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PREFACE 

LBERT EINSTEIN was born on 

14 March, 1879, in Ulm. When he 
was only six weeks old his parents moved to 
Munich, where he spent his infancy, and went 

to school until his fourteenth year. When 
fifteen he came to Switzerland, attended for 

another year the Gymnasium in Aarau, and 
took there his school leaving examination. 
Then he studied Mathematics and Physics in 
the Zurich Polytechnic, where Minkowski was 

one of his teachers. In 1902 he came to Berne 

as Engineer in the Patent Office, and in addi- 
tion to his duties there, prepared himself for 
the examination for his Doctor's degree, which 
he took in the year 1905. Att this time there 
appeared in rapid succession his first great 
works on the foundations of molecular physics, 
of which those relating to the Brownian motions 
are collected in this little volume; as well as 

the well-known papers on the special Principle 
Vv 
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of Relativity. In 1909 he accepted a call to 
a Professorship in the University of Zurich, 
and in 1911 a call to a full Professorship in the 
University of Prague; in 1912 he accepted 
a Chair in the Zurich Polytechnic. In 1914 
he was invited to Berlin as successor to 
Van't Hoff in the Royal Prussian Academy of 
Science, where in addition he undertook the 

duties of Director of the Kaiser Wilhelm In- 
stitute of Physics. To this period, up to the 
year 1915, belong his researches on the general 

Theory of Relativity, as well as a number of 
fundamental studies on the Quantum Theory. 
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INVESTIGATIONS ON THE THEORY 

OF THE BROWNIAN MOVEMENT 

I 

ON THE MOVEMENT OF SMALL PARTICLES 

SUSPENDED IN A STATIONARY LIQUID 

DEMANDED BY THE MOLECULAR- 

KINETIC THEORY OF HEAT 

N this paper it will be shown that according 

ee the molecular-kinetic theory of heat, bodies 

of microscopically-visible size suspended in a 

liquid will perform movements of such magnitude 

that they can be easily observed in a microscope, 

on account of the molecular motions of heat. 

It is possible that the movements to be discussed 

here are identical with the so-called ‘‘ Brownian 

molecular motion’”’; however, the information 

available to me regarding the latter is so lacking 

in precision, that I can form no judgment in the 

matter (1). 

If the movement discussed here can actually 

be observed (together with the laws relating to 

z 
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it that one would expect to find), then classical 

thermodynamics can no longer be looked upon 

as applicable with precision to bodies even of 

dimensions distinguishable in a microscope: an 

exact determination of actual atomic dimensions 

is then possible. On the other hand, had the 

prediction of this movement proved to be in- 

correct, a weighty argument would be provided 

against the molecular-kinetic conception of heat. 

§1. ON THE OSMOTIC PRESSURE TO BE ASCRIBED 

TO THE SUSPENDED PARTICLES 

Let z gram-molecules of a non-electrolyte be 

dissolved in a volume V* forming part of a 

quantity of liquid of total volume V. If the 

volume V* is separated from the pure solvent 

by a partition permeable for the solvent but 

impermeable for the solute, a so-called ‘‘ osmotic 

pressure,” , is exerted on this partition, which 

satisfies the equation 

py Ea ae k =. 2 

when V*/z is sufficiently great. 

On the other hand, if small suspended particles 

are present in the fractional volume V* in place 

of the dissolved substance, which particles are also 

unable to pass through the partition permeable to 

the solvent : according to the classical theory of 
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thermodynamics—at least when the force of gravity 
(which does not interest us here) is ignored—we 

would not expect to find any force acting on the 

partition ; for according to ordinary conceptions 

the “free energy’ of the system appears to be 

independent of the position of the partition and 

of. the suspended particles, but dependent only 

on the total mass and qualities of the suspended 

material, the liquid and the partition, and on the 

pressure and temperature. Actually, for the cal- 

culation of the free energy the energy and entropy 

of the boundary-surface (surface-tension forces) 

should also be considered ; these can be excluded 

if the size and condition of the surfaces of contact 

do not alter with the changes in position of the 

partition and of the suspended particles under 

consideration. 

But a different conception is reached from 

the standpoint of the molecular-kinetic theory of 

heat. According to this theory a dissolved mole- 

cule is differentiated from a suspended body 

solely by its dimensions, and it is not apparent 

why a number of suspended particles should not 

produce the same osmotic pressure as the same 

number of molecules. We must assume that the 

suspended particles perform an irregular move- 

ment—even if a very slow one—in the liquid, on 
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account of the molecular movement of the liquid ; 

if they are prevented from leaving the volume V* 

by the partition, they will exert a pressure on the 

partition just like molecules in solution. Then, 

if there are suspended particles present in the 

volume V*, and therefore /V* = v in a unit of 

volume, and if neighbouring particles are suffi- 

ciently far separated, there will be a corresponding 

osmotic pressure » of magnitude given by 

Paste E ay EE 
HON ee Ni pe 

where WV signifies the actual number of molecules 

contained in a gram-molecule. It will be shown 

in the next paragraph that the molecular-kinetic 

theory of heat actually leads to this wider con- 

ception of osmotic pressure. 

§ 2. OSMOTIC PRESSURE FROM THE STANDPOINT 

OF THE MOLECULAR-KINETIC THEORY OF 
Heart (*) 

If p;, po,... 1 are the variables of state of 

(*) In this paragraph the papers of the author on the 

“ Foundations of Thermodynamics ”’ are assumed to be 

familiar to the reader (Ann. d. Phys., 9, p. 417, 1902; 
11, p. 170, 1903). An understanding of the conclusions 

reached in the present paper is not dependent on a 

knowledge of the former papers or of this paragraph of 
the present paper. 
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a physical system which completely define the 

instantaneous condition of the system (for ex- 

ample, the co-ordinates and velocity components 

of all atoms of the system), and if the complete 

system of the equations of change of these variables 

of state is given in the form 

Pr = bbs .. i) V=T2,...0 

whence 

dd, 
25 es 

then the entropy of the system is given by the 

expression 

= 0, 

s = E + ax lelesrap,... dp, . (3) 

where T is the absolute temperature, E the energy 

of the system, E the energy as a function of #,. 

The integral is extended over all possible values 

of p, consistent with the conditions of the prob- 

lem. «x is connected with the constant N referred 

to before by the relation 2xN = R. We obtain 

hence for the free energy I, 

R oe RT 
F= — FF isle RTAp, wee ap, = — ap eB. 
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Now let us consider a quantity of liquid enclosed 

in a volume V ; let there be ” solute molecules 

(or suspended particles respectively) in the por- 

tion V* of this volume V, which are retained in 

the volume V* by a semi-permeable partition ; 

the integration limits of the integral B obtained 

in the expressions for S and F will be affected 

accordingly. The combined volume of the solute 

molecules (or suspended particles) is taken as 

small compared with V*. This system will be 

completely defined according to the theory under 

discussion by the variables of condition p; . . : pi. 

If the molecular picture were extended to deal 

with every single unit, the calculation of the 

integral B would offer such difficulties that an 

exact calculation of F could be scarcely contem- 

plated. Accordingly, we need here only to know 

how £ depends on the magnitude of the volume 

V*, in which all the solute molecules, or suspended 

bodies (hereinafter termed briefly ‘ particles ’’) 

are contained. 

We will call x,, y,, z, the rectangular co-ordinates 

of the centre of gravity of the first particle, 

%2, Ye, 2g those of the second, etc., %n, Yn, 2, those 

of the last particle, and allocate for the centres 

of gravity of the particles the indefinitely small 

domains of parallelopiped form dx,, dy,, dz; d%o, 
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Ayo, dz, . . . AXn, AVn, d%,, lying wholly within 

V*. The value of the integral appearing in the 

expression for F will be sought, with the limita- 

tion that the centres of gravity of the particles 

lie within a domain defined in this manner. The 

integral can then be brought into the form 

ab = dx, ays. ide. J, 

where J is independent of dx,, dy,, etc., as well as 

of V*, i.e. of the position of the semi-permeable 

partition. But J is also independent of any 

special choice of the position of the domains of 

the centres of gravity and of the magnitude of 

V*, as will be shown immediately. For if a 

second system were given, of indefinitely small 

domains of the centres of gravity of the particles, 

and the latter designated dx,'dy,'dz,' ; dx,/dy'dz,' 

.. » AXn'dyn'dz,’, which domains differ from those 

originally given in their position but not in their 

magnitude, and are similarly all contained in V*, 

an analogous expression holds :— 

abe dt, hy; ... diy . J: 

Whence 

WAV. as Ady = OK, AYy 05s AT %« 

Therefore 

aB qBe_J 
ipoe 7 
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But from the molecular theory of Heat given in the 

paper quoted,(*) it is easily deduced that dB/B (4) 

(or dB’ /B respectively) is equal to the probability 

that at any arbitrary moment of time the centres 

of gravity of the particles are included in the 

domains (dx,... d%) or (dx,'...dZy') respec- 

tively. Now, if the movements of single particles 

are independent of one another to a sufficient 

degree of approximation, if the liquid is homo- 

geneous and exerts no force on the particles, then 

for equal size of domains the probability of each 

of the two systems will be equal, so that the follow- 

ing holds: 

dB ab 
B Be 

But from this and the last equation obtained it 

follows that 

leo 
We have thus proved that J is independent both 

of V* and of x, ¥,,...2n. By integration we 

obtain 

B= [ Jdz,... dz = J. Vn, 
and thence 

F=— Pog J+ nig V4} 
(*) A. Einstein, Ann. d. Phys., 11, p. 170, 1903. 
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and 
of det RP 

P= — 37" = Ve NN N™ 
It has been shown by this analysis that the exist- 

ence of an osmotic pressure can be deduced from 

the molecular-kinetic theory of Heat ; and that 

as far as osmotic pressure is concerned, solute 

molecules and suspended particles are, according 

to this theory, identical in their behaviour at 

great dilution. 

§ 3. THEORY OF THE DIFFUSION OF SMALL 

SPHERES IN SUSPENSION 

Suppose there be suspended particles irregularly 

dispersed in a liquid. We will consider their 

state of dynamic equilibrium, on the assumption 

that a force K acts on the single particles, which 

force depends on the position, but not on the time. 

It will be assumed for the sake of simplicity that 

the force is exerted everywhere in the direction of 

the x axis. 

Let v be the number of suspended particles per 

unit volume ; then in the condition of dynamic 

equilibrium v is such a function of x that the varia- 

tion of the free energy vanishes for an arbitrary 

virtual displacement 6x of the suspended sub- 

stance. We have, therefore, 

oF = 62 — 18S ="'0. 
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It will be assumed that the liquid has unit area 

of cross-section perpendicular to the x axis and 

is bounded by the planes x = 0 andx=/. We 

have, then, 
l 

= | Kv8xdx 
0 

and 

Ly 20x R {’ dv 

The required condition of equilibrium is there- 

fore 

Ke RT dv 

2) a N % 

or 

op 
Ky a Dx Ca ES = Q ) (5) 

The last equation states that equilibrium with the 

force K is brought about by osmotic pressure 

forces. 

Equation (I) can be used to find the coefficient 

of diffusion of the suspended substance. We can 

look upon the dynamic equilibrium condition con- 

sidered here as a superposition of two processes 

proceeding in opposite directions, namely :— 

1. A movement of the suspended substance 

under the influence of the force K acting on each 

single suspended particle. | 
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2. A process of diffusion, which is to be looked 

upon as a result of the irregular movement of the 

particles produced by the thermal molecular 

movement. 

If the suspended particles have spherical form 

(radius of the sphere = P), and if the liquid has 

a coefficient of viscosity k, then the force K im- 

parts to the single particles a velocity (*) 

K 
6zkP . . . (6) 

and there will pass a unit area per unit of time 

vi 
67kP 

particles. 

If, further, D signifies the coefficient of diffusion 

of the suspended substance, and p the mass of a 

particle, as the result of diffusion there will pass 

across unit area in a unit of time, 

_ pie) S yy Sram 

or 

— De particles. 

(*) Cf. e.g. G. Kirchhoff, “‘ Lectures on Mechanics,” 

ect, 26; § 4, 
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Since there must be dynamic equilibrium, we 

must have 
vk ov 

@) 6nkP oe 
We can calculate the coefficient of diffusion 

from the two conditions (1) and (2) found for the 

dynamic equilibrium. We get 

D= FGI 3 

The coefficient of diffusion of the suspended sub- 

stance therefore depends (except for universal 

constants and the absolute temperature) only on 

the coefficient of viscosity of the liquid and on the 

size of the suspended particles. 

