is any solution of
2

d d
a0 () 5 + 0 () 72 + a;(x)y = 0

and v is any solution of

d? d
ao(0) 75 + (%) 2 + ax(x)y = F(v),

then u + v is also a solution of this latter nonhomogeneous equation.
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8. Consider the nonhomogeneous differential equation

d*’y dy 2

(a) Show that e* and e~ are linearly independent solutions of the corresponding
homogeneous equation

d’y dy

(b) What is the complementary function of the given nonhomogeneous
equation?
(c) Show that 2x? + 6x + 7 is a particular integral of the given equation.

(d) What is the general solution of the given equation?

9. Given that a particular integral of

d?y dy . 1
— —-5—=—+6y=1 =-
o T TYT 8 VT
a particular integral of
d?y dy x 5
yeeie 5 ™ +6y=x 1s y RT3
and a particular integral of
d?y dy . e*
dx—2—51—1;+6y—e is y=5

use Theorem 4.10 to find a particular integral of

d2y dy
22 _ 52 =21 x,
o2 de + 6y =2 — 12x + 6e

4.2 THE HOMOGENEOUS LINEAR EQUATION WITH CONSTANT COEFFICIENTS

A. Introduction

In this section we consider the special case of the nth-order homogeneous linear
differential equation in which all of the coefficients are real constants. That is, we shall
be concerned with the equation

d" dn—l d
aoa"x—y"'f'aldxn_):+'“+an—1%+any=0 (4'23)

whereay,a,,...,a,_,a, are real constants. We shall show that the general solution of
this equation can be found explicitly.

In an attempt to find solutions of a differential equation we would naturally inquire
whether or not any familiar type of function might possibly have the properties that
would enable it to be a solution. The differential equation (4.23) requires a function f
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having the property such that if it and its various derivatives are each multiplied by
certain constants, the a;, and the resulting products, a; f ", are then added, the result
will equal zero for all values of x for which this result is defined. For this to be the case
we need a function such that its derivatives are constant multiples of itself. Do we know
of functions f having this property that

dk
@] =)

for all x? The answer is “yes,” for the exponential function f such that f(x) = ¢™, where
m is a constant, is such that

dk

— (e™) = mkemx.

dxk ( )
Thus we shall seek solutions of (4.23) of the form y = ™, where the constant m will be
chosen such that e™* does satisfy the equation. Assuming then that y = ¢™* is a solution
for certain m, we have:

d

d—i) = me™,
d2y 2 ,mx
— =m-e
dx? ’
d"

dx)’: i mnemx

Substituting in (4.23), we obtain
agm"e™ +aym""te™ 4+ -+ a,_ me™ + a,e™ =0
or
e™(agm" +a;m"" ' +-+a,_ m+a,)=0.
Since e™* # 0, we obtain the polynomial equation in the unknown m:
agm"+am" '+ +a,_ m+a,=0. (4.24)

This equation is called the auxiliary equation or the characteristic equation of the given
differential equation (4.23). If y = ¢™ is a solution of (4.23) then we see that the
constant m must satisfy (4.24). Hence, to solve (4.23), we write the auxiliary equation
(4.24) and solve it for m. Observe that (4.24) is formally obtained from (4.23) by merely
replacing the kth derivative in (4.23) by m*(k =0,1,2,...,n). Three cases arise,
according as the roots of (4.24) are real and distinct, real and repeated, or complex.

B. Case 1. Distinct Real Roots

Suppose the roots of (4.24) are the n distinct real numbers

my,my,...,m,.
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Then

myx max mpXx
emX eMm> . e™

are n distinct solutions of (4.23). Further, using the Wronskian determinant one may
show that these n solutions are linearly independent. Thus we have the following result.

THEOREM 4.11

Consider the nth-order homogeneous linear differential equation (4.23) with constant
coefficients. If the auxiliary equation (4.24) has the n distinct real roots m,,m,,...,m,,
then the general solution of (4.23) is

y=ce™* + ce™* + - + c,e™,

where c,c,,...,c, are arbitrary constants.

» Example 4.20

Consider the differential equation
:Z—}Z) -3 Z—i +2y=0.
The auxiliary equation is
m*—3m+2=0.
Hence
(m—1)im—-2)=0, m=1  my,=2

The roots are real and distinct. Thus e* and e* are solutions and the general solution
may be written

2
y=cie* +cye’*.

We verify that e* and e* are indeed linearly independent. Their Wronskian is

e e2x
W(ex, eZX) =

R =e3* #£0.

Thus by Theorem 4.4 we are assured of their linear independence.

» Example 4.21

Consider the differential equation

dy d’y dy

The auxiliary equation is

m3—4m?> + m+ 6 =0.
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We observe that m = — 1is aroot of this equation. By synthetic division we obtain the
factorization

(m+ 1)m>=5m+6)=0
or
(m+ 1)(m —2)(m — 3)=0.

Thus the roots are the distinct real numbers

and the general solution is

- 2
y=c e ¥+ ce** + cye**.

C. Case 2. Repeated Real Roots

We shall begin our study of this case by considering a simple example.

» Example 4.22: Introductory Example

Consider the differential equation

d’y _dy
2 6L 49y=0. 4.25
e dx+ y (4.25)

The auxiliary equation is

or

The roots of this equation are
m; =3, m, =3

(real but not distinct).

Corresponding to the root m, we have the solution ¢3*, and corresponding to m, we
have the same solution e3*. The linear combination ¢, e** + ¢, e3* of these “two” so-
lutions is clearly not the general solution of the differential equation (4.25), for it is not a
linear combination of two linearly independent solutions. Indeed we may write the
combination ¢, e>* + ¢, e>* as simply ¢y e3*, where ¢, = ¢, + ¢,;and clearly y = cye®*,
involving one arbitrary constant, is not the general solution of the given second-order
equation.

We must find a linearly independent solution; but how shall we proceed to do so?
Since we already know the one solution e**, we may apply Theorem 4.7 and reduce the
order. We let

y = e,
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where v is to be determined. Then

dy 3x dl) 3x

yrie e Ix + 3e3*,
d2y 3x dZD 3x dv 3x
HETC g T T e

Substituting into Equation (4.25) we have
d*v dv dv
3x 6 3x 3x _ 3x 3x 3x,
<e I + 6e I + 9e u) 6<e Ix + 3e v) + 9 =0
or

d*v
preialy

3x

Letting w = dv/dx, we have the first-order equation

dw
3x 77 0

dx

or simply

dw
dx
The solutions of this first-order equation are simply w = ¢, where ¢ is an arbitrary
constant. Choosing the particular solution w = 1 and recalling that dv/dx = w, we find

0.

v(x) = x + ¢g,

where ¢, is an arbitrary constant. By Theorem 4.7 we know that for any choice of the
constant ¢y, v(x)e** = (x + ¢o)e>* is a solution of the given second-order equation
(4.25). Further, by Theorem 4.7, we know that this solution and the previously known
solution e~ are linearly independent. Choosing ¢, = 0 we obtain the solution

y = xe>%,
and thus corresponding to the double root 3 we find the linearly independent solutions

e3* and xe3*

of Equation (4.25).
Thus the general solution of Equation (4.25) may be written
y =c,e3* + cyxe3* (4.26)
or
y=(c; + cyx)e 4.27)

With this example as a guide, let us return to the general nth-order equation (4.23). If
the auxiliary equation (4.24) has the double real root m, we would surely expect that e™
and xe™ would be the corresponding linearly independent solutions. This is indeed the
case. Specifically, suppose the roots of (4.24) are the double real root m and the (n — 2)
distinct real roots

mg,my,...,m,_,.
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Then linearly independent solutions of (4.23) are
em, xe™, e™*, eM* ... e™n-2
and the general solution may be written
y=cie™ 4+ cyxe™ 4 cze™ + ¢ e™* 4 - 4 c g™
or
y=1(c; + c3x)e™ + c3e™* + c@™* + - + ¢ ™

In like manner, if the auxiliary equation (4.24) has the triple real root m,
corresponding linearly independent solutions are

e™ xe™, and xZ%e™.
The corresponding part of the general solution may be written
(cy + ¢3x + c3x2)e™.

Proceeding further in like manner, we summarize Case 2 in the following theorem:

THEOREM 4.12

1. Consider the nth-order homogeneous linear differential equation (4.23) with
constant coefficients. If the auxiliary equation (4.24) has the real root m occurring k times,
then the part of the general solution of (4.23) corresponding to this k-fold repeated root is

(cy + Ca3x + c3x% + -+ + gxf " 1)e™.

2. If, further, the remaining roots of the auxiliary equation (4.24) are the distinct real
numbers my 1, ..., m,, then the general solution of (4.23) is

y=(c; + C3x + c3x? + o+ X T 1e™ 4 ¢py T 4 o0 4 o™,

3. If, however, any of the remaining roots are also repeated, then the parts of the
general solution of (4.23) corresponding to each of these other repeated roots are
expressions similar to that corresponding to m in part 1.

We now consider several examples.

» Example 4.23

Find the general solution of

d’y d*y dy
_4Z2 Y 3% =0.
dx3 dx? 3 dx +18y=0

The auxiliary equation
m® —4m? —3m + 18 =0
has the roots, 3, 3, —2. The general solution is

y =€ + cyxe** + cye”
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or
y=(cy + cyx)e3* + cye” %
»  Example 4.24
Find the general solution of
dty d’y _d’y  dy
€V 4V 620 4D gy
dx* o T mE T T

The auxiliary equation is
m* — 5m3 + 6m?> + 4m — 8 =0,

with roots 2,2,2, — 1. The part of the general solution corresponding to the three-fold
root 2 is

yi = (c; + ¢, x + c3x?)e?™

and that corresponding to the simple root —1 is simply

— -X
Y, =cCqe” %

Thus the general solution is y = y, + y,, that is,

y=(c; +c,x + c3x?)e*™ + cpe” .

D. Case 3. Conjugate Complex Roots

Now suppose that the auxiliary equation has the complex number a + bi (a, breal, i* =
—1, b # 0) as a nonrepeated root. Then, since the coefficients are real, the conjugate
complex number a — bi is also a nonrepeated root. The corresponding part of the
general solution is

kle(a+bi)x + kze(a—bi)x’
where k, and k, are arbitrary constants. The solutions defined by ¢®*5)* and et~ %)~
are complex functions of the real variable x. It is desirable to replace these by two real
linearly independent solutions. This can be accomplished by using Euler’s formula,
e® = cos § + isin 0,*
which holds for all real 6. Using this we have:
kle(a+bi)x + kze(a—bi)x = kleaxebix + kzeaxe—bix
— ax[kleibx + kze—ibx]
e**[k,(cos bx + isin bx) + k,(cos bx — i sin bx)]
e™[(k, + k,)cos bx + i(k, — k,)sin bx]
e™[c, sin bx + ¢, cos bx],

* We borrow this basic identity from complex variable theory, as well as the fact that e™* 5% = e*™®*

holds for complex exponents.
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where ¢, = i(k, — k,), ¢, = k; + k, are two new arbitrary constants. Thus the part of
the general solution corresponding to the nonrepeated conjugate complex roots a + bi
is

e™[c, sin bx + ¢, cos bx].

Combining this with the results of Case 2, we have the following theorem covering
Case 3.

THEOREM 4.13

1. Consider the nth-order homogeneous linear differential equation (4.23) with
constant coefficients. If the auxiliary equation (4.24) has the conjugate complex roots
a + biand a — bi, neither repeated, then the corresponding part of the general solution of
(4.23) may be written

y = e**(c, sin bx + ¢, cos bx).

2. If, however, a + bi and a — bi are each k-fold roots of the auxiliary equation (4.24),
then the corresponding part of the general solution of (4.23) may be written

y=e*[(c, + c,x + c3x? + -+ + ¢x* " )sin bx
+ (Caq + Chr2X + Coa3x? + 0 + cx* " Y)cos bx].

We now give several examples.

» Example 4.25

Find the general solution of
d?y
— =0.
dx? Y

We have already used this equation to illustrate the theorems of Section 4.1. Let us now
obtain its solution using Theorem 4.13. The auxiliary equation m? + 1 = 0 has the
roots m = +i. These are the pure imaginary complex numbers a + bi, where a =0,
b = 1. The general solution is thus

y=e"(c,sinl-x+c,cos1"x),
which is simply

y = ¢, sin x + ¢, Cos X.

» Example 4.26

Find the general solution of

d’y _dy
dx—z—6a+25y—0
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The auxiliary equation is m> — 6m + 25 = 0. Solving it, we find
6+ 36—100_6i8i_3
2 o2

Here the roots are the conjugate complex numbers a + bi, where a = 3, b = 4. The
general solution may be written

m= + 4i.

y = e3*(c, sin 4x + c, cos 4x).

» Example 4.27

Find the general solution of
dty  d’ d’y dy
— —4—=+14—=—-20—+25y=0.
dx* dx? * dx? dx oy
The auxiliary equation is
m* — 4m> + 14m? — 20m + 25 = 0.

The solution of this equation presents some ingenuity and labor. Since our purpose in
this example is not to display our mastery of the solution of algebraic equations but
rather to illustrate the above principles of determining the general solution of dif-
ferential equations, we unblushingly list the roots without further apologies.

They are

1+ 2i, 1 —2i, 1+ 2i, 1 —2i
Since each pair of conjugate complex roots is double, the general solution is
y = e*[(c; + c,X)sin 2x + (c3 + ¢, x)cos 2x]
or

y = c,e*sin 2x + ¢, xe* sin 2x + c3e* cos 2x + ¢, xe* cos 2x.

E. An Initial-Value Problem
We now apply the results concerning the general solution of a homogeneous linear

equation with constant coefficients to an initial-value problem involving such an
equation.

» Example 4.28

Solve the initial-value problem

2
d—{—sf"l+25y=o, 4.28)
x dx
)(0) = —3, (4.29)

y(0)=—1. (4.30)
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First let us note that by Theorem 4.1 this problem has a unique solution defined for all
x, —o0 < x < 0. We now proceed to find this solution; that is, we seek the particular
solution of the differential equation (4.28) that satisfies the two initial conditions (4.29)
and (4.30). We have already found the general solution of the differential equation
(4.28) in Example 4.26. It is

y = e3*(c, sin 4x + c, cos 4x). 4.31)
From this, we find
d

é = ¢3*[(3¢, — 4c,)sin 4x + (dc, + 3c,)cos 4x]. 4.32)

We now apply the initial conditions. Applying condition (4.29), y(0) = — 3, to Equation
(4.31), we find

—3 =¢%c, sin 0 + ¢, cos 0),
which reduces at once to '
c,=-3. A 4.33)
Applying condition (4.30), y'(0) = — 1, to Equation (4.32), we obtain
—1 =e°[(3c, — 4c,)sin 0 + (4c; + 3c,)cos 0],

which reduces to

4cy + 3¢, = —1. (4.34)
Solving Equations (4.33) and (4.34) for the unknowns ¢, and c,, we find

¢, =2, ¢, = -3

Replacing ¢, and ¢, in Equation (4.31) by these values, we obtain the unique solution of
the given initial-value problem in the form

y = e3*(2 sin 4x — 3 cos 4x).

Recall from trigonometry that a linear combination of a sine term and a cosine term
having a common argument cx may be expressed as an appropriate constant multiple
of the sine of the sum of this common argument cx and an appropriate constant angle
¢. Thus the preceding solution can be reexpressed in an alternative form involving the
factor sin(4x + ¢) for some suitable ¢. To do this we first multiply and divide by

J2%) + (=3)% = /13, thereby obtaining

2 3
y = ./13e3"|:—— sin 4x — —— cos 4x].
J13 J13

From this we may express the solution in the alternative form

y = /13e>* sin(dx + @),
where the angle ¢ is defined by the equations

sin¢=————3—— cos ¢ =

V13

S~
w
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Find the general solution of each of the differential equations in Exercises 1-24.

1.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

TR
431—12:—y+5y 0. 4
Zi};—3ji—}2)—%+3y=0. 6.
Zi—{—sj—y+16y 0. 8.
%_43—%1@ 0. 10.
2 roy=0 12
4Z_y+4j—y 7%+2y=0.

Z—y 6Z—y 123——8y 0.
j;c—ﬁ+4j;—§+5d—)yc+6y=0'

jl;—{+ 32{+16y—
%—ZZ:C—{+Z:C—§=O.
%—3%—2:;—}2)+23—i+12y=0.
(‘%{ 6ji+153—{+203—+12y 0.
0 N, 24,

dx*

332—y—143y 5y = 0.
%—6%+5%+12y=0.
4Z—y+4j—y+y=0.
Z—y+6d—y+25y 0.
4jxijz)+y=0.

Yo
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Solve the initial-value problems in Exercises 25-42:

25. % - é —12y=0, yO0)=3  y0=5
26, 32{ + 73—y +10y=0, y0)=—4  y(©) =
27. %—6j—y+ 8y=0, y0)=1, y(0)=

28. 3126—}2)+43—i}——4y=0, y(0) = 2, y(0)= —
2 DY 6P iop-0 HO-2  yO--
30. 43;—{_ 12%+9y=0, YWO)=4, y(0) =
31. ii—{+4%+4y=o, yO)=3, Y0 =

3. 9£—y—6gl+y 0, y0)=3 YO0 =—

d*y dy

3 24 igy—0 yo=0 yO-=5
X X

&y d

M.$%+6£+SM=Q O =~1, yO=5
&2y _dy

35, dx—y+6a—+l3y 0, y0)=3 yO=-

L d
36. Ty+2—i+5y=0, JO)=2,  y(0) =6

d? d
37. 9dx—)2)+6£+5y=0, yO) =6,  y(0)=0.
d? d
B 47T +4T I =0 HO=2 YO =4
e d? d
39, dx—ﬁ—sd—y+ d—y—6y 0, y0)=0, y(©0)=0,
e d? d
40. #_2—‘1}2;4- %—Sy 0, »O=2 y=0
d3
4Ld: 3y+@ 0, yO=1 yO=-8 ()
o BV sV ol oo =0 yO)=1
. dx3 dx2+ dx y_9 y )_’ y()_ ’

y(0) =2,

y'(0) =0
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43. The roots of the auxiliary equation, corresponding to a certain 10th-order
homogeneous linear differential equation with constant coefficients, are

4, 4, 4, 4, 2+3i, 2-3i, 2+3i, 2-3i, 24+ 3i, 2-3i
Write the general solution.

44. The roots of the auxiliary equation, corresponding to a certain 12th-order
homogeneous linear differential equation with constant coefficients, are

2, 2, 2, 2, 2, 2, 3+4i 3—4i, 3+4i, 3—-4i, 3+4i, 3-4i
Write the general solution.
45. Given that sin x is a solution of

dty d’y _d’y _dy

422462 42 =0

e trne ettt =0
find the general solution.

46. Given that e* sin 2x is a solution of

+13ﬂ+30y=0,

ty oy by
dx? dx

PR PO

find the general solution.

4.3 THE METHOD OF UNDETERMINED COEFFICIENTS

A. Introduction; An Illustrative Example

We now consider the (nonhomogeneous) differential equation

dny dn—ly

ao_dx—"+a‘W+m+a + a,y = F(x), (4.35)

4
n—1 dx

where the coefficients ay,a,,. .., a, are constants but where the nonhomogeneous term
F is (in general) a nonconstant function of x. Recall that the general solution of (4.35)
may be written

Y=Yt Vp

where y, is the complementary function, that is, the general solution of the correspond-
ing homogeneous equation (Equation (4.35) with F replaced by 0), and y, is a particular
integral, that is, any solution of (4.35) containing no arbitrary constants. In Section 4.2
we learned how to find the complementary function; now we consider methods of
determining a particular integral.

We consider first the method of undetermined coefficients. Mathematically speaking,
the class of functions F to which this method applies is actually quite restricted; but this
mathematically narrow class includes functions of frequent occurrence and consid-
erable importance in various physical applications. And this method has one distinct
advantage—when it does apply, it is relatively simple!
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» Example 4.29: Introductory Example

2
Zx_}z) -2 i 3y = 2e* (4.36)

We proceed to seek a particular solution y,; but what type of function might be a
possible candidate for such a particular solution? The differential equation (4.36)
requires a solution which is such that its second derivative, minus twice its first
derivative, minus three times the solution itself, add up to twice the exponential
function e**. Since the derivatives of e** are constant multiples of e**, it seems
reasonable that the desired particular solution might also be a constant multiple of e**.
Thus we assume a particular solution of the form

Y, = Ae, 4.37)

where A is a constant (undetermined coefficient) to be determined such that (4.37)isa
solution of (4.36). Differentiating (4.37), we obtain

Y, =4Ae** and y, =164¢**
Then substituting into (4.36), we obtain
164e** — 2(44e**) — 34e** = 2%~
or
5A4e** = 2%, (4.38)

Since the solution (4.37) is to satisfy the differential equation identically for all x on
some real interval, the relation (4.38) must be an identity for all such x and hence the
coefficients of e** on both sides of (4.38) must be respectively equal. Equating these
coefficients, we obtain the equation

54=2,
from which we determine the previously undetermined coefficient
A=%

Substituting this back into (4.37), we obtain the particular solution

Yp =%e*.
Now consider the differential equation
d’y dy
_ — 2 = — 3x
Ix? I y =2e (4.39)

which is exactly the same as Equation (4.36) except that e** in the right member has
been replaced by e*. Reasoning as in the case of differential equation (4.36), we would
now assume a particular solution of the form

y, = Ae’™. (4.40)
Then differentiating (4.40), we obtain
yp=34e* and y, =94



4.3 THE METHOD OF UNDETERMINED COEFFICIENTS 139

Then substituting into (4.39), we obtain
9Ae3* — 2(34e3*) — 3(4e®*) = 2¢3**
or
0- Ae® = 2%
or simply
0 = 2e3%,

which does not hold for any real x. This impossible situation tells us that there is no
particular solution of the assumed form (4.40).

As noted, Equations (4.36) and (4.39) are almost the same, the only difference
between them being the constant multiple of x in the exponents of their respective
nonhomogeneous terms 2e** and 2¢3*. The equation (4.36) involving 2¢** had a
particular solution of the assumed form Ae**, whereas Equation (4.39) involving 2e*
did not have one of the assumed form Ae3* What is the difference in these two so
apparently similar cases?

The answer to this is found by examining the solutions of the differential equation

T2 —3y=0 (4.41)

which is the homogeneous equation corresponding to both (4.36) and (4.39). The
auxiliary equation is m?* — 2m — 3 = 0 with roots 3 and — 1; and so

e3* and e~

X

are (linearly independent) solutions of (4.41). This suggests that the failure to obtain a
solution of the form y, = Ae>*for Equation (4.39) is due to the fact that the function e**
in this assumed solution is a solution of the homogeneous equation (4.41) correspond-
ing to (4.39); and this is indeed the case. For, since Ae®* satisfies the homogeneous
equation (4.41), it reduces the common left member

of both (4.41) and (4.39) to 0, not 2¢>*, which a particular solution of Equation (4.39)
would have to do.

Now that we have considered what caused the difficulty in attempting to obtain a
particular solution of the form Ae3* for (4.39), we naturally ask what form of solution
should we seek? Recall that in the case of a double root m for an auxiliary equation, a
solution linearly independent of the basic solution e™* was xe™*. While this in itself tells
us nothing about the situation at hand, it might suggest that we seek a particular
solution of (4.39) of the form

yp = Axe’*. (4.42)
Differentiating (4.42), we obtain
Yy =3Axe>* + Ae®*,  yy = 9Axe>* + 6A4e>*.