§ 4. ON THE [IRREGULAR MOVEMENT OF PARTICLES 

SUSPENDED IN A LIQUID AND THE RELATION 

OF THIS TO DIFFUSION 

We will turn now to a closer consideration of 

the irregular movements which arise from thermal 

molecular movement, and give rise to the diffusion 

investigated in the last paragraph. 

Evidently it must be assumed that each single 

particle executes a movement which is indepen- 

dent of the movement of all other particles ; the 

movements of one and .the same particle after 
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different intervals of ‘time must be considered as 

mutually independent processes, so long as we 

think of these intervals of time as being chosen 

not too small. 

We will introduce a time-interval 7 in our dis- 

cussion, which is to be very small compared with 

the observed interval of time, but, nevertheless, 

of such a magnitude that the movements executed 

by a particle in two consecutive intervals of time 

7 are to be considered as mutually independent 

phenomena (8). 

Suppose there are altogether ” suspended par- 

ticles in a liquid. In an interval of time 7 the 

x-co-ordinates of the single particles will increase 

by 4, where 4 has a different value (positive or 

negative) for each particle. For the value of Jd 

a certain probability-law will hold ; the number 

dn of the particles which experience in the time- 

interval + a displacement which lies between 4 

and 4 + dd, will be expressed by an equation of 

the form 
dn = nd(4)dJ, 

where 

| ° p(A\dA =x 

and ¢ only differs from zero for very small values 

of A and fulfils the condition 

$(4) = ¢(— 4). 
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We will investigate now how the coefficient of 

diffusion depends on ¢, confining ourselves again 

to the case when the number »v of the particles per 

_ unit volume is dependent only on x and 7. 

Putting for the number of particles per unit 

volume v = f(x, ¢), we will calculate the distri- 

bution of the particles at a time ¢ + 7 from the 

distribution at the time ¢. From the definition 

of the function ¢(4), there is easily obtained the 

number of the particles which are located at the 

time ¢ + 7 between two planes perpendicular to 

the x-axis, with abscisse x and x + dx. We get 

fs, t+ dde = de. i “fix + A) PAA. 
A=-o 

Now, since 7 is very small, we can put 

f%,t+7)=f@%,)+ rw 

Further, we can expand f(x + 4, ¢) in powers 

of 4 :— 

fer, N=fe,)+- aD 4 
We can bring this expansion under the integral 

sign, since only very small values of 4 contribute 

ae: to the latter. We obtain 

fryers] wayne Bae 
d o°f aT 

Ox? 

A? d*f(x, t) 

2! dx? 
_ ad inf. 

ar ov, 34 aA . 
=— oOo 
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On the right-hand side the second, fourth, etc., 

terms vanish since ¢(*) = ¢(— x) ; whilst of the 

first, third, fifth, etc., terms, every succeeding 

term is very small compared with the preceding. 

Bearing in mind that 

ie ($4) = I, 

and putting 

fa 2 
—o 

a 
: | a A)dd = D, 

and taking into consideration only the first and 

third terms on the right-hand side, we get from 

this equation 

r) 0 
(I) 2 = poe 

This is the well-known differential equation for 

diffusion, and we recognise that D is the coefficient 

of diffusion. 

Another important consideration can be related 

to this method of development. We have assumed 

that the single particles are all referred to the 

same co-ordinate system. But this is unneces- 

sary, since the movements of the single particles 

are mutually independent. We will now refer 

the motion of each particle to a co-ordinate 
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system whose origin coincides at the time ¢ = 0 

with the position of the centre of gravity of the 

particles in question ; with this difference, that 

f(x, #)dx now gives the number of the particles 

whose x co-ordinate has increased between the 

time ¢=o and the time ¢=#, by a quantity 

which lies between x and x + dx. In this case 

also the function f must satisfy, in its changes, 

the equation (1). Further, we must evidently 

have for xo and ¢ = 0, 
at 

f(x, 2) =o and Mec dx = n. 

The problem, which accords with the problem of 

the diffusion outwards from a point (ignoring pos- 

sibilities of exchange between the diffusing par- 

ticles) is now mathematically completely defined 

(9); the solution is 

iC is : <6) 

The probable distribution of the resulting dis- 

placements in a given time ¢ is therefore the same 

as that of fortuitous error, which was to be ex- 

pected. But it is significant how the constants in 

the exponential term are related to the coefficient 

of diffusion. We will now calculate with the help 
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of this equation the displacement A, in the direc- 

tion of the X-axis which a particle experiences on 

an average, Or—more accurately expressed—the 

square root of the arithmetic mean of the squares 

of displacements in the direction of the X-axis ; 

it is 

Ae Vat =,/2Di . - . (22) 

The mean displacement is therefore propor- 

tional to the square root of the time. It can 

easily be shown that the square root of the mean 

of the squares of the total displacements of the 

particles has the value Aw/3 : eae} 

§ 5. FORMULA FOR THE MEAN DISPLACEMENT OF 

SUSPENDED PARTICLES. A NEW METHOD OF 

DETERMINING THE REAL SIZE OF THE ATOM 

In § 3 we found for the coefficient of diffusion D 

of a material suspended in a liquid in the form of 

small spheres of radius P— 

Further, we found in § 4 for the mean value of the 

displacement of the particles in the direction of 

the X-axis in time t— 

Ag n/ 20. 
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By eliminating D we obtain 

See te ae 
he = /b* NNT GBP" 

This equation shows how A, depends on T, k, and P. 

We will calculate how great 4, is for one second, 

if N is taken equal to 6-10* in accordance with the 

kinetic theory of gases, water at 17° C. is chosen 

as the liquid (k = 1-35 . 107”), and the diameter of 

the particles oor mm. We get 

As = 8-10-* cm. = 0°8p. 

The mean displacement in one minute would be, 

therefore, about 6x. 

On the other hand, the relation found can be 

used for the determination of VN. We obtain 

_ t= kT 
Ag?” 3arkP” 

It is to be hoped that some enquirer may succeed 

shortly in solving the problem suggested here, 

which is so important in connection with the 

theory of Heat. (13) 

Berne, May, 1905. 

(Received, 11 May, 1905.) 



II 

ON THE THEORY OF THE BROWNIAN 

MOVEMENT 

(From the Annalen der Physik (4), 19, 1906, pp. 

371-381) 

OON after the appearance of my paper (*) 

S:: the movements of particles suspended 

in liquids demanded by the molecular theory of 

heat, Siedentopf (of Jena) informed me that he 

and other physicists—in the first instance, Prof. 

Gouy (of Lyons)—had been convinced by direct 

observation that the so-called Brownian motion 

is caused by the irregular thermal movements of 

the molecules of the liquid.(t) 

Not only the qualitative properties of the 

Brownian motion, but also the order of magnitude 

of the paths described by the particles correspond 

completely with the results of the theory. I will 

not attempt here a comparison of the slender 

experimental material at my disposal with the 

(*) A. Einstein, Ann. d. Phys., 17, p. 549, 1905. 

(t) M. Gouy, Journ, de Phys. (2), 7, 561, 1888. 

19 

= 
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results of the theory, but will leave this comparison 

to those who may be handling the experimental 

side of the problem. 

The following paper will amplify in some points 

the author’s own paper mentioned above. We 

will derive here not only the translational move- 

ment, but also the rotational movement of sus- 

pended particles, for the simplest special case 

where the particles have a spherical form. We 

will show further, up to how short a time of obser- 

vation the results given in that discussion hold 

true. 

To derive these we will use here a more general 

method, partly in order to show how the Brownian 

motion is related to the fundamentals of the mole- 

cular theory of heat, partly to be able to develop 

the formula for the translational and the rota- 

tional movement in a single discussion. Suppose, 

accordingly, that « is a measurable parameter of 

a physical system in thermal equilibrium, and 

assume that the system is in the so-called neutral 

equilibrium for every (possible) value of « Ac- 

cording to classical thermodynamics, which dif- 

ferentiates in principle between heat and other 

kinds of energy, spontaneous alterations of « 

cannot occur ; according to the molecular theory 

of heat, it is otherwise. In the following we will 
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investigate according to what laws the alterations 

implied by the latter theory take place. We must 

then apply these laws to the following special 

cases :— 

I. «isthe X-co-ordinate of the centre of gravity 

of a suspended particle of spherical form 

in a homogeneous liquid (not subject to 

gravitation). 

2. « is the angle which determines the position 

of a particle, rotatable about a diameter, 

that is suspended in a liquid. 

§z. ON A CASE OF THERMODYNAMIC 
EQUILIBRIUM 

Suppose a physical system placed in an environ- 

ment of absolute temperature 7, which system 

has thermal interchange with the environment 

and is in a state of thermal equilibrium. This 

system (which therefore has also the absolute 

temperature 7) is fully defined in the terms 

of the molecular theory of heat (*) by the vari- 

ables of condition f,...,. In the special 

cases to be considered, the co-ordinates and velo- 

city-components of all the atoms forming the 

particular system can be chosen as the variables 

of condition ~, . . . pn. 

(*) Cf. Ann, d. Phys., 11, p. 170, 1903; 17, p. 549, 

1905. 
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For the probability, that at any arbitrarily- 

chosen moment of time the variables of condition 

bi... pn lie within an indefinitely small n-fold 

domain (dp, . . . dp»), the equation holds— (*) 

a 
(I) dw = Ce" kT” dp, a as 

where C is a constant, R the universal constant of 

the gas equation, N the number of the actual 

molecules in a gram-molecule, and £ the energy. 

Suppose « is a parameter of the system that . 

can be measured, and suppose each set of values 

p, ... pn implies a definite value «, we will 

indicate by Ad« the probability that at any 

arbitrarily-chosen moment of time the value of 

the parameter « lies between « and « + da. 

Then 
N 

(2) Ada = | Cea db. db, 

where the integration is taken over all combina- 

tions of values of the variables of condition, whose 

« value lies between « and a + da. 

We will confine ourselves to the case, which is 

clear without further discussion from the nature 

of the problem, where all (possible) values of « 

have the same probability (frequency) ; where, 
therefore, the quantity A is independent of «. 

(*) Lic. §§ 3 and 4. 
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A second physical system can now be studied 

which differs from that already considered only 

in that a force, of potential B(x), dependent solely 

on «, is acting on the system. If E is the energy 

of the former system, then the energy of the present 

system will be E + @, so that we obtain a relation 

analogous to the equation (1)— 

N 

dw’ = (eukta dp, wa ed Ds 

From this can be deduced an expression analogous 

to the equation (2), for the probability dW that 

at any arbitrarily-chosen moment of time the 

value of « lies between « and « + da— 

N 

Wes [creat pe Ts 
(1) aN, -N 

=e at® Ada = A'e RT du 

where A’ is independent of «. 

This relation, which corresponds exactly with 

the exponential law frequently used by Boltz- 

mann (14) in his investigations in the theory of 

gases, is characteristic of the molecular theory of 

heat. It explains how far a parameter of a sys- 

tem, when a constant external force is applied, 

can diverge from the value which corresponds 

to stable equilibrium, as the result of irregular 

molecular movements. 
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§2. EXAMPLES OF THE APPLICATION OF THE 

EQUATION OBTAINED IN § I 

We will consider a body whose centre of gravity 

can move along a straight line (the X-axis of a 

co-ordinate system). The body is surrounded by 

a gas and there is thermal and mechanical equi- 

librium. According to the molecular theory, as 

the result of the irregularity of the impacts of the 

molecules, the body will move backwards and 

forwards along the straight line in an irregular 

manner, so that in this movement preference is 

given to no particular point in the straight line— 

provided that no forces act on the body in the 

direction of the straight line, other than the forces 

of impact of the molecules. The abscissa x of the 

centre of gravity is then a parameter of the system, 

which possesses the properties indicated above for 

the parameter «. 

We will introduce now a force K = — Mx 

acting on the body in the direction of the straight 

line. Then, according to the molecular theory, 

the centre of gravity of the body will also execute 

irregular movements, without departing far from 

the point x = 0, while according to classical ther- 

modynamics it must remain stationary at the 
point x =o. According to the molecular theory 
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(formula (I), 
pee 

aW = A’e RT” 2 dx, 

is equal to the probability that at an arbitrarily- 
chosen moment of time the value of the abscissa 
x lies between x and x + dx. From this we find 

the mean distance of the centre of gravity from 

the point « = o— 

In order that Wx? may be large enough to be 

capable of direct observation, the force establishing 

the equilibrium position of the body must be very 

small. Let us put for the lower limit of observa- 

tion x? = 10-4 cms. ; then, if T = 300 we get 

M = 5-10-* approximately. In order that the 

body may carry out vibrations visible in the 

microscope the force acting on it when the dis- 
placement is 1 cm. must not exceed five millionths 

of a dyne. (15) 

We will add a further theoretical observation 

to the equation we have obtained. Suppose the 

body in question carries an electrical charge dis- 

tributed over a very small space, and that the gas 

surrounding the body is so tenuous that the body 
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carries out vibrations of only slightly modified 

sine-form in the surrounding gas. Then the body 

will radiate electric waves into the space, and will 

absorb energy from the radiation of the surround- 

ing space; it brings about, therefore, an energy 

exchange between the radiation and the gas. We 

can derive the limiting law for temperature- 

radiation, which appears to hold for long wave- 

lengths and for high temperatures, if we lay down 

the condition that the body in question emits on 

the average just as much radiation as it absorbs. 