Then substituting into (4.39), we obtain
(9A4xe®* + 64e3*) — 2(3Axe3* + Ae3) — 3Axe3* = 2¢3*
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or
(94 — 64 — 3A)xe®* + 44e> = 2¢3~.
or simply
Oxe3* + 4A4e3* = 2e3*. (4.43)

Since the (assumed) solution (4.42) is to satisfy the differential equation identically for
all x on some real interval, the relation (4.43) must be an identity for all such x and hence
the coefficients of e3* on both sides of (4.43) must be respectively equal. Equating
coefficients, we obtain the equation

44 =2,
from which we determine the previously undetermined coefficient
A=13.
Substituting this back into (4.42), we obtain the particular solution
Vp = 3xe>.
We summarize the results of this example. The differential equations

d’y dy

— —2—— 3y =2e¥ .
0 Ix 3y=2e (4.36)
and
d’y dy
— —2-——3y=2e* 4.
I 2 Ix 3y =2e (4.39)
each have the same corresponding homogeneous equation
d’y _dy
— —2-=_3y=0. 44
dx? dx 3y=0 44D

This homogeneous equation has linearly independent solutions

3x x

e and e %,

and so the complementary function of both (4.36) and (4.39) is

Ve =c e + c e,

The right member 2e** of (4.36) is not a solution of the corresponding homogeneous
equation (4.41), and the attempted particular solution

y, = Ae** @.37)
suggested by this right member did indeed lead to a particular solution of this assumed
form, namely, y, = 2e**. On the other hand, the right member 2e3* of (4.39) is a

solution of the corresponding homogeneous equation (4.41) [with ¢, =2 and ¢, = 0],
and the attempted particular solution

yp = Ae™ (4.40)

suggested by this right member failed to lead to a particular solution of this form.
However, in this case, the revised attempted particular solution,

yp = Axe**, (442
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obtained from (4.40) by multiplying by x, led to a particular solution of this assumed
form, namely, y, = $xe’*.
The general solutions of (4.36) and (4.39) are, respectively,

y=cie3 +ce” " + 2e*

and
y=c e3* + c e + ixe3*

The preceding example illustrates a particular case of the method of undetermined
coefficients. It suggests that in some cases the assumed particular solution y,
corresponding to a nonhomogeneous term in the differential equation is of the same
type as that nonhomogeneous term, whereas in other cases the assumed y, ought to be
some sort of modification of that nonhomogeneous term. It turns out that this is
essentially the case. We now proceed to present the method systematically.

B. The Method

We begin by introducing certain preliminary definitions.

DEFINITION

We shall call a function a UC function if it is either (I) a function defined by one of the
following:

(i) x", where n is a positive integer or zero,

(ii) e, where a is a constant # 0,
(iii) sin(bx + c), where b and c are constants, b # 0,
(iv) cos(bx + c), where b and c are constants, b # 0,

or (2) a function defined as a finite product of two or more functions of these four types.

» Example 4.20

Examples of UC functions of the four basic types (i), (ii), (iii), (iv) of the preceeding
definition are those defined respectively by

x3, e ?,  sin(3x/2),  cos(2x + m/4).

Examples of UC functions defined as finite products of two or more of these four basic
types are those defined respectively by

2,3x
b

x2e X cos 2x, €3 sin 3x,

sin 2x cos 3x, x3e** sin 5x.

The method of undetermined coefficients applies when the nonhomogeneous
function F in the differential equation is a finite linear combination of UC functions.
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Observe that given a UC function f, each successive derivative of f is either itself a
constant multiple of a UC function or else a linear combination of UC functions.

DEFINITION

Consider a UC function f. The set of functions consisting of f itself and all linearly
independent UC functions of which the successive derivatives of f are either constant
multiples or linear combinations will be called the UC set of f.

» Example 4.31
The function f defined for all real x by f(x) = x3 is a UC function. Computing
derivatives of f, we find

fx)=3x% f'(x)=6x, [f"(x)=6=6-1, f™x)=0 for n>3.

The linearly independent UC functions of which the successive derivatives of f are
either constant multiples or linear combinations are those given by

x2, X, 1.

Thus the UC set of x3 is the set S = {x3,x%,x,1}.

» Example 4.32
The function f defined for all real x by f(x) = sin 2x is a UC function. Computing
derivatives of f, we find

Sf'(x) =2 cos 2x, S (x) = —4sin 2x,

The only linearly independent UC function of which the successive derivatives of f are
constant multiples or linear combinations is that given by cos 2x. Thus the UC set of
sin 2x is the set § = {sin 2x, cos 2x}.

These and similar examples of the four basic types of UC functions lead to the results
listed as numbers 1, 2, and 3 of Table 4.1.

» Example 4.33

The function f defined for all real x by f(x) = x? sin x is the product of the two UC
functions defined by x? and sin x. Hence f is itself a UC function. Computing
derivatives of f, we find

f'(x) = 2x sin x + x% cos x,
f”(x) = 2sin x + 4x cos x — x? sin x,
f""(x) = 6 cos x — 6x sin x — x? cos X,

No “new” types of functions will occur from further differentiation. Each derivative of
f is a linear combination of certain of the six UC functions given by x2 sin x, x2 cos x,
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TABLE 4.1
UC function UC set
x" {x" x" "t X", x, 1}
e (e

sin(bx + c) or
cos(bx + ¢)

n_ax

x'e

x" sin(bx + ¢) or
x" cos(bx + ¢)

{sin(bx + c), cos(bx + ¢)}

n,ax . n—1,ax _.n—2,ax
{x"e™, A ;

x""le™, x" " 2e, .., xe™, e**}

{x" sin(bx + c), x" cos(bx + c),
x" " 1sin(bx + ¢), x" ! cos(bx + c),

..., x sin(bx + ¢), x cos(bx + ¢),
sin(bx + ¢), cos(bx + ¢)}

6 e” sin(bx + ¢) or
e” cos(bx + ¢)

{e** sin(bx + c), e*™* cos(bx + ¢)}

7 x"e®* sin(bx + c) or
x"e™ cos(bx + ¢)

{x"e® sin(bx + c), x"e®* cos(bx + c¢),
x" " e™sin(bx + ¢), x"'e™ cos(bx + ¢),...,
xe® sin(bx + c¢), xe®* cos(bx + ¢),

e®* sin(bx + ¢), e cos(bx + ¢)}

X sin x, x €os x, sin x, and cos x. Thus the set
§ = {x?sin x, x? cos x, x sin x, x cos X, sin x, cos x}

is the UC set of x? sin x. Note carefully that x2, x, and 1 are not members of this UC set.

Observe that the UC set of the product x? sin x is the set of all products obtained by
multiplying the various members of the UC set {x?2, x, 1} of x? by the various members
of the UC set {sin x, cos x} of sin x. This observation illustrates the general situation
regarding the UC set of a UC function defined as a finite product of two or more UC
functions of the four basic types. In particular, suppose his a UC function defined as the
product fg of two basic UC functions f and g. Then the UC set of the product function
h is the set of all the products obtained by multiplying the various members of the UC
set of f by the various members of the UC set of g. Results of this type are listed as
numbers 4, 5, and 6 of Table 4.1 and a specific illustration is presented in Example 4.34.

» Example 4.34

The function defined for all real x by f(x) = x3 cos 2x is the product of the two UC
functions defined by x> and cos 2x. Using the result stated in the preceding paragraph,
the UC set of this product x> cos 2x is the set of all products obtained by multiplying
the various members of the UC set of x> by the various members of the UC set of
cos 2x. Using the definition of UC set or the appropriate numbers of Table 4.1, we find
that the UC set of x? is

{x3, x% x, 1}
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and that of cos 2x is
{sin 2x, cos 2x}.

Thus the UC set of the product x3 cos 2x is the set of all products of each of x3, x2, x,
and 1 by each of sin 2x and cos 2x, and so it is

{x3 sin 2x, x3 cos 2x, x? sin 2x, x? cos 2x, x sin 2x, x cos 2x, sin 2x, cos 2x}.

Observe that this can be found directly from Table 4.1, number 5, withn = 3,b = 2,and
c=0.

We now outline the method of undetermined coefficients for finding a particular
integral y, of
n

dy dly dy
aoﬁ+alan—_—l+“'+a ——+a,y = F(x),

n—1 dx
where F is a finite linear combination
F = Alul + Azuz + -+ Amum

of UC functions u,, u,,...,u,, the 4; being known constants. Assuming the comple-
mentary function y, has already been obtained, we proceed as follows:

1. For each of the UC functions
Upyonns Uy

of which F is a linear combination, form the corresponding UC set, thus obtaining the
respective sets

S1,85,..., 5.

2. Suppose that one of the UC sets so formed, say S;, is identical with or completely
included in another, say S,. In this case, we omit the (identical or smaller) set S; from
further consideration (retaining the set S,).

3. We now consider in turn each of the UC sets which still remain after Step 2.
Suppose now that one of these UC sets, say S;, includes one or more members which are
solutions of the corresponding homogeneous differential equation. If this is the case,
we multiply each member of S, by the lowest positive integral power of x so that the
resulting revised set will contain no members that are solutions of the corresponding
homogeneous differential equation. We now replace S; by this revised set, so obtained.
Note that here we consider one UC set at a time and perform the indicated multi-
plication, if needed, only upon the members of the one UC set under consideration at
the moment.

4. In general there now remains:

(i) certain of the original UC sets, which were neither omitted in Step 2 nor
needed revision in Step 3, and
(i) certain revised sets resulting from the needed revision in Step 3.

Now form a linear combination of all of the sets of these two categories, with unknown
constant coefficients (undetermined coefficients).

5. Determine these unknown coefficients by substituting the linear combination
formed in Step 4 into the differential equation and demanding that it identically satisfy
the differential equation (that is, that it be a particular solution).



4.3 THE METHOD OF UNDETERMINED COEFFICIENTS 145

This outline of procedure at once covers all of the various special cases to which the
method of undetermined coefficients applies, thereby freeing one from the need of
considering separately each of these special cases.

Before going on to the illustrative examples of Part C following, let us look back and
observe that we actually followed this procedure in solving the differential equations
(4.36) and (4.39) of the Introductory Example 4.29. In each of those equations, the
nonhomogeneous member consisted of a single term that was a constant multiple of a
UC function; and in each case we followed the outline procedure step by step, as far as it
applied.

For the differential equation (4.36), the UC function involved was e**; and we formed
its UC set, which was simply {e**} (Step 1). Step 2 obviously did not apply. Nor did Step
3, for as we noted later, e** was not a solution of the corresponding homogeneous
equation (4.41). Thus we assumed y, = Ae**(Step 4) substituted in differential equation
(4.36), and found A and hence y, (Step 5).

For the differential equation (4.39), the UC function involved was e3*; and we formed
its UC set, which was simply {e**} (Step 1). Step 2 did not apply here either. But Step 3
was very much needed, for e3* was a solution of the corresponding homogeneous
equation (4.41). Thus we applied Step 3 and multiplied e3* in the UC set {e3>*} by x,
obtaining the revised UC set {xe3*}, whose single member was not a solution of (4.41).
Thus we assumed y, = Axe>* (Step 4), substituted in the differential equation (4.39),
and found 4 and hence y, (Step 5).

The outline generalizes what the procedure for the differential equation of
Introductory Example 4.29 suggested. Equation (4.39) of that example has already
brought out the necessity for the revision described in Step 3 when it applies. We give
here a brief illustration involving this critical step.

»  Example 4.35

Consider the two equations

d’y . dy 2

AN . AU SR 4.4

o2 3dx+2y x“e (4.44)
and

d’y dy

Y Y = 2 4.45

dx? dx ty=xie (4.45)
The UC set of x2e* is

S = {x2e*, xe*, e*}.

The homogeneous equation corresponding to (4.44) has linearly independent
solutions e* and e2*, and so the complementary function of (4.44) is y. = ¢, e* + c,e**.
Since member e* of UC set S is a solution of the homogeneous equation corresponding
to (4.44), we multiply each member of UC set S by the lowest positive integral power of
x so that the resulting revised set will contain no members that are solutions of the
homogeneous equation corresponding to (4.44). This turns out to be x itself; for the
revised set

§" = {x3e*, x?e*, xe*}

has no members that satisfy the homogeneous equation corresponding to (4.44).
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The homogeneous equation corresponding to (4.45) has linearly independent
solutions e* and xe*, and so the complementary function of (4.45)is y. = ¢, e™ + ¢, xe™.
Since the two members e* and xe* of UC set S are solutions of the homogeneous
equation corresponding to (4.45), we must modify S here also. But now x itself will not
do, for we would get S’, which still contains xe*. Thus we must here multiply each
member of S by x? to obtain the revised set

S = {x4ex, x3ex, x2ex},

which has no member that satisfies the homogeneous equation corresponding to (4.45).

C. Examples
A few illustrative examples, with reference to the above outline, should make the

procedure clear. Our first example will be a simple one in which the situations of Steps 2
and 3 do not occur.

» Example 4.36

d? d .
dx—{—Z%——3y=2e"— 10 sin x.
The corresponding homogeneous equation is
d’y dy
——-2-—=-3y=0
dx? ax

and the complementary function is

y.=ce> + ce”
The nonhomogenous term is the linear combination 2e* — 10 sin x of the two UC
functions given by e* and sin x.

1. Form the UC set for each of these two functions. We find
Sl = {ex}’
S, = {sin x, cos x}.

2. Note that neither of these sets is identical with nor included in the other; hence
both are retained.

3. Furthermore, by examining the complementary function, we see that none of
the functions e*, sin x, cos x in either of these sets is a solution of the corresponding
homogeneous equation. Hence neither set needs to be revised.

4. Thus the original sets S, and S, remain intact in this problem, and we form the
linear combination

Ae* + Bsin x + C cos x

of the three elements e*, sin x, cos x of S, and S,, with the undetermined coefficients
A, B, C.
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5. We determine these unknown coefficients by substituting the linear combination
formed in Step 4 into the differential equation and demanding that it satisfy the dif-
ferential equation identically. That is, we take

y, = Ae* 4+ Bsin x + C cos x
as a particular solution. Then

yp = Ae* + B cos x — Csin x,

yp = Ae* — Bsin x — C cos x.
Actually substituting, we find
(Ae* — Bsin x — C cos x) — 2(Ae* + B cos x — C sin x)

— 3(Ae™ + Bsin x + C cos x) = 2¢* — 10 sin x
or
—44e* + (—4B + 2C)sin x + (—4C — 2B)cos x = 2¢* — 10 sin x.

Since the solution is to satisfy the differential equation identically for all x on some real
interval, this relation must be an identity for all such x and hence the coefficients of like
terms on both sides must be respectively equal. Equating coefficients of these like terms,
we obtain the equations

—44 =2, —4B + 2C = —10, —4C - 2B =0.
From these equations, we find that
A= -4 B=2, C=-1,
and hence we obtain the particular integral
Yp = .——%e" + 2 sin x — cos x.
Thus the general solution of the differential equation under consideration is

X

Y=Y+ y,=ce¥ +c,e " —%e* + 2sin x — cos x.

» Example 4.37

d? d
—}2)— 3 4 2y = 2x? + " + 2xe* + 4e*.
dx dx
The corresponding homogeneous equation is
d’y . dy
——=3—=+2y=0
dx? dx +ey

and the complementary function is
Ve =c e* + c e~
The nonhomogeneous term is the linear combination
2x? + €* + 2xe” + 4e*

of the four UC functions given by x2, e*, xe*, and e3*.
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1. Form the UC set for each of these functions. We have

S, = {x% x, 1},

SZ = {e"},
Sy = {xe*, e*},
S, = {e*}.

2. We note that S, is completely included in Sj, so S, is omitted from further
consideration, leaving the three sets

S, ={x%x, 1}  S3={xe’ e}, S,={e*}

3. We now observe that S; = {xe*, e*} includes e*, which is included in the
complementary function and so is a solution of the corresponding homogeneous
differential equation. Thus we multiply each member of S5 by x to obtain the revised
family

Sy = {x%e*, xe*},
which contains no members that are solutions of the corresponding homogeneous

equation.
4. Thus there remain the original UC sets

S, ={x% x, 1}
and

Sy ={e*}
and the revised set

Sy = {x%e*, xe*}.
These contain the six elements

x4 x, 1, ¥ x%e* xe*.
We form the linear combination
Ax? + Bx + C + De®* + Ex%e* + Fxe*

of these six elements.
5. Thus we take as our particular solution,

yp = Ax* + Bx + C + De** + Ex*e* + Fxe*.
From this, we have
Yy =2Ax + B + 3De®* + Ex?e* + 2Exe™ + Fxe* + Fe,
Yy =2A + 9De> + Ex’e* + 4Exe* + 2Ee* + Fxe™ + 2Fe”.

We substitute y,, y,, y, into the differential equation for y, dy/dx, d?y/dx?, re-
spectively, to obtain:
24 + 9De3* + Ex2e* + (4E + F)xe* + (2E + 2F )e*
— 3[2Ax + B + 3De3* + Ex*e* + (2E + F)xe* + Fe*]
+ 2(Ax? 4+ Bx + C + De®* + Ex?*e* + Fxe®)
= 2x% 4 e* + 2xe* + 4e%%,
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or
(24 — 3B + 2C) + (2B — 6A)x + 24x? + 2De** + (—2E)xe* + (2E — F)e*
=2x2 + e* + 2xe* + 4e>*.
Equating coefficients of like terms, we have:
24 -3B+2C =0,

2B — 64 =0,
24 =2,
2D = 4,
—2E=2,
2E-F=1.

From this A=1,B=3,C=%,D=2E= —1,F = -3, and so the particular in-
tegral is

Vp=x%+3x + F + 2> — x%e* — 3xe*.
The general solution is therefore

Y=Y+ yp=cre" +ce” + x? + 3x + 7+ 2¢>* — x?e* — 3xe™.

» Example 4.38
d4y dzy

ax* Tt

= 3x2 + 4 sin x — 2 cos x.
The corresponding homogeneous equation is
dy
dx* =~ dx* 7
and the complementary function is
Ye =€y + €3X + ¢3 sin X + ¢, COs X.
The nonhomogeneous term is the linear combination
3x% + 4sin x — 2 cos x
of the three UC functions given by
x2, sinx, and cos x.
1. Form the UC set for each of these three functions. These sets are, respectively,
S, ={x%x, 1},
S, = {sin x, cos x},
S3 = {cos x, sin x}.

2. Observe that S, and S5 are identical and so we retain only one of them, leaving the
two sets

S, ={x%x 1}, S,={sinx,cos x}.
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3. Now observe that §; = {x?, x, 1} includes 1 and x, which, as the complementary
function shows, are both solutions of the corresponding homogeneous differential
equation. Thus we multiply each member of the set S, by x? to obtain the revised set

Sy = {x*% x3, x?},
none of whose members are solutions of the homogeneous differential equation. We
observe that multiplication by x instead of x? would not be sufficient, since the
resulting set would be (x3, x2, x}, which still includes the homogeneous solution x.
Turning to the set S,, observe that both of its members, sin x and cos x, are also

solutions of the homogeneous differential equation. Hence we replace S, by the revised
set

% = {x sin x, x cos x}.

4. None of the original UC sets remain here. They have been replaced by the revised
sets S} and S’ containing the five elements

x4, x3, x?, x sin x, X COS X.
We form a linear combination of these,
Ax* + Bx3 + Cx? + Dx sin x + Ex cos x,

with undetermined coefficients 4, B, C, D, E.
5. We now take this as our particular solution

yp = Ax* + Bx> + Cx? 4 Dx sin x + Ex cos x.
Then
Vp = 4A4x* + 3Bx? + 2Cx + Dx cos x + D sin x — Ex sin x + E cos x,
Yy = 12Ax? + 6Bx + 2C — Dx sin x + 2D cos x — Ex cos x — 2E sin x,
yp = 24Ax + 6B — Dx cos x — 3D sin x + Ex sin x — 3E cos x,
Y9 =244 + Dx sin x — 4D cos x + Ex cos x + 4E sin x.
Substituting into the differential equation, we obtain
24A4 + Dx sin x — 4D cos x + Ex cos x + 4E sin x + 12Ax? + 6Bx + 2C

—Dx sin x + 2D cos x — Ex cos x — 2E sin x
=3x% + 4sin x — 2 cos x.

Equating coefficients, we find

244 +2C =0
6B =0
124 =3
—2D = -2
2F = 4.

Hence A =4,B=0,C = —3,D =1, E = 2, and the particular integral is

yp =%x*—3x% + x sin x + 2x cos x.
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The general solution is

y=yc+.Vp
=¢; + ¢3x + ¢3sin x + ¢, cos x + 2x* — 3x? + x sin x + 2x cos x.

» Example 4.39 An Initial-Value Problem

We close this section by applying our results to the solution of the initial-value problem

d’y dy * ;

e E_3y_2e — 10 sin x, (4.46)
y(0) =2, (4.47)
J(0) = 4. (4.48)

By Theorem 4.1, this problem has a unique solution, defined for all x, — 00 < x < o0;
let us proceed to find it. In Example 4.36 we found that the general solution of the
differential equation (4.46) is

y=c.e3* +ce”* —%e* + 2sin x — cos x. (4.49)
From this, we have
dy 3x -x 1, x 1
E=301e —ce” ¥ —3e* + 2cos x + sin x. (4.50)

Applying the initial conditions (4.47) and (4.48) to Equations (4.49) and (4.50),
respectively, we have

2=rc,e®+ cpe® —4e® + 2sin 0 — cos 0,
4 =3c,e®—cpe® —4e® +2cos 0 + sin 0.
These equations simplify at once to the following:
cte=%  3¢,—c=3.
From these two equations we obtain
=3 =2

Substituting these values for ¢, and c, into Equation (4.49) we obtain the unique
solution of the given initial-value problem in the form

=3e3 +2¢™* —4e* + 2sin x — cos x.

Exercises

Find the general solution of each of the differential equations in Exercises 1-24.

d’y . dy
LA L A N |
dx? dx Ty =dx

d*y dy _
AN, Tt A =4 2x __ 21 3x.
e 2dx 8y e e
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10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

32{+2d—y+5y 6 sin 2x + 7 cos 2x.
322+2dy+2y—108m4x
32“2)+2:—+4y—cos4x
%—3?—4y—16x—12e2"'

32{ + 6Z—y+ 5y = 2e* + 10e°*.
32}2)+251+10y—5xe =,

%+ %+%—6y=—18x2+1.
%_*_zdx_{_ %—10y=8xe_2"
33y+32{+331—5y=5sin2x+10x2+3x+7.
4;37))—437“;—53—})+3 = 3x3 - 8x.
322+SX—6y=10e2"—18e3"—6x—11.
32}2)+Z—y—2y 6e™%* + 3e* — dx2,
%—3ji+4y 4e¢* — 18"
%—2%—%+2y=9e2"—8e3".
ny+Z_y=2x + 4 sin x.
%_3%+2Z:€—}2}=3e"‘+6e2‘—6x.
% 6Z{+llad———6y—xe — de? + 6e**.
Cy 4LV s gy 3xre e

dx3  dx? " Tdx
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d2
21. dxy+y—xsmx
d?
22, dx_}; + 4y = 12x? — 16x cos 2x.
dty d’y d%
23, —+2-—=-3-—== 2 x x_9,
dx“+ Fe ™ 18x“ + 16xe™ + 4de 9
d* d? d?
24. y 5 y+7 y Sd—+6y—551nx—1281n2x

dx*  Tdx® T T ax? T dx

Solve the initial-value problems in Exercises 25-40.

d? dy
25, S _4Yy =9xt+d HO=6 yO=8
dx? dx
d2
26. d}z)+5d—y+4y—l6x+20e y0) =0, y(0)=3
4 d
27. 28 sy =oxe  yO=5 YO =
dx dx
4 d
28 217 1oy =axe ™ y0)=0, y(0)=—
dx dx
2 dy
29. Z Y+ Sd— +16y=8e™>  y0)=2, y(0)=0
4 dy
0 346 eoy=27e 0= -2 yO=0.
2
31 ZTY + 4d— +13y=18"%  yO0)=0, y(0)=4
2
32. d—ﬁ — 0%y 29y =8¢>,  y(0)=0, y(0)=8.
dx dx
2
33. d_); 4L 413y =8sin3x,  yO)=1, y(0) =2
dx d
2
LYo g sen y0)=3 y(0)=5.
dx dx
d? d
35, S22 py— e 46t yO) =1, y(O)=
dx dx
d2
6. S y=3ie HO=1 YO =2
d*y
37. dx? +y =3x? —4sin x, y(0) =0, y(0) =1
d?y
38. +4y=8sin2x, y0)=6  y(0)=8

dx?
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3 2
39. jx—);—4jxy Zy+6y 3xe* + 2¢* — sin x,

33
YO =55 YVO=0 »'0)=0

3
y 6dy+9-dl-4y—8x2+3—6e2*,

W et n

yo =1, y0=7 y"(0)=10

For each of the differential equations in Exercises 41-54 set up the correct linear
combination of functions with undetermined literal coefficients to use in finding a
particular integral by the method of undetermined coefficients. (Do not actually find
the particular integrals.)