We obtain thus (*) the following formula for the 

density of radiation corresponding to the fre- 

quency v— 
R 8nv? 

a Naas 
where L is the velocity of light. (16) 

The radiation formula of Planck (f) can be trans- 

formed into this expression when the frequency 

is small and the temperature is high. The quan- 

tity N can be determined from the coefficients in 

the limiting law, and we obtain thus Planck’s 

calculation of the elementary quanta. The fact 

that we obtain in the manner indicated not the 

true law of radiation, but only a limiting law, 

f, 

(*) Cf. Ann, d. Phys., 17, p. 132, 1905; §§ 1 and 2, 

(t) M. Planck, Ann, d. Phys., 1, p. 99, 1900. 
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appears to me to have an explanation in a funda- 

mental incompleteness in our physical concep- 

tions. 3 
We will now apply the formula (I) to determine 

how small a suspended particle must be in order 

that it may remain permanently suspended in 

spite of gravitation. We can confine ourselves 

to the case where the particle is of greater density 

than the liquid, since the opposite case is fully 

analogous. If v is the volume of the particle, 

p its density, pg the density of the liquid, g the 

acceleration of gravity, and x the vertical distance 

of a point from the bottom of the vessel, equation 

N 

(I) gives 

——(p—po)gdx ie dW = const.e &T (17) 

We shall find, therefore, that suspended particles 

are able to remain suspended when for values of 

x which do not escape observation on account of 

their minuteness, the quantity 

BE ais i 
ay WP Po) 

has not too high a value—with the understanding 

that particles which may reach the bottom of the 

vessel are not held fast there by some peculiar 

condition of the latter. 
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§3. ON THE CHANGES IN THE PARAMETER « 

BROUGHT ABOUT BY THERMAL MOTION 

We will return to the general case considered 

in §1, for which we have derived equation (I). 

However, for the sake of a simpler mode of ex- 
pression and presentation, we will now assume 

that there are a very large number () of identical 

systems of the type indicated there ; we have, 

then, to do with numbers in place of probabilities. 

Equation (I) then expresses :— 

Of N systems, in 

(Ia) Gn = de de = Pladde 
the value of the parameter « at an arbitrarily- 

chosen moment of time falls between « and « + de. 

We will use this relation to ascertain the magni- 

tude of the irregular changes of the parameter « 

produced by the irregular thermal phenomena. 

For this purpose we express in symbols that the 

function F(«) does not alter within the time- 

interval ¢ under the combined effect of the force 

corresponding to the potential ® and of the 

irregular thermal processes ; ¢ indicates here so 

small a time that the corresponding changes of 

the quantity « of the single systems can be looked 

upon as indefinitely small changes in the argu- 

ment of the function F(«). 
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If lengths are marked out from a definite zero 

point along a straight line, each numerically equal 

to the quantities «, each system determines a 

point («) on this straight line. Now, during the 

time ¢ precisely as many points (determined each 

by a system) must pass through a particular 

point (%») in one direction, as in the other direc- 

tion. The force corresponding to the potential ® 

produces a change in « of the magnitude 

P) 
A; i Bh 

where B is independent of «, that is, the velocity 

of change of « is proportional to the imposed force 

and independent of the value of the parameter. 

We will call the factor B the “ Mobility of the 

system in respect to «.”’ 

If, therefore, the external force operates, whilst 

the quantity « is not changed by the irregular 

molecular thermal processes, there will pass 

through the point (#) during the time ¢ 

oe B(S) - AF) 

points (determined each by a system) in the direc- 

tion of the negative side. 

Suppose, further, that the probability that the 

parameter « of a system experiences a change in 

the time ¢ (on account of the irregular thermal 
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processes) whose value lies between 4 and 4 + 44, 

is equal to (4), where ¥(4) = Y(— 4) and ¢ is 

independent of «. 

The number of points (each determined by a 

system) which pass through the point («») during 

the time ¢ in the direction of the positive side as 

the result of the irregular thermal processes is then 
A=o0 

m= | Fla — 4)x(d)44, 
A=o0 

where we put 

[vld)da = x(4). 
The number of points which pass in the direction 

of the negative side as the result of the irregular 

thermal processes is 
oe 

nie | Fle + A)y(4)ad. 

The mathematical expression for the invariability 

of the function F is therefore 

— 2, + Nz — Ng = O. 

If we introduce the expressions found for 1, 1», 

m3, and bear in mind that J is indefinitely small, 

or that (4) only differs from zero for indefinitely 

small values of 4, respectively, we obtain after 

simple manipulation 

@D seal, 

BC) Fla)t-+ 4F'(a)Z2= 0 . (18) 



THEORY OF BROWNIAN MOVEMENT ) 31 

Here 
a= + 
At = | A*p(A)aA 

signifies the mean value of the squares of the 

changes in the quantities « produced by the 

irregular thermal processes during the time ¢. 

From this relation we obtain, with due reference, 

the equation (Ia)— 

(11) a eae 
Here FR is the constant of the gas-equation 

(8-31 . 107), N the number of the actual molecules 

in a gram molecule (about 6-10?) (19), B the “‘ mo- 

bility of the system in respect to the parameter «,”’ 

T the absolute temperature, ¢ the time within 

which the changes in « take place that are pro- 

duced by the irregular thermal processes. 

§ 4. APPLICATION OF THE EQUATION DERIVED, TO 

THE BROWNIAN MOTION 

We will now calculate with the help of equa- 

tion (II), in the first instance, the mean displace- 

ment which a body of spherical form suspended 

in a liquid experiences in the time ¢ in a definite 

direction (the direction of the X-axis in a co-ordi- 

nate system). For this purpose we must insert 

the corresponding value for B in the former equa- 

tion. 
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If a force K acts on a sphere of radius P, which 

is suspended in a liquid of viscosity k, it will 

move (*) with a velocity K/67kP.(6) Accordingly 

we can put 
I 

si Sass get 

so that we get—in conformity with the paper 

mentioned above—for the mean displacement of 

the suspended sphere in the direction of the X-axis 

the value 

= igs 3st he TS 3 
Ja? = JINN SpkP’ 

Secondly, we will consider the case where the 

sphere in question is mounted in the liquid so as ~ 

to be freely rotatable, without friction, about its 

diameter, and investigate the mean rotation ,/7? 

of the sphere during the time #, as the result of 

the irregular thermal processes. 

If the moment D acts on a sphere of radius P, 

which is mounted so as to be capable of rotation 

in a liquid of viscosity #, it rotates with the angular 

velocity (+) 

= gE 

(*) Cf. G. Kirchhoff, ‘‘ Lectures on Mechanics,” Lect. 

26. 

(t) Ibid. 
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We have, therefore, to put 

I 
ae 8akP* 

Accordingly, we get 
ae Oh se ete a 

/ A? = Rie iN. 4nkP3 . . (20) 

The angular motion produced by the molecular 

motion decreases therefore with increasing P 

much more rapidly than the progressive motion. 

For P = 0-5 mm. and water at 17° the formula 

gives for the angle described on an average in 

one second about rr seconds of arc ; in an hour 

about Ir minutes of arc. For P=o-5u and 

water at 17° we get for ¢ = I second about 100° 

of arc. 

In the case of a totally unconstrained suspended 

particle, three mutually independent angular 

motions of this kind are possible. 

The formula derived for ,/q? can be applied 

further to other cases. For example, if for B is 

inserted the reciprocal of the electrical resistance 

of a closed circuit, the formula states how much 

electricity will flow on an average during the time 

# across any particular cross-section of the con- 

ductor, which relation again is connected with the 

limiting law for the radiation of a black body for 

long wave-lengths and high temperatures. (21) 

3 
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However, since I have been able to find no 

further consequences that can be checked up 

experimentally, it appears to me to be unprofitable 

to consider other special cases. 

§5. ON THE LimiTSs OF APPLICATION OF THE 

FoRMULA FoR V2? 

It is clear that the formula (II) cannot be applied 

for any arbitrarily small time. For the mean 

velocity of change of « as the result of the thermal 

processes 
win Vo we: 

ere a Gea? 
becomes infinitely great for an indefinitely small 

interval of time ¢; which is evidently impossible, 

since in that case each suspended particle would 

move with an infinitely great instantaneous velo- 

city. The reason is that we have implicitly 

assumed in our development that the events 

during the time ¢ are to be looked upon as phe- 

nomena independent of the events in the time 

immediately preceding. But this assumption be- 

comes harder to justify the smaller the time ¢ is 

chosen. 

If the instantaneous value of the velocity of 
change, at a time z = 0, is 

da 
dt = Bo, 
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and if the velocity of change B is not affected by 

the irregular thermal processes in a certain sub- 
sequent interval of time, but the change of is 

solely determined by the passive resistance (1/B), 

then this relation will hold for d8/dz :— 

dB _ 8B 
Lip romma 

is here defined by the condition that (82/2) must 

be the energy corresponding to the velocity of 

change 8. In the case, therefore, of translational 

movement of the sphere .(f?/2) is, for example, the 

kinetic energy of the liquid carried with it. It 

follows by integration 

B= ye #8. 
We conclude from this result that the formula 

(II) only holds for intervals of time which are large 

compared with wB. (22) 

For small bodies of I diameter and unit density 

in water at room-temperature, the lower limit 

of availability of the formula (II) is about 107? 

seconds ; this lower limit for the interval of time 

increases in proportion to the square of the radius 

of the body. Both hold for the translational as 

well as for the rotational motion of the particle. 

Berne, December, 1905. 

(Received, 19 December, 1905.) 



III 

A NEW DETERMINATION OF MOLECULAR 

DIMENSIONS 

(From the Annalen der Physik (4), 19, 1906, 

pp. 289-306. Corrections, tbid., 34, IQII, pp. 

591-592.) (23) 

HE kinetic theory of gases made possible 

the earliest determinations of the actual 

dimensions of the molecules, whilst physical 

phenomena observable in liquids have not, up to 

the present, served for the calculation of molecular 

dimensions. The explanation of this doubtless 

lies in the difficulties, hitherto unsurpassable, 

which discourage the development of a molecular 

kinetic theory of liquids that will extend to details. 

It will be shown now in this paper that the size 

of the molecules of the solute in an undissociated 

dilute solution can be found from the viscosity of 

the solution and of the pure solvent, and from - 

the rate of diffusion of the solute into the solvent, 

if the volume of a molecule of the solute is large 
36 
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compared with the volume of a molecule of the 

solvent. For such a solute molecule will behave 

approximately, with respect to its mobility in 

the solvent, and in respect to its influence on the 

viscosity of the latter, as a solid body suspended 

in the solvent, and it will be allowable to apply 

to the motion of the solvent in the immediate 

neighbourhood of a molecule the hydrodynamic 

equations, in which the liquid is considered homo- 

geneous, and, accordingly, its molecular structure 

is ignored. We will choose for the shape of the 

solid bodies, which shall represent the solute mole- 

cules, the spherical form. 

§ 1. ON THE EFFECT ON THE MOTION OF A LIQUID 

OF A VERY SMALL SPHERE SUSPENDED IN IT 

As the subject of our discussion, let us take an 

incompressible homogeneous liquid with viscosity 

k, whose velocity-components u, v, w will be given 

as functions of the co-ordinates x, y, z, and of the 

time. Taking an arbitrary point % 9, Yo, 2, we 

will imagine that the functions u, v, w are de- 

veloped according to Taylor’s theorem as func- 

tions of x — %, ¥ — Vo,  — 2, and that a domain 

G is marked out around this point so small that 

within it only the linear terms in this expansion 
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have to be considered. The motion of the liquid 

contained in G can then be looked upon in the 

familiar manner as the result of the superposition 

of three motions, namely, 

1. A parallel displacement of all the particles 

of the liquid without change of their 

relative position. 

2. A rotation of the liquid without change of 

the relative position of the particles of 

the liquid. 

3. A movement of dilatation in three directions 

at right angles to one another (the prin- 

cipal axes of dilatation). 

We will imagine now a spherical rigid body in 

the domain G, whose centre lies at the point %, 

Yo, %, and whose dimensions are very small com- 

pared with those of the domain G. We will 

further assume that the motion under considera- 

tion is so slow that the kinetic energy of the 

sphere is negligible as well as that of the liquid. 