d? d
41. dx—}zl—6%+8y=x3+x+e_2".
d2
42. dx—}z) + 9y =e3* + e 3* + ¢3* sin 3x.
d? d
43, ‘bc—)2)+4£+5y=e‘2"(1+cosx).
dzy dy 3,2x 2,3x
M'K d+9y x*e* + x3e?* + x%e**.
d? .
45. d—y+6jy+l3y—xe 3% sin 2x + x%e” ** sin 3x.
dy dy dy 26 | 5,2
46. ﬁ"3m+25—xe +3xe +5x
d3y dy d 2x
47. i 6d2+12d——8y—xe + x2e3*
dty ,d% ,d’y . dy J/3
48, —2 vy 42 322 — y2p™% -x/2 M~ .
8 dx“+3dx3+ 2 P3g ty=x" + 3e™*% cos ~— x
d4
49. ﬁ—%y—x sin 2x + x“e®*.
de dsy dy 3 2,-x =X o1
50. d6+2d—+5d—_x + x“e™* 4+ e *sin 2x.
4 d?
51. Z{+2d)2)+y=xzcosx.
d4y V3
52. . ——7 + 16y = xe¥**sin  /2x + e~ ‘/_"cos\/_x
4 d2
53, ZT{+3EC%_4y=coszx—coshx.
4 2
54. dy+10dy+9y=sinxsin2x.

dx* T dx?
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4.4 VARIATION OF PARAMETERS

A. The Method

While the process of carrying out the method of undetermined coefficients is actu-
ally quite straightforward (involving only techniques of college algebra and
differentiation), the method applies in general to a rather small class of problems. For
example, it would not apply to the apparently simply equation

2

d’y + tan
— = X.
ax2 7

We thus seek a method of finding a particular integral that applies in all cases
(including variable coefficients) in which the complementary function is known. Such a
method is the method of variation of parameters, which we now consider.

We shall develop this method in connection with the general second-order linear
differential equation with variable coefficients

2

d2y

dy
ao(x)dx—2 + al(x)a + a,(x)y = F(x). (4.51)
Suppose that y, and y, are linearly independent solutions of the corresponding‘

homogeneous equation

42 d
ao(x) dx—ﬁ +a,(%) % + ay(x)y = 0. 4.52)

Then the complementary function of Equation (4.51) is

€1 Y1(X) + ¢2y2(x),

where y, and y, are linearly independent solutions of (4.52) and ¢, and c, are arbitrary
constants. The procedure in the method of variation of parameters is to replace the
arbitrary constants ¢, and ¢, in the complementary function by respective functions v,
and v, which will be determined so that the resulting function, which is defined by

01 (x)y1(X) + v2(x) y2(x), (4.53)

will be a particular integral of Equation (4.51) (hence the name, variation of
parameters).

We have at our disposal the two functions v, and v, with which to satisfy the one
condition that (4.53) be a solution of (4.51). Since we have two functions but only one
condition on them, we are thus free to impose a second condition, provided this second
condition does not violate the first one. We shall see when and how to impose this
additional condition as we proceed.

We thus assume a solution of the form (4.53) and write

Yp(x) = 01 (X) 4 (x) + v2(x) y2(x). (4.54)
Differentiating (4.54), we have
Yp(x) = 0 (X)y1(x) + v2(x) y2(x) + v3 (%) yy (X) + V3(X) y2(x), (4.55)

where we use primes to denote differentiations. At this point we impose the
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aforementioned second condition; we simplify y, by demanding that

vy ()1 (%) + v3(X)y2(x) = 0. (4.56)
With this condition imposed, (4.55) reduces to
¥o(X) = 01 (x) ¥ (x) + v2(x) y2(x). (4.57)

Now differentiating (4.57), we obtain

Yp (%) = 01 () Y1 (%) + 02(x)¥3(x) + vy (x) ¥y (x) + v3(x) y3 (x). (4.58)

We now impose the basic condition that (4.54) be a solution of Equation (4.51). Thus we
substitute (4.54), (4.57), and (4.58) for y, dy/dx, and d*y/dx?, respectively, in Equation
(4.51) and obtain the identity

ao(x)[v1 (X)y1(x) + v2(x)y3(x) + v} (x) Y1 (x) + v3(x) y3(x)]
+a ()01 (¥) y1(x) + 02(x)y2(0)] + a;(x)[v (X) ¥y () + v2(x) y2(x)] = F(x).

This can be written as

01 (X)Lao (X)y{(x) + a, (x)y1(x) + a;(x)y; (x)]
+ 02000a0(x)y2(x) + a,(x)y2(x) + a;(x) y,(x)]
' + ao(¥)[v; (¥)y1(x) + v2(x)y2(x)] = F(x). (4.59)

Since y, and y, are solutions of the corresponding homogeneous differential equation
(4.52), the expressions in the first two brackets in (4.59) are identically zero. This leaves
merely
F(x)

! { : 5(x) = . 4.60

U940 + (500 = o8 (4.60

This is actually what the basic condition demands. Thus the two imposed conditions
require that the functions v; and v, be chosen such that the system of equations

Y1 ()01 (%) + y2(x)v5(x) = 0,
F(x) (4.61)
ao(x)’

is satisfied. The determinant of coefficients of this system is precisely

Y1)y (x) + ya(x)v2(x) =

y1(x) ya(x)
Yi(x)  y2(x)
Since y, and y, are linearly independent solutions of the corresponding homogeneous

differential equation (4.52), we know that W[y, (x), y,(x)] # 0. Hence the system (4.61)
has a unique solution. Actually solving this system, we obtain

Wy (x), y2(x)] =

0 y2(x)
T e
PP 7S Ml N A
‘ ao(x) Wy, (x), y2 ()]’

jyx(x) y2(x)
Yi(x)  ya(x)
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3o 0

)

M @l Fene
4Gy, (9, 3,090

va(x) = y1(x)  ya(x)

Yi(x)  ¥a(x)

Thus we obtain the functions v, and v, defined by
¥ F@)y,(n)dt
v (x) = —J‘ )
‘ a(OW [y, (0), y2 (0]

[ Fonoa
120 j a0 OWIy: (0, 1,01

Therefore a particular integral y, of Equation (4.51) is defined by
Yp(%) = 01(x)p; (%) + v2(x) ¥, (x),

where v, and v, are defined by (4.62).

B. Examples

» Example 4.40

Consider the differential equation
d?y
— +y=tanx.
dx? y

The complementary function is defined by
y.(x) = ¢ sin x + ¢,€08 X.

We assume ¥,(x) = vy (x)sin x + v,(x)cos x,

157

(4.62)

(4.63)

(4.64)

where the functions v, and v, will be determined such that thisis a particular integral of

the differential equation (4.63). Then

V,(X) = vy(x)cos x — v,(x)sin x + v (x)sin x + v’ (x)cos x.

We impose the condition
vy (x)sin x + v5(x)cos x =0, (4.65)
leaving V(%) = vy(x)cos x — v,(x)sin x.
From this
Yp(x) = —vy(x)sin x — v,(x)cos x + v (x)cos x — v5(x)sin x (4.66)
Substituting (4.64) and (4.66) into (4.63) we obtain
(4.67)

v (x)cos x — v5(x)sin x = tan x.
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Thus we have the two equations (4.65) and (4.67) from which to determine v’ (x), v5(x):
vy (x)sin x + vy (x)cos x = 0,
v (x)cos x — v5(x)sin x = tan x.

Solving we find:

0 cos X
, tan x —sin x —cosxtanx
v} (x) = 1— = = sin X,
sin x cos X -1

cos x —sin x

sin x 0
%) cosx tanx| sinxtanx —sin®x
1)2 X)= < = =
sin x Cos X -1 Ccos X

cos x —sin x

cos?x —1
=————— =C0S X — SecC X.
cOS X
Integrating we find:
v,(x) = —cos x + c3, v,(x) =sin x — In |sec x + tan x| + ¢,.  (4.68)

Substituting (4.68) into (4.64) we have

¥,(x) = (—cos x + c3)sin x + (sin x — In |sec x + tan x| + c4)cos x
= —sin X oS X + ¢3Sin x + sin X COS X
—1In |sec x + tan x| (cos x) + c,cos x
= ¢5sin x + ¢,cos x — (cos x)(In |sec x + tan x|).

Since a particular integral is a solution free of arbitrary constants, we may assign any
particular values A and B to c; and c,, respectively, and the result will be the particular
integral

A sin x + B cos x — (cos x)(In |sec x + tan x|).
Thus y = y. + y, becomes
Yy =cy8in X+ cyc08x + Asinx + Bcos x — (cos x)(In |sec x + tan x|),
which we may write as
y = C, sin x + C, cos x — (cos x)(In |sec x + tan x|),

where C;, = ¢, + 4,C, =¢, + B.
Thus we see that we might as well have chosen the constants ¢ and ¢, both equal to 0
in (4.68), for essentially the same result,

y = ¢, sin x + ¢, cos x — (cos x)(In |sec x + tan x|),
would have been obtained. This is the general solution of the differential equation
(4.63).

The method of variation of parameters extends to higher-order linear equations. We
now illustrate the extension to a third-order equation in Example 4.41, although we
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hasten to point out that the equation of this example can be solved more readily by the
method of undetermined coefficients.

P Example 4.41

Consider the differential equation
dy d? dy
- ﬁ+lla;—6y=e". (4.69)
The complementary function is
Ye(x) = ¢ e* + cpe?* + cye3x.
We assume as a particular integral
Y, (x) = vy (x)e* + v,(x)e?* + v3(x)e3x. (4.70)

Since we have three functions v,, v,, v5 at our disposal in this case, we can apply three
conditions. We have:

Yp(x) = vy (x)e* + 20,(x)e™ + 3v3(x)e>* + v} (x)e* + vy (x)e™™ + vi(x)e.

Proceeding in a manner analogous to that of the second-order case, we impose the
condition

vy (X)e* + vy(x)e?* + vy (x)e® =0, @.71)
leaving
Vp(x) = v (x)e* + 20, (x)e?* + 3v;(x)e’™. 4.72)
Then
Yo(x) = v (x)e* + dvy(x)e®* + s (x)e>* + v)(x)e* + 205(x)e?™ + 3v;(x)e’™.
We now impose the condition
vy (x)e* + 2v5(x)e®* + 3vy(x)e3* =0, (4.73)
leaving
Yo(x) = vy (X)€" + 4v,(x)e>* + vy(x)e>*. 4.74)
From this,
Yo' (x) = vy (x)e* + 8v,(x)e?* + 2Tv5(x)e>* + vy (x)e* + 4v5(x)e? + i (x)e.
4.75)

We substitute (4.70), (4.72), (4.74), and (4.75) into the differential equation (4.69),
obtaining;:

v (x)e* + 8v,(x)e? + 2705 (x)e3* + v (x)e* + 4v5(x) e + Hi(x)e™
— 6, (x)e* — 24v,(x)e* — 54v;(x)e3* + 11 (x)e* + 22v,(x)e?* + 33v5(x)e**
— 60, (x)e* — 6v,(x)e* — 6v5(x)e* = e~
or

vy (x)e* + 4v5(x)e* + Yvy(x)e> = e*. (4.76)
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Thus we have the three equations (4.71), (4.73), (4.76) from which to determine
vll (X), D,Z(x), DI?» (X):
vy (x)e* + vh(x)e?* + v5(x)e3* =0,
vy (x)e* + 2v5(x)e? + 3v5(x)e3* =0,

vy (x)e* + dvy(x)e* + 5 (x)e3 = e*.

Solving, we find

0 e2x e3x
0 2% 33| |11
v, (x) e* d4e?* Qg3 2 3 1
1 = x x x =3
e* ¥ g3 o6% 1 1] 2
e 2e2x 3e3x 2 3
e* 4e?* Qg3x 1 49
e~ 0 e3x
e 0 3 |11
X e 9e> 13 .,
Uz(x)= e* e2x e3x = 2e6x =—e 7
e 2e2x 3e3x
e* 4e?* 9e3*
e* e¥* 0
e* 2% 0 I
, e* 4o x| |12l 1,
U3(X)= e er e3x = 2e6x _ze
e 2e2x 3e3x
e* 4e?* 93>

We now integrate, choosing all the constants of integration to be zero (as the previous
example showed was possible). We find:

vy (%) = %X, va(x) =e%, v3(x) = —3
Thus

Yp(X) = $xe* + e ¥e?* — Lo 23 = dxe™ + je*.
Thus the general solution of Equation (4.53) is

Y=Y+ ¥, =cre +ce** +c3e° + txe™ + 3e*
or

y =cie* + ce? + c;e3* + Lxe*,

where ¢} = ¢, + 3.