It will be further assumed that the velocity com- 

ponents of an element of surface of the sphere 

_ show agreement with the corresponding velocity 

components of the particles of the liquid in the 

immediate neighbourhood, that is, that the contact- 

layer (thought of as continuous) also exhibits 
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everywhere a viscosity-coefficient that is not 

vanishingly small. 

It is clear without further discussion that the 

sphere simply shares in the partial motions 1 and 2, 

without modifying the motion of the neighbouring 

liquid, since the liquid moves as a rigid body in 

these partial motions ; and that we have ignored 

the effects of inertia. 

But the motion 3 will be modified by the pres- 

ence of the sphere, and our next problem will be 

to investigate the influence of the sphere on this 

motion of the liquid. We will further refer the 

motion 3 to a co-ordinate system whose axes are 

parallel to the principal axes of dilatation, and we 

will put 

x — X= €, 

Se ers A 

z—% = €, 

then the motion can be expressed by the equations 

Uy = Aé, 

(Z) V9 = Bn, 
0, =O, 

in the case when the sphere is not present. 

A, B, C are constants which, on account of the 

incompressibility of the liquid, must fulfil the 

condition 

(2) ALtB+C=0 ee aay 
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Now, if the rigid sphere with radius P is intro- 

duced at the point %9, Vo, %, the motions of the 

liquid in its neighbourhood are modified. In the 

following discussion we will, for the sake of con- 

venience, speak of P as “finite”; whilst the 

values of €, 7, ¢, for which the motions of the 

liquid are no longer appreciably influenced by the 

sphere, we will speak of as “‘ infinitely great.” 

Firstly, it is clear from the symmetry of the 

motions of the liquid under consideration that 

there can be neither a translation nor a rotation 

of the sphere accompanying the motion in ques- 

tion, and we obtain the limiting conditions 

6= 7 = w=0 when p= LS 

where we have put 

p= JSF a + o> o. 
Here u, v, w are the velocity-components of the 

motion now under consideration (modified by the 
sphere). If we put 

u= AE+ nN, 

(3) v= byn+ 4, 

w=CC+ w,, 

since the motion defined by equation (3) must be 

transformed into that defined by equations (z) 

in the “infinite” region, the velocities u,, v1, w, 

will vanish in the latter region. 
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The functions uw, v, w must satisfy the hydro- 

dynamic equations with due reference to the 

viscosity, and ignoring inertia. Accordingly, the 

following equations will hold :— (*) 

4) {2— kAu, Pakdn, p= kAw a 

where 4 stands e the operator 

o _ o? 

Ya) og? 
and # for the Trae pressure. 

Since the equations (1) are solutions of the 

equations (4) and the latter are linear, according 

to (3) the quantities ~, v,, w, must also satisfy the 

equations (4). Ihave determined 1, v,, w,, and p, 

according to a method given in the lecture of 

Kirchhoff quoted in § 4 (ft), and find 

(*) G. Kirchhoff, “‘ Lectures on Mechanics,” Lect. 26. 

(t) ‘““ From the equations (4) it follows that ap = o. 

If p is chosen in accordance with this condition, and a 

function V is determined which satisfies the equation 

I 
UN ie RP 

then the equations (4) are satisfied if we put 

OU nee OV , 
wate ate OOS ye 

and chose wu’, v’, w’, so that Au’ =0, Av’ =o, and 

Aw’ = o, and 
ou’ du’ hw’ I 

QE my OE 
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5 pe SaPY A sa tBS 

G <5 ze} + const. 

Tee Opage 2 u= A&é BE Gee 32” 

ae _ 5psp7 _ D (5) 4v = By ets a 

Spsgh _ 2 w= CC os va 

« Now if we put 

I 

eo? 
pes p 
Eine aE 

and in agreement with this 

I oe ne 
chile ay eee va ck +o Rt AG ) 

and 

I 
o- 

u’ = — 2c_P, v' = 0, w’ = 0, 
og 

the constants a, b, c can be chosen so that when p=?P, 

“u=v=wz=o. By superposition of three similar 

solutions we obtain the solution given in the equations 

(5) and (5a). 
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where 

I 92(= 
oop 2 a 

se ee ae ieee 
(5a) >2 2 fgets «te 

5.p3°'P 
+ 6(gP oR + 5 ip Ya 

It is easy to see that the equations (5) are solu- 

tions of the equations (4). Then, since 

Ae =20, A= 0, Ap 
p p 

and 

we get 

P) hdu = — hy {AD} 

a2 pel 5 P3 vat a 5 Spap_t 2 ah oS ¥z ae ates 

But the last expression obtained is, according to 

the first of the equations (5), identical with dp/dé. 

In similar manner, we can show that the second 
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and third of the equations (4) are satisfied. We 

obtain further— 

set a witiae age 
(1 z s 

rs s(n) oh ply) ce e) Are 

But since, according to equation (5a), 

ap = 5p(4 mn) *G) *) 
ve r) & 

it follows that the last of the equations (4) is 

satisfied. As for the boundary conditions, our 

equations for u, v, w are transformed into the 

equations (1) only when p is indefinitely large. 

By inserting the value of D from the equation 

(5a) in the second of the equations (5) we get 

(6) w= Ag—3 ede + By + CL) 

+85 (Ag + By? + 60) — "Ag (25) 

We know that u vanishes when p =P, “On the 

grounds of symmetry the same holds for v and w. 

We have now demonstrated that in the equations 

(5) a solution has been obtained to satisfy both 
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the equations (4) and the boundary conditions of 

the problem. 

It can also be shown that the equations (5) are 

the only solutions of the equations (4) consistent 

with the boundary conditions of the problem. 

The proof will only be indicated here. Suppose 

that, in a finite space, the velocity-components of 

a liquid uw, v, w satisfy the equations (4). Now, if 

another solution U, V, W of the equations (4) can 

exist, in which on the boundaries of the sphere in 

question U=u, V=v, W=w, then (U — u, 

V —v, W —w) will be a solution of the equa- 

tions (4), in which the velocity-components vanish 

at the boundaries of the space. Accordingly, no 

mechanical work can be done on the liquid con- 

tained in the space in question. Since we have 

ignored the kinetic energy of the liquid, it follows 

that the work transformed into heat in the space 

in question is likewise equal to zero. Hence we 

infer that in the whole space we must have u = w’, 

v=v', w=w’, if the space is bounded, at least 

in part, by stationary walls. By crossing the 

boundaries, this result can also be extended to 

the case when the space in question is infinite, as 

in the case considered above. We can show thus 

that the solution obtained above is the sole 

solution of the problem. 



46 THEORY OF BROWNIAN MOVEMENT 

We will now place around the point %, Vo, % a 

sphere of radius R, where RF is indefinitely large 

compared with P, and will calculate the energy 

which is transformed into heat (per unit of time) 

in the liquid lying within the sphere. This energy 

W is equal to the mechanical work done on the 

liquid. If we call the components of the pressure 

exerted on the surface of the sphere of radius R, 

Nu hae 2a, Chen 

W= i (X,u + Viv + Z,w)ds 

where the integration is extended over the surface 

of the sphere of radius R. 

Here 

X,= — (XE +x,14 x,4), 

Y,=— (vee + Ye ae v.), 

Z,=— (2. + 2,0 + 72), 

where 

case whe ve a) 

Y,=p— 2k o, Ly X= hse =) 

Zp=p— 2k, be Ye= a(S 2): 
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The expressions for w, v, w are simplified when we 

note that for p= the terms with the factor 

P*/p® vanish. 

We have to put 

su ag Sptldl + Bot C0 p> 

(62) v= By — SpA + Bot + CH) 
w= Cc Spill + Bp + OM) 

p 

For ~ we obtain from the first of the equations (5) 

by corresponding omissions 

A Brn? + Cl? sx ShDt Se 2 sands 

We obtain first 

-+ const. 

X:=—2kA +r0kP —asppre (4 whores 

23) xaturlttDe — ashlee Torte ( 

X= + sepa tet _asppstil4 sae 

and from this 

X,=24k= —5AkP%, + 2oppssl4e’ + Bu’ + C8), 
p p p 

With the aid of the expressions for Y, and Z,, 

obtained by cyclic exchange, we get, ignoring all 
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terms which involve the ratio P/p raised to any 

power higher than the third, 

X,u+ Y,0+ 2,0 = Bae + By? + C2f2) 

Fr P3 
— SB (AMP + Btyt + C8) +158 (A+ Bat + CO) (23) 

If we integrate over the sphere and bear in mind. 

that 

§ ds = 4R?n, 

Sous = Vafds = § Cds = $rk*, 

§ fds = § yids = § Cds = §nR’, 

{ Pltds = § (ds = § %y2ds = veoRS, 
§ (A&°+ Bry?+-C 0)? ds = ye7R8(A*+B?+C*), (23) 
we obtain 

(7) W= SRS! + $n P3284 (V + 2, (23) 
where we put 

a? = At BGs 

47R3 = V and 4nP2 = @ 
3 3 

If the suspended sphere were not present (® = 0), 

then we should get for the energy used up in the 

volume V, 

(7a) W = 28°RV. 

On account of the presence of the sphere, the 

energy used up is therefore diminished by 8220. 

(26) 
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§ 2. CALCULATION OF THE VISCOSITY-COEFFICIENT 

OF A LIQUID IN WHICH A LARGE NUMBER 

OF SMALL SPHERES ARE SUSPENDED IN IR- 

REGULAR DISTRIBUTION 

In the preceding discussion we have considered 

the case when there is suspended in a domain G, 

of the order of magnitude defined above, a sphere 

that is very small compared with this domain, 
and have investigated how this influenced the 

motion of the liquid. We will now assume that 

an indefinitely large number of spheres are dis- 

tributed in the domain G, of similar radius and 

actually so small that the volume of all the 

spheres together is very small compared with the 

domain G. Let the number of spheres present in 

unit volume be 1, where m is sensibly constant 

everywhere in the liquid. 

We will now start once more from the motion 

of a homogeneous liquid, without suspended 

spheres, and consider again the most general 

motion of dilatation. If no spheres are present, 

by suitable choice of the co-ordinate system we 

can express the velocity components Mp, V9, Wo, in 

the arbitrarily-chosen point x, y, z in the domain 

G, by the equations 

4 
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Uy = Ax, 

Ve BY, 

wv, = Cz, 

where Ade B+C=o0. 

Now a sphere suspended at the point 4%,, ¥, 4, 

will affect this motion in a manner evident from 

the equation (6). Since we have assumed that 

the average distance between neighbouring spheres 

is very great compared with their radius, and 

consequently the additional velocity-components 

originating from all the suspended spheres to- 

gether are very small compared with up, v9,. Wo, 

we get for the velocity-components 4, v, w in the 

liquid, taking into account the suspended spheres 

and neglecting terms of higher orders— 

5b Mie ae +'CG%) ( 
u= Ax — 

4 | 2 p,* p* Pv” Pr 
PenlA ae c v= By— ae Pa : + oa 

5 Py las + Br +Ct, 2 eh 
2 py" p.* Pv 

2(32 Se + Batt CG) w=Cz— 

_SPHL(AGs + BH + CL) PS CL, 
2 pr' pv* Dea Pv 

_ SPY EAE + Bob C6 aes bs \ 

\, 
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where the summation is extended over all spheres 

in the domain G, and we put 

&=2 % = %,, 

p=V—y, p= /éF+ 774+ G3 
= ee 

X,, VW», 2, are the co-ordinates of the centre of the 

sphere. Further, we conclude from the equa- 

tions (7) and (7a) that the presence of each of the 

spheres has a result (neglecting indefinitely small 

quantities of a higher order) (23) in an increase 

of the heat production per unit volume, and that 

the energy per unit volume transformed into heat 

in the domain G has the value 

W = 257k + n32k®, mere) 

or 

(7b) W = 26%e(r + ey, ee) 

where ¢ denotes the fraction of the volume occu- 

pied by the spheres. 