In Examples 4.40 and 4.41 the coefficients in the differential equation were constants.
The general discussion at the beginning of this section shows that the method applies
equally well to linear differential equations with variable coefficients, once the
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complementary function y, is known. We now illustrate its application to such an
equation in Example 4.42.

» Example 4.42

Consider the differential equation

a2 d
(2 + 1)dx—§ - 2x% +2y = 6(x* + 1)2. 4.77)

In Example 4.16 we solved the corresponding homogeneous equation

d? d
(x* + I)M—Z—Zxd—i+2y=0.

From the results of that example, we see that the complementary function of equation
4.77) is

Ye(X) = ¢y x + cp(x* — 1)
To find a particular integral of Equation (4.77), we therefore let
Yp(x) = v, (%)x + 02 (x)(x* — 1). (4.78)
Then
Vo(X) = 0y(%) - 1+ 03(x)* 2x + v (x)x + v5(x)(x2 = 1).

We impose the condition

vy (x)x + vy (x)(x2 — 1) =0, 4.79)
leaving
Vp(X) = vy (x) - 1 + v5(x) - 2x. (4.80)
From this, we find
Y, (x) = vy (x) + 20,(x) + v5(x) - 2x. (4.81)

Substituting (4.78), (4.80), and (4.81) into (4.77) we obtain
(% + Do (%) + 20,(x) + 2x05(x)] — 2x[v,(x) + 2x0,(x)]
+ 2[v, (%) x + v (x)(x* = 1)] = 6(x? + 1)
or
(x2 + D0} (x) + 2x05(x)] = 6(x? + 1)2 (4.82)

Thus we have the two equations (4.79) and (4.82) from which to determine v} (x) and
v5(x); that is, v’ (x) and v’ (x) satisfy the system

(X)X + v3(x)[x* = 1] =0,
vy (%) + v5(x)[2x] = 6(x? + 1).
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Solving this system, we find

0 x2—1
, 6(x2+1) 2x —6(x2 + 1)(x2=1)
Ul(x) = X X2 —1 = X2 + 1 = —6(X2 - 1),
1 2x
X 0
, 1 6(x241)] 6x(x2+41)
v2(¥) = x x2—-1]  x*+1 = 6x.
1 2x
Integrating, we obtain
v (x) = =2x3 4+ 6x,  v,(x) = 3x3, (4.83)

where we have chosen both constants of integration to be zero. Substituting (4.83) into
(4.78), we have

¥p(x) = (=2x> + 6x)x + 3x*(x* — 1)
= x* 4+ 3x2%

Therefore the general solution of Equation (4.77) may be expressed in the form

y=y.+y,
=c;x 4 cp(x? — 1) + x* + 3x2%

Exercises

Find the general solution of each of the differential equations in Exercises 1-18.

1. %+y=cotx. 2. ::C—“Z+y=tan2x.
3. Z;—{+y=secx. 4, %+y=sec3x.
5. ;di—j%+4y=sec2 2x.

6. :—:¥+y=tanxsecx.

7. %+4%+5y=e‘2"secx.

8. Z;—X—Z:—i+5y=e"tan2x.

9, ic—{+6j—i+9y=e;x.

10. —2—2%+y=xe"lnx(x>0).



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,
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d’y

22 Ty =secxescx.
‘b%-:-y:tan"'x.
ﬁ—{+33—1+2y=1: 5
Z;_}Zl+3%+2y=l+le2"

2

Z;_}zl—zj—z+y=e"sin"‘x.
%+33—1+2y=5—;.
Z;C—Z—z%+y=xlnx (x > 0).

Find the general solution of

xzﬁ—6xd—y

™ ot 10y = 3x* + 6x3,

given that y = x? and y = x® are linearly independent solutions of the
corresponding homogeneous equation.

Find the general solution of

d’y dy
)?2-— -2 )—+2y=1,
(125 = 2x+ DT+ 2y
given that y = x + 1 and y = (x + 1)? are linearly independent solutions of the
corresponding homogeneous equation.

Find the general solution of

d? d
(2 +2%) 2 — 2x + ) 2 4 2y = (x + 22,
dx dx
given that y=x + 1 and y = x? are linearly independent solutions of the
corresponding homogeneous equation.

Find the general solution of

2 d
xzﬁ—x(x+2)é+(x+2)y=x3,
given that y = x and y = xe* are linearly independent solutions of the corre-
sponding homogeneous equation.
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23. Find the general solution of
d2
x(x —2)—> e —(x? - 2) + 2(x — 1)y = 3x%(x — 2)%e*

given that y = ¢* and y = x? are linearly independent solutions of the corre-
sponding homogeneous equation.

24. Find the general solution of

d?y dy
(2x + 1)(x + 1) + 2xd— -2y =(2x + 1),

given that y = x and y = (x + 1)~ ! are linearly independent solutions of the
corresponding homogeneous equation.

25. Find the general solution of
2

d d .
(sin? x)ﬁ — 2 sin x cos x% + (cos? x + 1)y = sin? x,

given that y = sin x and y = x sin x are linearly independent solutions of the
corresponding homogeneous equation.

26. Find the general solution by two methods:

dy d*y dy
W 3dx d +3y xe

4.5 THE CAUCHY-EULER EQUATION

A. The Equation and the Method of Solution

In the preceding sections we have seen how to obtain the general solution of the nth-
order linear differential equation with constant coefficients. We have seen that in such
cases the form of the complementary function may be readily determined. The general
nth-order linear equation with variable coefficients is quite a different matter, however,
and only in certain special cases can the complementary function be obtained explicity
in closed form. One special case of considerable practical importance for which it
is fortunate that this can be done is the so-called Cauchy-Euler equation (or equi-
dimensional equation). This is an equation of the form

n n—1

24y n- y dy
agX d—x”+a1x ldx"—_‘+ +a,, 1 X 5 +a,,y F(x) (484)

dx

where ay, ay,...,a,-;, a, are constants. Note the characteristic feature of this
equation: each term in the left member is a constant multiple of an expression of the
form
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How should one proceed to solve such an equation? About the only hopeful thought
that comes to mind at this stage of our study is to attempt a transformation. But what
transformation should we attempt and where will it lead us? While it is certainly
worthwhile to stop for a moment and consider what sort of transformation we might
use in solving a “new” type of equation when we first encounter it, it is certainly not
worthwhile to spend a great deal of time looking for clever devices which mathema-
ticians have known about for many years. The facts are stated in the following theorem.

THEOREM 4.14

The transformation x = e’ reduces the equation

dn n—1

d
aq +a;x"" ! y

dy
iy der T T gy

Ix +a,y = F(x) (4.84)

to a linear differential equation with constant coefficients.

This is what we need! We shall prove this theorem for the case of the second-order
Cauchy-Euler differential equation

Zdz

d
agx? 7= ) v ax 2t ayy = Fx). (4.85)

dx
The proof in the general nth-order case proceeds in a similar fashion. Letting x = ¢/,
assuming x > 0, we have t = In x. Then

dy dydt 1dy

dx  didx xdt

and
ﬂ 1d dy +dyd dzydt 1y
dx?  xdx dt dx \ x Zgx) x2dt
1(d?y 1 _L@_L ﬂ_d_y
x \dt? x xtdt  x2\dt? dt)
Thus
by _dy ,d%y d*y dy
*Hoa M YT e T

Substituting into Equation (4.85) we obtain

2
a <d—y—d—y>+al-d—¥+a2y=F(e')

Nde2  dt dt
or
d?y dy
A0W+ AlE+ A,y = G(¢), (4.86)
where

Ao = ay, Ay =a, — a,, Ay = a,, G(t) = F(e').
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This is a second-order linear differential equation with constant coefficients, which was
what we wished to show.

Remarks. 1. Note that the leading coefficient a,x" in Equation (4.84) is zero for
x = 0. Thus the basic interval a < x < b, referred to in the general theorems of Sec-
tion 4.1, does not include x = 0.

2. Observe that in the above proof we assumed that x > 0. If x < 0, the substitution
x = —eé' is actually the correct one. Unless the contrary is explicitly stated, we shall
assume x >0 when finding the general solution of a Cauchy—Euler differential
equation.

B. Examples

» Example 4.43

2
x? ZxJz’ —2x % +2y = x> (4.87)

Let x = ¢'. Then, assuming x > 0, we have t = In x, and
dy dydt _1dy
dx dtdx xdt’
d?y l<d2ydt> 1 dy 1<d2y dy>
-5 —a==|-5-=

dx?  x\dt? dx) x*dt x*\di* dt)
Thus Equation (4.87) becomes
d’y dy _dy 3
A gty
or
d*y dy 3t

The complementary function of this equationis y, = c, e' + c,e?'. We find a particular
integral by the method of undetermined coefficients. We assume y, = Ae*. Then
¥, =34e*, y, = 9Ae*, and substituting into Equation (4.88) we obtain

24e* = e,
Thus 4 = } and we have y, = $e*. The general solution of Equation (4.88) is then
y=rcie +ce? + $e’

But we are not yet finished! We must return to the original independent variable x.
Since e' = x, we find

y=c;x+cyx?+1ix3
This is the general solution of Equation (4.87).

Remarks. 1. Note carefully that under the transformation x = e' the right member
of (4.87), x3, transforms into e*. The student should be careful to transform both sides
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of the equation if he intends to obtain a particular integral of the given equation by
finding a particular integral of the transformed equation, as we have done here.

2. We hasten to point out that the following alternative procedure may be used.
After finding the complementary function of the transformed equation one can im-
mediately write the complementary function of the original given equation and then
proceed to obtain a particular integral of the original equation by variation of param-
eters. In Example 4.43, upon finding the complementary function c,e' + c,e** of
Equation (4.88), one can immediately write the complementary function ¢, x + ¢, x? of
Equation (4.87), then assume the particular integral y,(x) = v, (X)x + v,(x)x?, and
from here proceed by the method of variation of parameters. However, when the
nonhomogeneous function F transforms into a linear combination of UC functions, as
it does in this example, the procedure illustrated is generally simpler.

» Example 4.44

d’y d’y dy

377 gx3 22 2 _8y=4Inx 4.89
X o3 4x dx2+8xdx 8y=4Inx (4.89)
Assuming x > 0, we let x = ¢'. Then ¢t = In x, and

dy_lgx

dx x dt’

d’y _ 1 (d’y dy
dx*  x*\dt*

3
. Yy
Now we must consider ——75.

dx

dy _1.d(dy dy\ 2 (dy dy
dx?  x%dx\di2 dt) x3\dt* a4t

Thus, substituting into Equation (4.89), we obtain
d’y _d*y _dy d’y dy dy
—-3—=+2=)-4l-F5—=)+8{ = )-8y=4
(dt3 Sar i az " ar) T\ Y

d*y _d*y dy
P T

The complementary function of the transformed equation (4.90) is

or

8y = 4t. (4.90)

y. =cre' + c e + cye*.



168

EXPLICIT METHODS OF SOLVING HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS

We procced to obtain a particular integral of Equation (4.90) by the method of un-
determined coefficients. We assume y, = At + B. Then y, = A4, y, = y;’ = 0. Substi-
tuting into Equation (4.90), we find

144 — 84t — 8B = 4t.
Thus
—8A4 =4, 144 — 8B =0,
and so A = —3%, B = —3%. Thus the general solution of Equation (4.90) is
y=cie' +ce* +cyet — Lt -3,
and so the general solution of Equation (4.89) is
y=cx+c3x?+c3x*—4lnx -4

Remarks. In solving the Cauchy—Euler equations of the preceding examples, we
observe that the transformation x = e reduces

2 2
xZ—i’ to %, xzjx—}z] to %——%,
and
3 3 2
x3jx—“: to %—3%+2%
We now show (without proof) how to find the expression into which the general term
x" 'y
dx™’

where n is an arbitrary positive integer, reduces under the transformation x = ¢'. We
present this as the following formal four-step procedure.