From the equation (7b) the viscosity-coefficient 

can be calculated of the heterogeneous mixture of 

liquid and suspended spheres (hereafter termed 

briefly ‘‘ mixture”’) under discussion; but we 

must bear in mind that A, B, C are not the values 

of the principal dilatations in the motion of the 

liquid defined by the equations (8), (23) ; we will call 
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the principal dilatations of the mixture A*, b*, 

C*. On the grounds of symmetry it follows that 

the principal directions of dilatation of the mix- 

ture are parallel to the directions of the principal 

dilatations A, B, C, and therefore to the co-ordi- 

nate axes. If we write the equations (8) in the 

form . 

u=Ax+ Du, 

v= By + 2,, 

w=Cz+ 2w,, 

we get 

am) 4+) = 4-268) 
If we exclude from our discussion the immediate 

neighbourhood of the single spheres, we can omit 

the second and third terms of the expressions for 

u, v, w, and obtain when x = y = z = 0:— 

_ § P§x,(Ax,* + By? + Cz,’ 
3 ? ty, = 

27,5 t; 

_ « 5P*y,(Ax,* + By,* + G2,%) 
(9) vy Ps 2 7% 7,3 “4 

wo, = 2 BPP An? + Ba? + Oz. 
tie 4 t 8 

where we put 

7, = n/a" + 9,2 + 2,7 > 0. 
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We extend the summation throughout the volume 

of a sphere K of very large radius R, whose centre 

lies at the origin of the co-ordinate system. If 

we assume further that the irregularly distributed 

spheres are now evenly distributed and introduce 

an integral in place of the summation, we obtain 

Ou 
L v A*¥=A— ai 55 ee, 

K 

=A— nf as : - 7(27) 
v 

where the last integration is to be extended over 

the surface of the sphere K. Having regard to 

(9) we find 

A*=A— > ri | %q7(Ax%_? + Byg? + C2z,*)ds 

nl tPee Al Alt — 9). ae n(4P¥) hs) 

By analogy 

We will put 
5*2 — A*2 1 B*2 1 C*2, 

then neglecting indefinitely small quantities of 

higher order, 

6*2 = §2(1 — 2¢). 
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We have found for the development of heat per 

unit of time and volume 

Wt 25%h( + £) : . (233 

Let us call the viscosity-coefficient of the mixture 

k*, then 
WE =225**R*. 

From the last three equations we obtain (neglecting 

indefinitely small quantities of higher order) 

k* = k(r + 2:5¢) 2 . (23) 

We reach, therefore, the result :— 

If very small rigid spheres are suspended in a 

liquid, the coefficient of internal friction is thereby 

increased by a fraction which is equal to 2°5 times 

the total volume of the spheres suspended in a 

unit volume, provided that this total volume is 

very small. 

§ 3. ON THE VOLUME OF A DISSOLVED SUBSTANCE 

OF MOLECULAR VOLUME LARGE IN COMPARISON 

WITH THAT OF THE SOLVENT 

Consider a dilute solution of a substance which 

does not dissociate in the solution. Suppose that 

a molecule of the dissolved substance is large com- 

pared with a molecule of the solvent ; and can be 

thought of as a rigid sphere of radius P. We can 

then apply the result obtained in Paragraph 2. 
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If k* be the viscosity of the solution, & that of 

the pure solvent, then 
B® 
ETI + 254, ss (23) 

where ¢ is the total volume of the molecules 

present in the solution per unit volume. 

We will calculate ¢ for a I per cent. aqueous 

sugar solution. According to the observations 

of Burkhard (Landolt and Bérnstein Tables) 

k* /k = 1-0245 (at 20° C.) for a I per cent. aqueous 

sugar solution ; therefore ¢ = 0:0245 for (approxi- 

mately) o-or gm. of sugar. A gram of sugar dis- 

solved in water has therefore the same effect on 

the viscosity as small suspended rigid spheres of 

total volume 0:98 c.c. (23) 

We must recollect here that I gm. of solid sugar 

has the volume 0-61 c.c. We shall find the same 

value for the specific volume s of the sugar present 

in solution if the sugar solution is looked upon as 

a mixture of water and sugar in a dissolved form. 

The specific gravity of a I per cent. aqueous sugar 

solution (referred to water at the same tempera- 

ture) at 17°5° is 1-:00388. We have then (neglect- 

ing the difference in the density of water at 4° 

and at 17°5°)— 

Ma 
SS ee 

Therefore s = 0°61. 
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While, therefore, the sugar solution behaves, as 

to its density, like a mixture of water and solid 

sugar, the effect on the viscosity is one and one-half 

times greater than would have resulted from the 

suspension of an equal mass of sugar. It appears 

to me that this result can hardly be explained in 

the light of the molecular theory, in any other 

manner than by assuming that the sugar mole- 

cules present in solution limit the mobility of the 

water immediately adjacent, so that a quantity 

of water, whose volume is approximately one- 

half (23) the volume of the sugar-molecule, is bound 

on to the sugar-molecule. 

We can say, therefore, that a dissolved sugar 

molecule (or the molecule together with the water 

held bound by it respectively) behaves in hydro- 

dynamic relationsasa sphere of volumeo-98 . 342/N 

C.C. (23), where 342 is the molecular weight of sugar 

and N the number of actual molecules in a gram- 

molecule. 

§ 4. ON THE DIFFUSION OF AN UNDISSOCIATED 

SUBSTANCE IN SOLUTION IN A Liguip 

Consider such a solution as was dealt with in 
Paragraph 3. Ifa force K acts on the molecule, 

which we will imagine as a sphere of radius P, 

the molecule will move with a velocity w which 
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is determined by P and the viscosity k of the 

solvent. 

That is, the equation holds :—(*) 

k 
(z) or EE ‘ ‘ . (6) 

We will use this relation for the calculation of the 

diffusion-coefficient of an undissociated solution. 

If p is the osmotic pressure of the dissolved sub- 

stance, which is looked upon as the only force 

producing motion in the dilute solution under con- 

sideration, then the force exerted in the direction 

of the X-axis on the dissolved substance per unit 

volume of the solution = — dp/dx. If there are 

p grams in a unit volume and m is the molecular 

weight of the dissolved substance, N the number 

of actual molecules in a gram-molecule, then 

(p/m)N is the number of (actual) molecules in a 

unit of volume, and the force acting on a molecule 

as a result of the fall in concentration will be 

(2) K=—-— =. 

If the solution is sufficiently dilute, the osmotic 

pressure is given by the equation 

(3) p= pT, 
(*) G. Kirchhoff, “Lectures on Mechanics,’ Lect. 

26 (22). 
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where JZ is the absolute temperature and 

R = 8-31.10’. From the equations (1), (2), and 

(3) we obtain for the velocity of movement of the 

dissolved substance 

- RIT I dp 

O° ~~ 6k NP dx" 

Finally, the weight of substance passing per unit 

of time across unit area in the direction of the 

X-axis will be 

RE ILS oe 
(4) sd Ay RW ANG Sg = 

We obtain therefore for the diffusion coefficient 
Dp 

1 pee 
De Gah’ NP" 

Accordingly, we can calculate from the diffusion- 

coefficient and the coefficient of viscosity of the 

solvent, the value of the product of the number N 

of actual molecules in a gram-molecule and of the 

hydrodynamically-effective radius P of the mole- 

cule. 

In this calculation osmotic pressure is treated 

as a force acting on the individual molecules, 

which evidently does not correspond with the 

conceptions of the kinetic-molecular theory, since, 

according to the latter, the osmotic pressure in 
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the case under discussion must be thought of as 

a virtual force only. However, this difficulty 

vanishes if we reflect that (dynamic) equilibrium 

with the (virtual) osmotic forces, which correspond 

to the differences in concentration of the solution, 

can be established by the aid of a numerically 

equal force acting on the single molecules in the 

opposite direction ; as can easily be established 

following thermodynamic methods. 

Equilibrium can be obtained with the osmotic 

; . I 
force acting on unit mass, — ‘i , by the force — Px 

(applied to the individual solute molecules) if 

If we imagine, therefore, two mutually eliminat- 

ing systems of forces Px and — Px applied to the 

dissolved substance (per unit mass), then —Px 

establishes equilibrium with the osmotic pressure 

and only the force Px, numerically equal to the 

osmotic pressure, remains over as cause of motion. 

Thus the difficulty mentioned is overcome. (*) 

(*) A detailed statement of this train of thought will be 

found in Ann. d. Phys., 17, 1905, p. 549. 
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§ 5. DETERMINATION OF MOLECULAR DIMENSIONS 

WITH THE HELP OF THE RELATIONS ALREADY 

OBTAINED 

We found in Paragraph 3 
* 

i“ =1+2:5¢=1-+4 2°5n. onPs ; AZ3) 

where » is the number of solute molecules per unit 

volume and P the hydrodynamically-effective 

radius of the molecule. If we bear in mind that 

ead 
n m 

where p is the mass of the dissolved substance 

present in unit volume and m is its molecular 

weight, we obtain 

These two equations put us in the position to 

calculate each of the quantities P and N, of which 

N must show itself to be independent of the nature 

of the solvent, of the solute and of the tempera- 

ture, if our theory is to correspond with the facts. 
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We will carry out the calculation for an aqueous 

sugar solution. Firstly, it follows from the data 

given above for the viscosity of sugar solution at 

2 Os 
NP t= 80, ‘ a 23) 

According to the researches of Graham (calcu- 

lated out by Stephan), the diffusion-coefficient of 

sugar in water at 9°5° is 0-384, if the day is taken 

as unit of time. The viscosity of water at 9°5° is 

0:0135. We will insert these data in our formula 

for the diffusion-coefficient, although they were 

obtained with Io per cent. solutions, and it is not 

to be expected that our formula will be precisely 

valid at so high a concentration. We get 

NPG 2-06), 101°, 

It follows from the values found for NP? and NP, 

if we ignore the difference in P at 9°5° and 20°, 

that 
Piee=(2 105? elo; . (23) 

ive seraem TO", 

The value found for N agrees satisfactorily, in 

order of magnitude, with the values obtained by 

other methods for this quantity. 

Berne, 30 April, 1905. 

(Received, 19 August, 1905.) 
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Supplement 

In the new edition of Landolt and Bérnstein’s 

“ Physical-Chemical Tables ”’ will be found very 

useful data for the calculation of the size of the 

sugar molecule, and the number N of the actual 

molecules in a gram-molecule. Thovert found 

(Table, p. 372) for the diffusion-coefficient of sugar 

in water at 18-5° C. and the concentration 0-005 

mol./litre the value 0-33 cm.?/day. From a table 

(p. 81), with the results of observations made by 

Hosking, we find by interpolation that in dilute 

sugar solutions an increase in the sugar-content 

of r per cent. at 18-5° C. corresponds to an increase 

of the viscosity of 0-00025. Utilizing these data, 

we find 

P = 6°49 -10-° mm: 
and 

N = 6:56.10", . . (23), (28) 

Berne, January, 1906. 



IV 

THEORETICAL OBSERVATIONS ON THE 

BROWNIAN MOTION 

(From Zert. f. Elektrochemie, 18, 1907, pp. 41-42) 

N connection with the researches of Sved- 

icae recently published in the Zeit. f. 

Elektrochemte, on the motion of small suspended 

particles, it appears to me desirable to point out 

some properties of this motion indicated by the 

molecular theory of heat. I hope I may be able 

by the following to facilitate for physicists who 

handle the subject experimentally the interpreta- 

tion of their observations as well as the com- 

parison of the latter with the theory. 

1. From the molecular theory of heat we can 

calculate the mean value of the instantaneous 

velocity which a particle may have at the absolute 

temperature T. Thus the kinetic energy of the 

motion of the centre of gravity of a particle is 

independent of the size and nature of the particle 

and independent of the nature of its environment, 
63 
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e.g. of the liquid in which the particle is suspended : 

this kinetic energy is equal to that of a monatomic 

gas molecule. The mean velocity ~/v? of the par- 

ticle of mass m is therefore determined by the © 

equation 

where R = 83.107, T is the absolute tempera- 

ture, and N the number of the actual molecules 

in a gram-molecule (approximately 6 . 107, (19)). 

We will calculate the value of / v2, as well as 

other quantities discussed in the following, for 

particles in colloidal platinum solutions such as 

Svedberg has investigated. For these particles 

we have to put m = 2:5 .10715, so that we get 

for 7 =292 

J/y= Apo = 8-6 cm. /sec. 

2. We will now examine whether there is any 

prospect of actually observing this enormous velo- 

city of a suspended particle. 

If we knew nothing of the molecular theory of 

heat, we should expect the following to happen. 

Suppose that we impart to a particle suspended 

in a liquid a certain velocity by an impulsive force 

applied to it from without ; then this velocity 
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will die away rapidly on account of the friction 

of the liquid. We will ignore the inertia of the 

latter and note that the resistance that the par- 

ticle moving with the velocity v experiences is 

67kPv,(6) where k is the viscosity of the liquid 

and P the radius of the particle. We obtain the . 

equation 

me = — 6rkPv. 

From this it follows that for the time @ in which 

the velocity falls to a tenth of its original value— 

— m 

0°434 . O2kP’ (30) 

For the platinum particles (in water), mentioned 

before, we have to put P = 2°5.10-* cm. and 

= 0-01, so that we get (*) 

0 = 3:3 . I0~” seconds. 