1. For the given positive integer n, determine

rir—=1)(r—=2)[r—(m-1)]
2. Expand the preceding as a polynomial of degree nin r.
3. Replace r* by %%, foreach k =1,2,3,...,n

d"y
4. E "
quate x P

to the result in Step 3.

For example, when n = 3, we have the following illustration.
1. Since n =3,n — 1 =2 and we determine r(r — 1)(r — 2).

2. Expanding the preceding, we obtain r3 — 3r? + 2r.

. d3y d?y dy
3 2
3. Replacing r by—-—dts,r by dtz,andrby o Ve have
d? 2 d
y 4y +2 4

da* Tder T Car
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3

. d . .
4. Equating x* dx_z to this, we have the relation

d*y d3y d?y dy
32 7 —_ 7 _ > 7
Yoo T ettt

Note that this is precisely the relation we found in Example 4.44 and stated above.

Exercises

Find the general solution of each of the differential equations in Exercises 1-19.In each
case assume x > 0.

d? d d? d
L. xz—dx}zl—3xd—i+3y=0. ) 2. xzdx—¥+x%“4y=0-
d?y dy d’y dy
2—— —_— = 2—— -_ 4 = V.
3. 4x o 4xdx+3y 0. 4. x e 3xdx+ y =0
A%y dy
5. d2+xd—+4y 0. 6 xzdzy_3xd_y+]3y=0_
’ dx? dx
d*y dy
2—_ — =
7. 3x 1 4xdx+2y 0.
y , _dy
8. x*og+x+9y=0
2
9, 9x22x—y+3 :—y+y=0.
dy dy
10. —5x-—+10
0. x*o—3 = Sx— y = 0.
,d%y d*y dy
1. x’——= 2 — —6y=0.
xd — 3x dx2+6xdx 6y =0
3 2
347 zdy_ d_y_ =
12. x dx3+2x Ix? IOxdx 8y =0.
d’y d’y dy
3 27 _7 —
13. x i X IxZ 6xdx+18y 0.
d*y dy
2 — - = —
14. x It 4xdx+6y 4x — 6.
d’y dy
22 J 7 = )y3
15. x = Sxdx+8y 2x°.
d*y dy
2- 7 — =
16. x dx2+4xdx+2y 41n x.
2., d
17. 2d"+x—y+4y=2xlnx.

XW dx
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d*y dy .
2- - - = In x.
18. «x dx2+xdx+y 4sinIn x
19 3ﬂ_ 2@4_2 ill_z —x3
A T R T A YT
Solve the initial-value problem in each of Exercises 20—27. In each case assume x > 0.
d*y dy
. X2 - 2x—— — = 1) = (1) = 4.
20, x*om = 2o —10y=0, =5 y{@
d’y dy
2__ —_— = = ! =
21 XPog—dxm+by=0, »2)=0, y(@)=4
d’y dy
2> 7 _ = = (1) = =5.
2. oS+ y=0 =1L y()=-5
2
B x4 Y gyeso8 =4 yO=-1L
d*y dy
3 2__ — = 2 —_ 3 = ! 2 = _1
0. Xog-dx s HAy=4ad -6 y2)=4 YO
2
25 222 W 610 =1, y()= -6
dx dx
dy dy
LR Ve 4 = 2x3 = ') = -8.
26. xPom=Sxom4+8y=27 y2)=0, yQ
2
27 28 ey=imx, y=h  yO)=-4
28. Solve:
d*y dy
2—_ — — —1
x+2 ™ (x+2)dx 3y=0.
29. Solve:
d’y dy
2x —3)2— — -3)—= =0.
(2x )dxz 6(2x 3)dx+12y 0

4.6 STATEMENTS AND PROOFS OF THEOREMS ON THE SECOND-ORDER
HOMOGENEOUS LINEAR EQUATION

Having considered the most fundamental methods of solving higher-order linear
differential equations, we now return briefly to the theoretical side of the subject and
present detailed statements and proofs of the basic theorems concerning the second-
order homogeneous equation. The corresponding results for both the general nth-
order equation and the special second-order equation were introduced in Section 4.1B
and employed frequently thereafter. By restricting attention here to the second-order
case we shall be able to present proofs which are completely explicit in every detail.
However, we point out that each of these proofs may be extended in a straight-forward
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manner to provide a proof of the corresponding theorem for the general nth-order case.
For general proofs, we again refer to Chapter 11.
We thus consider the second-order homogeneous linear differential equation

dz d
ao(x)ﬁ +a,(x) é + a,(x)y = 0. 491)

where a,, a,, and a, are continuous real functions on a real interval a < x < b and
ayg(x) #0forany xona < x <b.

In order to obtain the basic results concerning this equation, we shall need to make
use of the following special case of Theorem 4.1 and its corollary.

THEOREM A

Hypothesis. Consider the second-order homogeneous linear equation (4.91), where
ay, ay, and a, are continuous real functions on a real interval a < x < b and ay(x) # 0
for any x on a < x < b. Let x, be any point of a < x < b; and let ¢, and c, be any two
real constants.

Conclusion 1. Then there exists a unique solution f of Equation (4.91) such that
f(xo) =co and f'(xo) = c,, and this solution f is defined over the entire interval
a<x<hbh.

Conclusion 2. [n particular, the unique solution f of Equation (4.91), which is such
that f(xo) = Oand f'(xo) = 0, is the function f such that f(x) = 0 forall xona < x < b.

Besides this result, we shall also need the following two theorems from algebra.

THEOREM B

Two homogeneous linear algebraic equations in two unknowns have a nontrivial solution
if and only if the determinant of coefficients of the system is equal to zero.

THEOREM C

Two linear algebraic equations in two unknowns have a unique solution if and only if the
determinant of coefficients of the system is unequal to zero.

We shall now proceed to obtain the basic results concerning Equation (4.91). Since
each of the concepts involved has already been introduced and illustrated in Sec-
tion 4.1, we shall state and prove the various theorems without further comments or
examples.

THEOREM 4.15

Hypothesis. Let the functions f, and f, be any two solutions of the homogeneous
linear differential equation (4.91) on a < x < b, and let ¢, and c, be any two arbitrary
constants.
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Conclusion. Then the linear combination ¢, f; + ¢, f, of f and f, is also a solution
of Equation (4.91)ona < x < b.

Proof. We must show that the function f defined by

f(x) = ¢y fi(x) + ¢35 f2(x), as<x<b, 4.92)
satisfies the differential equation (4.91) on a < x < b. From (4.92), we see that
') =c f1(x) + 2 f5(x), a<x<b, (4.93)
and
['x)=c fix) +c2f3(x),  a<x<b (4.94)

Substituting f(x) given by (4.92), f'(x) given by (4.93), and f"(x) given by (4.94) for y,
dy/dx, and d*y/dx?, respectively, in the left member of differential equation (4.91), we
obtain

ag(x)[cy f{(x) + c2 f3(x)] + ay(x)[cy f1(x) + ¢2 f5(x)]
+ a()[ey fi(x) + 2 f2(x)]. (495)
By rearranging terms, we express this as
c;[ao(x) f1(x) + a;(x) f1(x) + az(x)f1(x)]
+ c2[a0(x)f5(x) + a, (x) [2(x) + a2(x) f2(x)].  (4.96)

Since by hypothesis, f; and f, are solutions of differential equation (491)ona < x <
b, we have, respectively,

ao(X)f1(x) + a; () f1(x) + a,(x)f1(x) =0
and

ao(x)f3(x) + ay(x) f2(x) + a2(x) f2(x) = 0
forall xona < x <b.

Thus the expression (4.96) is equal to zero for all x on a < x < b, and therefore so is
the expression (4.95). That is, we have

ao(X)[cy f1(x) + ¢2f200)] + a ()1 f1(x) + €2 /3(x)]
+ ay(x)[cy f1(x) + ¢ f2,(x)] =0

for all x on a < x < b, and so the function ¢, f; + ¢, f; is also a solution of differential
equation (4.91) on this interval. Q.E.D.

THEOREM 4.16

Hypothesis. Consider the second-order homogeneous linear differential equation
(4.91), where ay, a, , and a, are continuousona < x < band ag(x) #0ona < x <b.

Conclusion. There exists a set of two solutions of Equation (4.91) that are linearly
independent ona < x < b.
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Proof. We prove this theorem by actually exhibiting such a set of solutions. Let x,
be a point of the interval a < x < b. Then by Theorem A, Conclusion 1, there exists a
unique solution f; of Equation (4.91) such that

filxg)=1 and f'(x) =0 4.97)
and a unique solution f, of Equation (4.91) such that
f2(xg) =0 and f5(xe) =1 (4.98)

We now show that these two solutions f, and f, are indeed linearly independent.
Suppose they were not. Then they would be linear dependent; and so by the definition of
linear dependence, there would exist constants ¢, and c,, not both zero, such that

e fix) + ¢ f2(x)=0 4.99)
for all x such that a < x < b. Then also
1 f1x) + 2 f5(x) =0 (4.100)

for all x such that a < x < b. The identities (4.99) and (4.100) hold at x = x,, giving
¢y fi(xg) + 2 f2(x) =0, ¢y fi(xo) + c2f2(x0) = 0.
Now apply conditions (4.97) and (4.98) to this set of equations. They reduce to
¢ (1) + ¢,(0) =0, ¢1(0) + c,(1) = 0.

orsimply ¢; = ¢, = 0, which is a contradiction (since ¢, and c, are not both zero). Thus
the solutions f; and f, defined respectively by (4.97) and (4.98) are linearly independent
onga<x<b. Q.E.D.

THEOREM 4.17

Two solutions f, and f, of the second-order homogeneous linear differential equation
(4.91) are linear independent ona < x < b if and only if the value of the Wronskian of f,
and f, is different from zero for some x on the interval a < x < b.

Method of Proof. We prove this theorem by proving the following equivalent
theorem.

THEOREM 4.18

Two solutions fy and f, of the second-order homogeneous linear differential equation
(4.91) are linearly dependent ona < x < bif and onlyif the value of the Wronskian of f,
and f, is zero for all x ona < x < b:

fix) falx)
[1x) fa(x)

=0 forallxona<x<b.

Proof. Part 1. We must show that if the value of the Wronskian of f; and f; is zero
for ali x on a < x < b, then f; and f, are linearly dependent on a < x < b. We thus
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assume that

fikx)  f2(%)
fix) f2(x)

for all x such that a < x < b. Then at any particular x, such that a < x, < b, we have

Sfi(xo)  f2(x0)
fi(xo)  [f2(xo0)

Thus, by Theorem B, there exist constants ¢, and c,, not both zero, such that
1 f1(xo) + ¢ fa(x0) = 0,
1 f1(x0) + €2 f5(x0) = 0.
Now consider the function f defined by
f(x) = ¢y f1(x) + 2 f2(x), a<x<bh

By Theorem 4.15, since f; and f, are solutions of differential equation (4.91), this
function f is also a solution of Equation (4.91). From (4.101), we have

f(xo)=0 and f'(xo) = 0.

Thus by Theorem A, Conclusion 2, we know that

(4.101)

f(x)=0 forallxona<x<bh.
That is,
¢ fix) + e fo(x) =0

forall xona < x < b, where ¢, and ¢, are not both zero. Therefore the solutions f; and
f> are linearly dependent ona < x < b.

Part 2. We must now show that if f; and f, are linearly dependent ona < x < b, then
their Wronskian has the value zero for all x on this interval. We thus assume that f; and
f, are linearly dependent on a < x < b. Then there exist constants ¢, and c,, not both
zero, such that

¢ fi(x) + c2f2(x) =0 (4.102)
for all x on a < x < b. From (4.102), we also have
¢ f1(x) + ¢, f3(x) =0 (4.103)

for all x on a < x < b. Now let x = x, be an arbitrary point of the interval a < x <b.
Then (4.102) and (4.103) hold at x = x,. That is,

1 f1(xo) + ¢2 f2(x0) = 0,
1 f1(xo) + c2f2(x0) = 0,
where ¢, and c, are not both zero. Thus, by Theorem B, we have

Sfi(xo)  f2(x0)
f1(x0)  f5(x0)

But this determinant is the value of the Wronskian of f; and f, at x = x,, and x, is an

=0.
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arbitrary point of a < x < b. Thus we have

f[i(x) falx)
f1(x) f2(x)

forallxona < x<b. Q.E.D.