If we turn back again to the molecular theory 

of heat, we have to modify this conception. In 

fact, we must now also assume that the particle 

nearly completely loses its original velocity in the 

very short time @ through friction. But, at the 

same time, we must assume that the particle gets 

(*) For particles of « microscopic ”’ size @ is appreciably 

greater, since 6 is proportional to the square of the radius 

of the particles, other conditions being the same. 

5 
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new impulses to movement during this time by 

some process that is the inverse of viscosity, so 

that it retains a velocity which on an average is 

equal to v2, But since we must imagine that 
direction and magnitude of these impulses are 

(approximately) independent of the original direc- 

tion of motion and velocity of the particle, we 

must conclude that the velocity and direction of 

motion of the particle will be already very greatly 

altered in the extraordinary short time @, and, 

indeed, in a totally irregular manner. 

It is therefore impossible—at least for ultra- 

microscopic particles—to ascertain Jv by obser- 

vation. 

3. If we confine ourselves to the investigation 

of the lengths of path, or, more precisely ex- 

pressed, the changes in position in times 7, which 

are substantially greater than 6, then from the 

molecular theory of heat 

Jit = Jaap aap + GD 
if the change in the X-co-ordinate of the particle 

that has taken place in the time 7 is indicated by 

Ax. (42) 

For the mean velocity in the interval of time + 

we can define the quantity 
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det 
7 Aes a 

where for brevity we put 

R ae 

WN 30kP 
But this mean velocity is the greater, the smaller 

7 is; so long as 7 is great compared with 0, the 

velocity does not approach any limiting value as 

7 decreases. 

Since an observer operating with definite means 

of observation in a definite manner can never 

perceive the actual path traversed in an arbi- 

trarily small time, a certain mean velocity will 

always appear to him as an instantaneous velocity. 

But it is clear that the velocity ascertained thus 

corresponds to no objective property of the motion 

under investigation—at least, if the theory corre- 

sponds to the facts. 

Berne, January, 1907. 

(Received, 22 January.) 



V 

THE ELEMENTARY THEORY OF THE 
BROWNIAN (*) MOTION 

(From the Zeit. fiir Elektrochemie, 14, 1908, 

| PP. 235-239) 

ROF. R. LORENTZ has called to my 

| Deateay in a verbal communication, that 

an elementary theory of the Brownian motion 

would be welcomed by a number of chemists. 

Acting on this invitation, I present in the following 

a simple theory of this phenomenon. The train 

of thought conveyed is briefly as follows. 

First we investigate how the process of diffusion 

in an undissociated dilute solution depends on the 

distribution of osmotic pressure in the solution 

and on the mobility of the dissolved substance in 

the solvent. We thus obtain an expression for 

the diffusion-coefficient in the case when a mole- 

(*) We mean by Brownian motion that irregular move- 
ment which small particles of microscopic size carry out 

when suspended in a liquid. Refer e.g. to Th. Svedberg, 

Zeit. f. Flektvochem., 12, 47 and 51, 1906. 

68 
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cule of the dissolved substance is great compared 

with a molecule of the solvent, in which expression 

no quantities dependent on the nature of the solu- 

tion appear except the viscosity of the solvent 

and the diameter of the solute molecules. 

After this we relate the process of diffusion to 

the irregular motions of the solute molecules ; 

and find how the average magnitude of these 

irregular motions of the solute molecules can 

be calculated from the diffusion-coefficient, and 

therefore, with the help of the results indicated 

above, from the viscosity of the solvent and the 

size of the solute molecules. The result so ob- 

tained holds not only for actual dissolved mole- 

cules, but also for any small particles suspended 

in the liquid. 

§ 1. DIFFUSION AND OSMOTIC PRESSURE 

Suppose the cylindrical vessel Z (Fig. 93) filled 

with a dilute solution. The interior of Z is divided 

by a movable piston k, which forms a semi- 

permeable partition, into two parts A and B. If 

the concentration of the solution in A is greater 

than that in B, an exterior force, directed towards 

the left, must be applied to the piston in order to 

retain it in equilibrium ; this force is in fact equal 

to the difference of the two osmotic pressures 
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which the dissolved substance exerts on the piston 

on the left and on the right side respectively. If 

this external force is not allowed to act on the 

piston, it will move under the influence of the 

greater osmotic pressure of the solution present in 

‘A so far to the right that the concentrations in 

A and B no longer differ. From this considera- 

tion it follows that it is the forces of osmotic 

pressure that bring about the equalization of the 

Z 

y--- 

FIG. 93. 

concentrations in diffusion ; for we can prevent 

diffusion, that is, an equalization of concentra- 

tion, by balancing the osmotic differences, which 

correspond to the differences of concentration, 

by external forces acting on semi-permeable par- 

titions. It has long been realized that the os- 

motic pressure can be looked upon as the driving 

force in diffusion phenomena. It is familiar that 
Nernst (32) made this the foundation of his investi- 
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Bastions into the connection between ionic mobility, 
diflusion-cocliicient, and VMN. in concentration 
cells, 

Suppose a diffusion process is taking place 
within the eylinder Z (Wig, 94), of unit area of 
cross-section, in the direction of the axis of the 

cylinder, We will investigate first the osmotic 

forces given vise to by the motion-due to dif. 

pp 
Z 

Wie, 04, 

fusion-—-of the dissolved substance contained be» 

tween the planes /° and “at an indetinitely short 

distance from one another, The osmotic pressure 

foree P acta on the surface of the layer from 

left to right, the foree p' acta on the surtace L’ 

from right to left; the reaultant of the pressure 

forces is therelore 

p= P' 
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We will now call x the distance of the surface 

E from the left end of the vessel, x + dx the dis- 

tance of the surface E’ from that end; then dx 

is the volume of the layer of liquid in question. 

Since p — p’ is the osmotic pressure which acts 

on the volume dx of the dissolved substance, 

then— 

Patti SPP ee 
dx ax dx 

is the osmotic pressure, which acts on the dissolved 

substance contained in unit volume. Since, 

further, the osmotic pressure is given by the 

equation 
p= heya a : ; 2] 

where KR is the constant of the gas-equation 

(8-31. 107), T the absolute temperature, and v 

the number of gram-molecules of solute per unit 

volume, we get, finally, for the osmotic force K 

acting on the dissolved substance per unit volume 

the expression 

dv 
(x) K = — kT me 

Now, in order to be able to calculate the motions, 

due to diffusion, to which these active forces can 

give rise, we must know how great a resistance 
the solvent offers to a movement of the dissolved 
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substance. If an active force K acts on a mole- 

cule, this will impart to the molecule a propor- 

tional velocity v, according to the equation 

k 
KR’ 

where # is a constant, which we will call the 

frictional resistance of the molecule. This fric- 

tional resistance cannot in general be deduced 

theoretically. But when the dissolved molecule 

can be looked upon approximately as a sphere, 

which is large compared with a molecule of the 

solvent, we may ascertain the frictional resistance 

of the solute molecule according to the methods 

of ordinary hydrodynamics, which do not take 

account of the molecular constitution of the liquid. 

Within the limits of valid application of ordinary 

hydrodynamics, for a sphere moving in a liquid 

the equation (2) holds, where we put 

(3) y= Oyo. pails: 

Here 7 denotes the coefficient of viscosity of the 

liquid, p the radius of the sphere. If it can be 

assumed that the molecules of a solute are approxi- 

mately spherical and are large compared with the 

molecules of the solvent, the equation (3) may be 

applied to the single solute molecules. 

We can now estimate the mass of a solute 

(2) v= 
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diffusing across a cross-section of the cylinder per 

unit of time. There are v gram-molecules present 

in the unit volume, therefore vN actual mole- 

cules, where N signifies the number of actual 

molecules in a gram-molecule. If a force K is 

distributed over these vN molecules contained in 

the unit volume, it will impart to these a vN-times 

smaller velocity than it is able to impart to a 

single molecule, if acting on the latter alone. 

Reverting to equation (2): for the velocity v, 

which the force K is able to impart to the vN 

molecules, we obtain the expression 

AGRE 2 
vN R 

In the case under consideration, K is equal to 

the osmotic force previously calculated, which acts 

on the vN molecules in a unit volume ; so that we 

obtain from the above, using equation (r), 

(a) ee NER ae 

On the left-hand side we have the product of 

the concentration v of the solute, and of the 

velocity, with which the latter substance will be 

moved forward by the process. This product 

therefore represents the mass of the dissolved 

substance (in gram-molecules) which is carried 
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per second by diffusion through unit area of cross- 

section. The multiplier of dv/dx on the right- 

hand side of this equation is therefore (*) nothing 

else but the coefficient of diffusion D of the solu- 

tion in question. We have, therefore, in general 

and, in the case when the diffusing molecules can 

be looked upon as spherical, and large compared 

to the molecules of the solvent, introducing 

equation (3), 
RD 

(5a) ar Sanna . send ee) 

In the last case, therefore, the coefficient of 

diffusion depends upon no other constants charac- 

teristic of the substance in question but the 

viscosity 7 of the solvent and the radius p of the 

molecule. (f) 

(*) It is to be noted that the numerical value of the 

coefficient of diffusion is independent of the unit taken 

for concentration. 

(+) This equation enables the radius of large molecules 

to be deduced approximately from the coefficient of 

diffusion, when the latter is known ; it is then 

JIE. I 

oe 6rNn' D 

where R = 8-31.10’, N = 6.10%. Of course, a degree 

of uncertainty of some 50 per cent. is involved in the 
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§ 2. DIFFUSION AND IRREGULAR MOTION OF THE 
MOLECULES 

The molecular theory of heat affords a second 

point of view, from which the process of diffusion 

can be considered. The process of irregular 

motion which we have to conceive of as the heat- 

content of a substance will operate in such a 

manner that the single molecules of a liquid will 

alter their positions in the most irregular manner 

thinkable. This wandering about of the mole- 

- cules of the solute—fortuitous to a certain extent— 

in a solution will have as a result that an originally 

non-uniform distribution of concentration of the 

solute will gradually give place to a uniform one. 

We will now examine this process somewhat 

more narrowly, whilst we confine ourselves again 

to the case considered in § 1, fixing our attention 

on the diffusion in one direction only, namely, in 

the direction of the axis (x-axis) of the cylinder Z. 

We will imagine that we know the x-co-ordinates 

of all solute molecules at a certain time ¢, and also 

at the time ¢ + 7, where 7 indicates an interval of 

time so short that the relation of the concentra- 

tions of our solution alters only very slightly 

during this interval. During this time + the 

value of N. (34) This relation should be of importance for 

the determination of the approximate dimensions of the 

molecules in colloidal solutions. 
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x-co-ordinates of the first solute molecule will 

have changed, through the irregular thermal 

motion, by a certain amount 4,, that of the second 

molecule by 4, etc. These displacements, 4), 

A,, etc., will be partly negative (towards the 

left), partly positive (towards the right). The 

magnitude of this displacement will, further, be 

Gale pieke Ieee 
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different for the individual molecules. But since, 

as before, we presuppose a dilute solution, this 

. displacement is controlled only by the surrounding 

solvent, and not to a sensible extent by the rest 

of the solute molecules ; hence, in portions of the 

solution of different concentrations these displace- 

ments A will be on an average of equal magnitude, 

just as frequently positive as negative. 
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We will now see how large the mass of the sub- 

stance turns out to be, which diffuses in the time 

+ through unit area of cross-section of a solution, 

when the magnitude is known of the displacement 

A in the direction of the axis of the cylinder, which 

the solute molecules experience on an average. 

To simplify this investigation, we will make our 

calculations as if all the molecules had experienced 

an equally great displacement 4, actually one-half 

of the molecules having the displacement + J 

(i.e. to the right), and the other half the displace- 

ment — J (i.e. to the left). We will, therefore, 

replace the individual displacements 4,, 4, etc., 

by their mean value 4. 

With these simplified assumptions, there will 

be able to pass from left to right across a plane E 

of our cylinder (Fig. 95) during the time 7, only 

such solute molecules as were situated before the 

period of the time 7 on the left of E, and at a 

distance from E which is less than 4. These 

molecules are all situated between the planes Q, 

and E (Fig. 95). But since only half of these 

molecules experience the displacement + J, only 

half of them will also pass across the plane E. 
The half of the solute substance situated between 
Q and £ is, however, when expressed in gram- 

molecules, equal to 
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ag 
~v,A aaa 

where v, is the mean concentration in the volume 

Q,E, i.e. the concentration in the middle layer M,. 

Since the cross-section is unity, 4 is the volume 

included between Q, and £, which, when multi- 

plied by the mean concentration, gives the amount 

of the solute in gram-molecules contained in this 

volume. 

By similar reasoning, it follows that the mass 

of the solute which passes across E from right to 

left in the time 7 is equal to 

be 
—v,4 Ag 

where. v, denotes the concentration in the middle 

layer M,. The quantity of substance which 

diffuses across from left to right during the time 

7 is then obviously equal to the difference of 

these two expressions, therefore equal to 

(6) ~A(r — ¥). 

vy, and v, are the concentrations in two cross- 

sections which are separated by the very small 

distance 4. Again, if we denote by x the distance 
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of a cross-section from the left cylinder-end, 

according to the definition of a differential, 

V3. Vy dv 

A ax’ 
thence 

dv 
yy es Ay 

so that the quantity of the substance which diffuses 

across E during time 7 is also equal to 

I ,,4v 
(6a) - 34 de 

The quantity of the substance (expressed in 

gram-molecules) which diffuses across E in a unit 

of time is therefore— 

We have thereby obtained a second value for 

the coefficient of diffusion D. It is 

(7) D=-—, 

where 4 signifies the length of path described on 

an average (*) by a solute molecule during the time 

7 in the direction of the x-axis. 

(*) More accurately, A should be put equal to the 

square root of the mean of the squares of the individual 

displacements A,?, A,%, etc. We should therefore write, 

with greater accuracy, ,/A? in place of A. 
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Solving the equation (7) for 4, we obtain 

(7a) D B= /2D,/t. 

§ 3. MOVEMENT OF THE SINGLE MOLECULES: 

BROWNIAN MOTION 

If in the equations (5) and (7) we put the values 

given for the coefficients of diffusion equal to one 

another, we obtain, solving for 4, 

(8) = WRT 

We see from this formula that the path described 

by a molecule on an average is not proportional 

to the time,(*) but proportional to the square root 

of the time. This follows from the fact that the —— 

paths described during two consecutive unit time- 

intervals are not always to be added, but just as 

frequently have to be subtracted. We can cal- 

culate the displacement of the molecule result- 

ing on an average from the irregular molecular 

motion: by means of equation (7a) from the 

coefficient of diffusion, by means of equation (8) 

from the resistance which is offered to a forced 

motion of velocity v = I. 

(*) Compare A. Einstein, Z. f. Elektvoch., 18 (1907) ; and 

Ppp. 63-67 of this volume. 

6 
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In the case when the solute molecule is large 

compared to the molecule of the solvent, and is 

spherical, we can put the value of R given in 

equation (3) in equation (8), so that we obtain 

(8a) A pee . (32) 

This equation enables the mean displacement 

A (*) to be calculated from the temperature T, the 

viscosity of the solute y and the radius p of the 

molecule. 

According to the molecular kinetic conception, 

there exists no essential difference between a 

solute molecule and a suspended particle. We will 

therefore consider equation (8a) as also valid for 

the case where we deal with any kind of small 

suspended spherical particles. 

We will calculate the length of path 4 which a 

particle of I~ diameter describes on an average 

in one second in a certain direction in water at 

room temperature. We have to put 

i831 08 9 = 0°0135. 

i = 290. = 0°5. 10774, 

N = 6-10", _ Tel 

(*) More accurately the square root of the mean value 
of A* 
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We obtain 

A=0°8 X 10-4 cm. = 0-8y. 

This number is subject to an error of some 

+ 25 per cent. on account of the limited degree 

of accuracy with which N is known. (34) 

It is of interest to compare the mean individual 

motions of microscopic particles calculated in this 

manner, with those of solute molecules and of 

ions respectively. For an undissociated dissolved 

substance, whose coefficient of diffusion is known, 

we can calculate 4 from the equation (7a). For 

sugar at room temperature 

Hence we calculate from equation (7a) for 7 = I 

== 27-0. 

One can deduce from the number N and the 

molecular volume of solid sugar that the diameter 

of a molecule of sugar is of the order of magnitude 

of Ip, therefore about a thousand times smaller 

than the diameter of the particle considered above. 

From the equation (8a) we must therefore expect 

that A for sugar will be about ,/1000 times 

greater than for the particles of Im diameter. 

This is actually approximately correct, as can be 

seen. 
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From the equation (8) we can calculate the 

value of / for ions from their velocity of migration. 

1 is equal to the quantity of electricity in coulombs, 

which passes across a square centimeter in one 

second for a concentration v =1 of the ion in 

question, and for a potential gradient of x volt 

per centimeter. In the case we are considering, 

the velocity v of the ionic motion (in cm./sec.) is 

evidently determined by the equation 

1 =v. 96000. 

Since, further, 1 volt is equivalent to 108 elec- 

tromagnetic units, and the charge of a (univalent) 

ion is equal to 9600/N electromagnetic units, the 

force k acting on one ion in the case considered is 

__ 108 . g600 
Sue 

If we put in equation (2) this value of k, and the 

value of v obtained in the former equation, 

l 

ie 96000’ 

k 

8 g = k _ 108. 9600. 96000 
v LN 

This expression also holds, with the usual 

definition of J, for polyvalent ions. Introducing 

this value for R in equation (8), we get 

A = 4:25. 10-5, /ITz. 
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The formula gives for room temperature, and 

eee 

Ion h A 

Is ga : ; é : : 300 I25p 
K . 65 58u 

Diisoamyl-ammonium, C,;,H,,N . 24 35h 



NOTES 

(1) p. 1—The so-called ‘‘ Brownian move- 

ment’ was described for the first time in the 
year 1828 by the botanist Robert Brown.1 In 

investigating the pollen of different plants he 

observed that this became dispersed in water in 

a great number of small particles, which were 
perceived to be in uninterrupted and irregular 

“swarming ’”’ motion. As the phenomenon re- 

peated itself with all possible kinds of organic 
substances, he believed that he had found in 
these particles the “ primitive molecule” of 

living matter. He found later that the particles 
of every kind of inorganic substance presented the 

same phenomenon, so that he drew the conclusion 

that all matter was built up of ‘“ primitive mole- 

cules.” 

Of the authors who carried out investigations on 

the Brownian movement before Einstein, we will 

mention the following: Regnault (1858) thought 
that the motion was caused by irregular heating 

1 Phil. Mag. (4), 1828, p. 161; Ann, d. Phys. u. Chem., 

14, 294 (1828). 

86 
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by incident light. Chr. Weiner (1863) concluded 

that it could not have been brought about by 

forces exerted by the particles on one another, nor 

by temperature differences, nor by evaporation. 

Cantoni and Oehl (1865) found that the movement 

persisted unchanged for a whole year when the 

liquid was sealed up between two cover-glasses. 

S. Exner (1867) found that the movement is most 

rapid with the smallest particles, and is increased 

by light and heat rays. The idea of Jevons (1870) 

that the phenomenon is caused by electrical forces 

was denied by Dancer (1870), who showed that 

electrical forces had no influence on the motion. 

In 1877 Delsaux expressed for the first time the 

now generally-accepted idea that the Brownian 

movement has its origin in the impacts of the 

molecules of the liquid on the particles. This 

point of view was also expressed by Carbonelle. 

The first precise investigations we owe to Gouy,! 

who found that the motion is the more lively the 
smaller the viscosity of the liquid is (as follows 

also from the theory of Einstein); that very 

considerable changes of the intensity of illumina- 
tion had no influence, nor had an extraordinarily 

strong electromagnetic field. He also ascribed 

the motion to the effect of the thermal molecular 

motions of the liquid, and found by measurement 

1M. Gouy, Journ. de Phys. (2), 7, 561, 1888. 
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the velocity of different particles to be about a 
hundred-millionth of the molecular velocity. 

Ramsay in 1892 disputed the possibility of an 

electrical origin of the Brownian movement, and 

affirmed that it must give rise to a pressure, by 

which certain departures from the established 

laws of osmotic pressure could be explained. 

Maede Bache, in 1894, also accepted Gouy’s point 

of view ; while Quincke, in 1898, looked upon the 

motion as a result of temperature differences in 

the liquid. 

Besides Gouy’s work there is only one other 

investigation of a precise nature before Einstein’s 

treatment of the problem: that carried out by 

F. M. Exner,! who challenged Quincke’s assertion, 

and established that the velocity of the movement 

decreases with increase of size of the particles and 

increases with rise of temperature. He expressed 

also the view that the kinetic energy of the 

particle must be equal to that of a gas molecule. 

Since, however, he calculated the former from 

the observed “‘ velocity ” of the particle, which is 

actually much smaller than the true velocity, his 

results did not agree. It first became possible to 

verify this relation by means of measurements of 

the Brownian motion made according to Einstein’s 
method. 

1F. M. Exner, Ann. d. Phys., 2, 843, 1900. 



NOTES 89 

(2) p. 2—Van’t Hoff’s law. 
(3) p. 5.—The formula for the entropy S of 

a system depending (in the manner implied in 

statistical mechanics) upon the variables of con- 

dition ~,, p. . . . fn, used in the following treat- 

ment, is derived by Einstein in the paper quoted, 

on the foundations of statistical mechanics. The 

underlying idea is roughly as follows :— 

It is first shown that for the case when the 

system under consideration stands in statistical 

equilibrium with a second of the same tempera- 

ture, but of indefinitely large energy content, the 

probability for a condition of the system in ques- 

tion in which the parameters lie between the 

Values: f,. >, -+ api, po.» po + dpa, so 

pn.» Pn + app, will be given by the expression 

aw = const. 2M dp, . diy. 

Here E denotes the energy of the system cor- 

responding to the statistical states p, ... pn, 

and 2h = N/RT. This expression corresponds to 

the “canonic’”’ distribution in Gibbs’ statistical 

mechanics. The equation can also be written 

(I) Bie Ds Oia, 

where the constant c is determined by the 

condition 

(2) |e - Ep, — dp, = I. 

1A, Einstein, Ann. d. Phys., 11, 170, 1903. 
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Now let the system be dependent on a definite 
parameter A which we can control arbitrarily from 

without, as well as on the parameter p. If we 
carry out an indefinitely small alteration in our 
system by varying this parameter A: whilst before 

this change equation (2) holds, after the change 

(3) (Re a aoe ... Br=t; 

from (2) and (3) it follows 

ve 
c — 2hE —_ Sane dp, .. . dpn=0. | (ae — 2Edh — 2h 

Since in the process the energy E undergoes only 

an indefinitely small change, it follows that 

(4) dc — 2Edh — 2h3> ad = 0. 

But since 

(s) aE = 5 ant a, 

as is easily seen, where dQ indicates the quantity 

of heat absorbed during the process, there follows 

from (4) and (5) 

2h.dQ = d(2hE — c) ; 

or multiplying by 2k 

oe = ee 2xc) == 05: 
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The expression introduced in the text for the 

entropy follows immediately from this in con- 

junction with (2). 

The definition of entropy given here is in sub- 

stantial agreement with the entropy formula of 

Boltzmann, when taken in connection with the 

expression (1), which has also been already given 
by Boltzmann as a generalization of Maxwell’s 
law of distribution of velocities.1 

(4) p. 8—From expression (rz) it follows that 

dB = dW . e-¢ 

and since from (2) 

Wb =-6 

it follows that 
dB 

aw = zB 

(5) p. 10.—From the relation B = J . V*" there 

follows 

E OR ER 
S=Frt ple B= pt q (loss + mlog V*), 

thence, since J is independent of the x-co-ordinates 

R R 0% asae Mout =| Aybar = =| Fedbe =| eae. > % 

1 Vide, amongst others, M. v. Smoluchowski : the 

limits of validity of the second law of thermodynamics. 

Lectures on ‘‘ The Kinetic Theory of Matter and Elec- 

tricity,” Leipzig and Berlin, 1914. 
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We obtain by partial integration from the last 
part of this expression, since the variation 6 

vanishes at the boundaries of the domain, 

1R dv soe ner Sxdx. 

The expression Kv — = can also be deduced 

directly without this calculation, from the existence 

of a force of osmotic pressure which was estab- 

lished at the end of § 2, equilibrium with which 

must be maintained by the force K. 

(6) p. 11.—This expression for the resistance 

experienced by a sphere in a uniform movement 

of translation through a viscous liquid was first 

deduced by Stokes hydrodynamically, with the 

assumption that the liquid adheres completely to 

the surface of the sphere and its velocity becomes 

vanishingly small: so that the velocity of motion 

does not exceed a certain value. 

There is no doubt that when the above condi- 
tions are fulfilled Stokes’ formula really gives the 

motion of the sphere accurately, but it is a ques- 

tion whether the conditions are really fulfilled in 

the case of the Brownian motion of very small 

spherical particles. 

Then, on account of its derivation, the formula 

is only valid for the case when the hydrodynamic 

equations still hold, which from the Atomic point 
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of view can only approximately be the case so 

long as the radii of the spheres are large compared 

to the free paths of the liquid molecules. This 

condition is actually fulfilled by the particles of 

visible size in liquids, but not in gases, so that it 

is necessary in the latter case to apply certain 

corrections to Stokes’ formula, which can be 

derived by consideration of the kinetics of gases. 