=0

THEOREM 4.19

The value of the Wronskian of two solutions f, and f, of differential equation (4.91)
either is zero for all x on a < x< b or is zero for no x ona < x < b.

Proof. If f; and f; are linearly dependent on a < x < b, then by Theorem 4.18, the
value of the Wronskian of f; and f;, is zero for all x ona < x < b.

Now let f; and f, be linearly independent on a < x < b; and let W denote the
Wronskian of f; and f,, so that

_ 1) falx)

W =110 e

Differentiating this, we obtain

fix)  fa(x)

S1x) - f2)
i) f2(x)

W= 1w e

b

and this reduces at once to

f1x)  f2(x)
fix) f2(x)
Since f; and f, are solutions of differential equation (4.91), we have, respectively,
ao () f1(x) + a;(x)f1(x) + a,(x) f1(x) = 0,
ao(x)f2(x) + a,(x)f2(x) + a2 (x) f2(x) = 0,

W'(x) = . (4.104)

and hence
"oy _al(x) y _ az_(x)
filx) = ao(x) f1(x) 0(x) f1(x),
oy a(x) ., a,(x)
()= —t 5 /20 = 25 L)
on a < x < b. Substituting these expressions into (4.104), we obtain
Si1(x) fa(x)
W'(x) = a;(x) a,(x) a(x) . a,(x)
20 Six) - ao(x)fl(x) ~ 20) f5(x) ao(x)fZ(x) ~
This reduces at once to
fi(x) S2(x) f1(x) f2(x)
W'(x) = a;(x) ., _ M , +| a,(x) _ a,(x)
- a0 (%) fi(x) ao(x)fZ(x) a(x) fi(x) (%) f2(x)],
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and since the last determinant has two proportional rows, this in turn reduces to

, a;(x) | fi(x)  f2(x)
Wix) = —
B= =@ |10 fa00)
which is simply
Wi = — 2% i,
ao(x)

Thus the Wronskian W satisfies the first-order homogeneous linear differential
equation

dw  a,(x)
dx T a(x)

W =0.

Integrating this from x, to x, where x, is an arbitrary point of a < x < b, we obtain

W(x)=c exp[—jx Z;g; dt]

Letting x = x,, we find that ¢ = W(x,). Hence we obtain the identity

W(x) = W(xo)exp[—f a,(t) dt], (4.105)
X0 aO(t)

valid for all x on a < x < b, where x, is an arbitrary point of this interval.

Now assume that W(x,) = 0. Then by identity (4.105), we have W(x) = Ofor all x on
a < x < b. Thus by Theorem 4.18, the solutions f; and f, must be linearly dependent
on a < x <b. This is a contradiction, since f; and f, are linearly independent.
Therefore the assumption that W(x,) = 0 is false, and so W(x,) # 0. But x, is an
arbitrary point of a < x < b. Thus W(x) is zero forno xona < x < b.

Q.E.D.

THEOREM 4.20

Hypothesis. Let f, and f, be any two linearly independent solutions of differential
equation (4.91)on a < x < b.

Conclusion. Then every solution f of differential equation (4.91) can be expressed as

a suitable linear combination

afitaf

of these two linear independent solutions.

Proof. Let x, be an arbitrary point of the interval a < x < b, and consider the
following system of two linear algebraic equations in the two unknowns k, and k,:

ky fi(xo) + ka fo(x0) = f(xo),
ky f(xo) + kyf5(x0) = f'(Xo)- (4.106)

Since f; and f, are linearly independent on a < x < b, we know by Theorem 4.17 that
the value of the Wronskian of f; and f, is different from zero at some point of this
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interval. Then by Theorem 4.19 the value of the Wronskian is zero for no x on
a < x < b and hence its value at x, is not zero. That is,

Si(xo)  f2(x0)
filxo)  f2(xo0)

Thus by Theorem C, the algebraic system (4.106) has a unique solution k; = ¢, and
k, = c,. Thus for k; = ¢, and k, = c,, each left member of system (4.106) is the same
number as the corresponding right member of (4.106). That is, the number ¢, f; (x,) +
¢, f(xo)is equal to the number f(x,), and the number ¢, f (xo) + ¢z f3(x,)is equal to
the number f(x,). But the numbers ¢, f; (xo) + ¢, f2(xo) and ¢y [ (xq) + ¢2 f2(x,) are
the values of the solution ¢, f; + ¢, f, and its first derivative, respectively, at x,; and the
numbers f(x,) and f'(x,) are the values of the solution f and its first derivative,
respectively, at x,. Thus the two solutions ¢, f; + ¢, f, and f have equal values and
their first derivative also have equal values at x,. Hence by Theorem A, Conclusion 1,
we know that these two solutions are identical throughout the intervala < x < b. That
is,

#0.

f(x) =cy fi(x) + c2 f2(x)

forall xona < x < b, and so f is expressed as a linear combination of f; and f,.
Q.E.D.

Exercises

1. Consider the second-order homogenous linear differential equation

d’y . dy

(a) Find the two linearly independent solutions f; and f, of this equation which
are such that
fi(0)=1 and f7(0)=0

and
£2(00=0 and f5(0)=1
(b) Express the solution
3e* + 2e**

as a linear combination of the two linearly independent solutions f; and f,
defined in part (a).

2. Consider the second-order homogeneous linear differential equation

d? d
a0 () 5 + @y (x) 7= + ax(x)y = 0, ()

where a,, a,, and a, are continuous on a real interval a < x < b, and a,(x) # 0 for
all x on this interval. Let f; and f, be two distinct solutions of differential equa-
tion (A) on a < x < b, and suppose f,(x) # 0 for all x on this interval. Let
W[ f1(x), f2(x)] be the value of the Wronskian of f; and f, at x.
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(a) Show that

d [fl (x)] _ WA, ()]
dx | f,(x) (/2007

forall xona < x <b.

(b) Use the result of part (a) toshow thatif W[ f,(x), f>(x)] = Ofor all x such that
a < x < b, then the solutions f; and f, are linearly dependent on this interval.

(c) Suppose the solutions f; and f, are linearly independent ona < x < b, and let
f be the function defined by f(x) = f,(x)/ f2(x), a < x < b. Show that f is a
monotonic function ona < x < b.

3. Let f; and f, be two solutions of the second-order homogeneous linear differential
equation (A) of Exercise 2.

(a) Show that if f; and f, have a common zero at a point x, of the interval
a < x < b, then f; and f; are linearly dependent ona < x < b.

(b) Show that if f; and f, have relative maxima at a common point x, of the
interval a < x < b, then f; and f, are linearly dependent ona < x < b.

4. Consider the second-order homogeneous linear differential equation (A) of Exer-

cise 2.

(@) Let f; and f, be two solutions of this equation. Show that if f; and f, are
linearly independentona < x < band 4,, 4,, B;, and B, are constants such
that A, B, — A, B, # 0, then the solutions 4, f; + 4, f, and B, f, + B, f, of
Equation (A) are also linearly independent ona < x < b.

(b) Let{fi, f»} be one set of two linearly independent solutions of Equation (A)
ona<x<b,and let {g,,g,} be another set of two linearly independent
solutions of Equation (A) on this interval. Let W[ f;(x), f>(x)] denote the
value of the Wronskian of f; and f; at x, and let W[ g,(x), g,(x)] denote the
value of the Wronskian of g, and g, at x. Show that there exists a constant
¢ # 0 such that

WLf1(x), f2(x)] = cW[g,(x), g2(x)]
forall xona < x <b.

5. Let f; and f, be two solutions of the second-order homogeneous linear differential
equation (A) of Exercise 2. Show that if f, and f, are linearly independent on
a < x < b and are such that f{(x) = f4(xo) = 0 at some point x, of this interval,
then a,(xq) = a,(x,) = 0.



—— CHAPTER FIVE=——

Applications of Second-Order Linear Differential Equations
with Constant Coefficients

Higher-order linear differential equations, which were introduced in the previous
chapter, are equations having a great variety of important applications. In particular,
second-order linear differential equations with constant coefficients have numerous
applications in physics and in electrical and mechanical engineering. Two of these
applications will be considered in the present chapter. In Sections 5.1-5.5 we shall
discuss the motion of a mass vibrating up and down at the end of a spring, while in
Section 5.6 we shall consider problems in electric circuit theory.

5.1 THE DIFFERENTIAL EQUATION OF THE VIBRATIONS OF A MASS
ON A SPRING

The Basic Problem

A coil spring is suspended vertically from a fixed point on a ceiling, beam, or other
similar object. A mass is attached to its lower end and allowed to come to rest in an
equilibrium position. The system is then set in motion either (1) by pulling the mass
down a distance below its equilibrium position (or pushing it up a distance above it)
and subsequently releasing it with an initial velocity (zero or nonzero, downward or
upward)at t = 0; or (2) by forcing the mass out of its equilibrium position by givingit a
nonzero initial velocity (downward or upward) at ¢t = 0. Our problem is to determine
the resulting motion of the mass on the spring. In order to do so we must also consider
certain other phenomena that may be present. For one thing, assuming the system is
located in some sort of medium (say “ordinary” air or perhaps water), this medium
produces a resistance force that tends to retard the motion. Also, certain external forces
may be present. For example, a magnetic force from outside the system may be acting
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upon the mass. Let us then attempt to determine the motion of the mass on the spring,
taking into account both the resistance of the medium and possible external forces. We
shall do this by first obtaining and then solving the differential equation for the motion.

In order to set up the differential equation for this problem we shall need two laws of
physics: Newton’s second law and Hooke’s law. Newton’s second law was encountered
in Chapter 3, and we shall not go into a further discussion of it here. Let us then recall
the other law that we shall need.

Hooke’s Law

The magnitude of the force needed to produce a certain elongation of a spring is
directly proportional to the amount of this elongation, provided this elongation is not
too great. In mathematical form,

|F| = ks,

where F is the magnitude of the force, s is the amount of elongation, and k is a constant
of proportionality which we shall call the spring constant.

The spring constant k depends upon the spring under consideration and is a measure
of its stiffness. For example, if a 30-1b weight stretches a spring 2 ft, then Hooke’s law
gives 30 = (k)(2); thus for this spring k = 15 Ib/ft.

When a mass is hung upon a spring of spring constant k and thus produces an
elongation of amount s, the force F of the mass upon the spring therefore has magni-
tude ks. The spring at the same time exerts a force upon the mass called the restoring
force of the spring. This force is equal in magnitude but opposite in sign to F and
hence has magnitude — ks.

Let us formulate the problem systematically. Let the coil spring have natural
(unstretched) length L. The mass m is attached to its lower end and comes to rest in its
equilibrium position, thereby stretching the spring an amount [ so that its stretched
lengthis L + I. We choose the axis along the line of the spring, with the origin O at the
equilibrium position and the positive direction downward. Thus, letting x denote the
displacement of the mass from O along this line, we see that x is positive, zero, or
negative according to whether the mass is below, at, or above its equilibrium position.
(See Figure 5.1.)

Forces Acting Upon the Mass

We now enumerate the various forces that act upon the mass. Forces tending to pull the
mass downward are positive, while those tending to pull it upward are negative. The
forces are:

1. Fy, the force of gravity, of magnitude mg, where g is the acceleration due to
gravity. Since this acts in the downward direction, it is positive, and so

Fl = mg‘ (5.1)

2. F,, the restoring force of the spring. Since x + [is the total amount of elongation,
by Hooke’s law the magnitude of this force is k(x + [). When the mass is below the end
of the unstretched spring, this force acts in the upward direction and so is negative. Also,
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L+1

(c) mass distance x
below equilibrium
position; spring
stretched to length
L+1+x

(a) natural length L

(b) mass in equilibrium
position; spring has
stretched length

L+1

Figure 5.1

for the mass in such a position, x + lis positive. Thus, when the mass is below the end of
the unstretched spring, the restoring force is given by

F, = —k(x +1). (5.2)

This also gives the restoring force when the mass is above the end of the unstretched
spring, as one can see by replacing each italicized word in the three preceding sentences
by its opposite. When the mass is at rest in its equilibrium position the restoring force F<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>