The first correction of this type was given by 

E. Cunningham ! for the case when P is compar- 
able with the free path of the gas molecule. It 

appears that the expression for the velocity of the 

particle must be multiplied by the factor 

r+ A .1/P, 

where A is a constant which can have values 

between 0-815 and 1°63, according as to whether 

all impacts of the molecules against the particles 

are elastic or inelastic in nature. According to 

F. Zerner, however, these limits must be corrected 

to 1-40 and 1°575.” 

Experimental tests of the law of resistance in 
gases have been carried out by different investiga- 

tors: by M. Knudsen and S. Weber ® by variation 
of the gas-pressure whilst employing a fixed size 

of sphere, and by L. W. McKeehan * also for 

1E, Cunningham, Proc. Roy. Soc. (A), 83, 357. 

2F. Zerner, Phys. Zett., 20, 546, 1919. 

3 Knudsen and Weber, Ann. d. Phys., 36, 981, I91T. 

4McKeehan, Phys. Zett., 12, 707, I9It. 
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different sized spheres. They obtained the fol- 
lowing empirical formula for the correction-factor 

A as a function of the quantity P//:— 

ip 
A = 0°68 + 0:35e77'9°7- 

This formula also holds for the case when the 

radius of the sphere is small compared with the 

free path. The researches of E. Meyer and 
W. Gerlach,! and of J. Parankiewicz? are in 

agreement with this, whilst J. Roux ® obtained 

values between 1:23 and 1:64. That there can 

be no agreement with Cunningham’s law is also 

evident from the researches of R. Fiirth * on the 

determination of mobility from the Brownian 

movement. 

It appears, further, that it might well be 

assumed that the velocities of the particles in- 

volved in the Brownian movement remain below 

the limits for which the Stokes formula is valid. 

It can be taken, from an investigation of H. D. 

Arnold,* that the Stokes formula holds below a 

1 FE. Meyer and W. Gerlach, Elster-Geitel Festschrift, 

Vieweg, pp. 196, etc. 

2 J. Parankiewicz, Phys. Zeit., 19, 280, 1918. 

3 J. Roux, Ann, de Chim. et Phys., viii., 29, 69, 1913. 

4R. Firth, Ann. d.. Phys., 60, 77, 1919; 68,' 522, 
1920. 

5 Arnold, Phil. Mag., 22, 755, 1911. 



NOTES 95 

velocity V, which satisfies the inequality condition 

PoV 

R 
<0°2, 

where o indicates the specific gravity of the liquid. 
As is shown by an approximate calculation, it is, 

in general, scarcely to be expected that the veloci- 

ties resulting from the Brownian motion could 

reach these upper limits. 

Finally, it must be borne in mind that the 
Stokes formula is deduced for constant motions 

of translation and established experimentally for 

these conditions ; so that it is not impossible that 

considerable divergencies may occur with ac- 

celerated motions. For certain special cases of 

accelerated motion, the form of the law of resist- 

ance has also been determined theoretically, e.g. 

for the case of small pendulum vibrations ; and 

can also be established experimentally in a satis- 

factory manner. It is then a question whether 
it is permissible to apply the Stokes law to the 

Brownian motion, which in reality exhibits no 

regular translation, but has an irregular character. 

Again, if the formula cannot be applied with cer- 

tainty to the single zig-zags of the Brownian 

motion, it can be still assumed that, on account of 

the irregular character of the motion, the depar- 

tures from the Stokes law cancel out on an average. 

Einstein’s deduction given here corresponds to 
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this thought: in which there is assumed to be 

a statistical equilibrium between the process of 

diffusion and a fictitious constant force K. 
In addition, the Stokes law has been proved 

for accelerated motions of a regular character at 
high frequencies in gases, and is known to hold 

with very close approximation up to periods of 

about 60 per second.1 
A detailed discussion of all the problems sug- 

gested here is to be found in a paper by J. Weysen- 

hoff.? 
(7) p. 12.—It is notable that the result for D 

no longer contains the applied force K. This 

must, however, be the case, if the method intro- 

duced here is successful in its aim, since K is a 

completely fictitious force which has nothing to 

do with the process of diffusion itself. This cir- 

cumstance indicates that it must also be possible 

to obtain the result without the introduction of 

the fictitious force. Such deductions have actually 

been carried out ; amongst others might be par- 

ticularly mentioned, on account of its special 

simplicity, the deduction by Ph. Frank® with 

1N. A. Shewhart, Phys. Rev. (2), 9, 425, 1917; 

R. B. Abott, Phys. Rev., 12, 381, 1918; A. Snethlage, 

Versl. K. Akad. v. Wetensch. Amst., 25, 1173, 1917; 

R. Firth, Ann. d. Phys., 68, 521, 1920. 

2 J. Weysenhoff, Ann. d. Phiys., 62, 1, 1920. 

* Ph. Frank, Wiener Ber., 124 (2a), 1173, 1915; Ann. 

d, Phys., 52, 323, 1917. 
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the help of the conception of the Virial introduced 

by Clausius. 

(8) p. 313.—The introduction of this time- 

interval + forms a weak point in Einstein’s 

argument, since it is not previously established 

that such a time-interval can be assumed at all. 

For it might well be the case that, in the observed 

interval of time, there was a definite dependence 

of the motion of the particle on the initial state. 

A deduction of the formula for the Brownian 

motion, which does not involve this presupposi- 

tion, has been given by L. S. Ornstein ! according 

to a method suggested by Frau de Haas-Lorentz,? 

as well as by R. Fiirth*® (in agreement with the 

former) by another method. 

In contrast with the formula of Einstein, given 

on page 17 of the text, this formula runs 

x? — 2D(t — mB + ee) 

where B = 1/6z7kP indicates the “ Mobility” of 

the particle and m its mass. For a sufficiently 

large time-interval, the formula actually comes 

into line with Einstein’s, whilst for very short 

1L. S. Ornstein, Proc. Amst., 21, 96, 1918. 

2T,, de Haas-Lorentz, “‘ The Brownian Movement and 

some Related Phenomena,” Die Wissenschaft, B. 52, 

Vieweg, 1913. 

8 R. Firth, Zeit. f. Phys., 2, 244, 1920. 

7 
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times it indicates a rectilinear and uniform 

motion. 
As an approximate calculation shows, the 

Einstein formula holds for particles of a size that 
can be observed, under all circumstances. 

(9) p. 16.—There is sought here a so-called 

‘‘ Source-Integral ’’ (‘‘ Quellenintegral’’) of a dif- 

ferential equation of the second order, that is, a 

solution for which the boundary condition is 

assumed as a definite value for the integral of 

the diffusion-stream over the source. The corre- 

sponding diffusion problem is: if at time ¢=0 

the concentration of the diffusing substance is 

everywhere zero with the exception of an indefi- 

nitely narrow space around the plane x = o, but 

such that the whole mass of the substance is 
given at all times by 

+o 
| T(x, t)dx = n, 

—-—o 

then the formula given for f(x, ¢) will be the ex- 

pression for the distribution of the concentration 

of the substance at some later time ¢ and at any 
point x.t 

Similar methods have been applied to different 

problems of the Brownian motion by Smoluchow- 

1 Vide e.g. B. Riemann-Weber, “ The Partial Differen- 

tial Equations of Mathematical Physics,” 4th edit., 

Book 2, p. 91. 
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ski, Schrédinger,? and Fiirth,? by the solution 

of the diffusion equation under corresponding 
boundary conditions. 

(10) p. 16.—The meaning of the probable dis- 

tribution found 
—x2 

Nig, eee 
/4nD ./ 

is as follows: one imagines a large number of 

similar particles accumulated at the time t =o 

in the immediate neighbourhood of the plane 
x =O, and then left to themselves ; now, after 

a time ¢ such a distribution of the particles is 

spontaneously established that the relative num- 
ber of particles between the planes x and x + dx 

is given by ¢(x, t)dx. Here we assume that the 

particles exert no forces on each other. Such a 

summation of systems may be called in statistical 

mechanics a “space-summation.” If we now 

look upon this space-summation as a single system 

and imagine that a very large number of exactly 

similar systems are set up, and the same experi- 

ment carried out with these, it is asserted that the 

1The reader will find further information on this 

subject in the next volume of the Ostwald’s “‘ Klassiker,”’ 

which comprises Smoluchowski’s papers on the Brownian 

movement. 

2 E. Schrédinger, Phys. Zeit., 16, 189, 1915. 

2h Hurth, Ann: d. Phys, 63, 177, 1917. 
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mean value of the distribution (x, ¢) obtaining in 

all these systems at the time ¢ will correspond 

exactly to the function f(x, ¢) in the above formula. 

The purely imaginative summation used here is 

called a ‘‘ virtual summation.” For an approxi- 

mate realization of this one can proceed in such 

a manner (as the experimenter is generally careful 

to do) that we make use only of one and the same 

Space-summation, and after carrying out an 

investigation, this is always brought back to the 

original condition by artificial means. 

But another important meaning can be given to 

the formula if we consider as our system not, as 

before, the whole space-summation, but the single 

particle in this space-summation. Then /(x, #) 

denotes the probability that the particle has 

been displaced in the time ¢ to a region between 

xandx-+ dx. If one observes the movement of 

a single particle and notices the displacements 

experienced in successive intervals of time, the 

relative frequency of these displacements will 

likewise be given by our formula, in the limiting 

case of an indefinitely large number of observa- 

tions. This is what is indicated in statistical 

mechanics by “ time-summation.”’ 

Both methods of observation are actually 

carried out in connection with the Brownian 

movement, and both lead to the establishment of 

Einstein’s formula. It would appear also as if 
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in this case the mutual substitution of the two 
kinds of summations were permissible without 

any further conditions, which is most decidedly 

not self-evident from first principles. The ques- 

tion as to the exchangeability of virtual and time- 

summations belongs to some controversial points 

in the foundations of statistical mechanics. It 

can be shown that this exchange can always be 

carried out when a so-called “ ergodisch ” system 

is in question ; yet it has not been possible up to 

now to give a single example of such an “ ergo- 

disch”’ system. The reader will find a compre- 

hensive discussion of related problems in the 

article on ‘‘ The Conceptual Foundations of the 

Statistical Treatment of Mechanics,” by P. and 

T. Ehrenfest.1_ A paper of R. v. Mises? intro- 

duces a new view-point. 

(11) p. 17.—According to the definition of the 

mean value the mean square displacement is 

obtained from the fae: 

_— rte +o 2 
eo Re al He, 4) <*ax. == Fe D wrania Dix 2d xy 

2 row we 
ii ale ae] = wall edu = 2Dt. 

1‘ Encyclopedia of Mathematical Science, 

211, part 6. 

2R. v. Mises, Phys. Zeit., 21, 225, 1920. 

EVOL EV, 
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(12) p. 17.—If r is the total displacement of the 

particle, then 
72 = x2 4 yt? + 23, 

therefore WS ba ay oe | 
ye wt yt + 22 

and since on account of the homogeneity of the 
liquid these are all equal— 

Vee = ax") JP aa n/3Ax. 

(13) p. 18.—The wish expressed here by Einstein 
was very soon fulfilled, resulting in a complete 

confirmation of his theory. Amongst the numer- 

ous experimental investigations there will only be 

mentioned here those which have given a direct 

confirmation of Einstein’s formula in its original 

meaning. The first of these investigations was 
carried out by Seddig, who took two photographs 

of an aqueous suspension of cinnabar on the same 

plate at an interval of o-r second, and measured 
the distance of corresponding images on the plate. 

He found that on an average the displacements at 

different temperatures were inversely proportional 

to the viscosities, as the theory demanded. 

Henri ? found similarly with the aid of cinemato- 

1R. Seddig, Phys. Zeit., 9, 465, 1908; Zeit. f. Elek- 

trochem., 73, 360, 1912. 

*V. Henri, Comptes Rendus, 146, 1024, 1908; 147, 

62, 1908. 
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graph records of the mean displacement of par- 

ticles of caoutchouc that the time law, x? propor- 

tional to ¢, was followed. 

The establishment of the first complete and 

absolute proof of the formula lies to the credit of 

Perrin? and his pupils Chaudesaigues, Dabrow- 

ski, and Bjerrum, who followed the movements of 

single particles of gamboge or mastic under a 

microscope and recorded their positions at equi- 

distant time intervals by means of an indicating 

apparatus. In this manner they could also use 

the formula to determine the Loschmidt number 

N in a new way, and found values between 56 and 

88-1072. They could also confirm the distribution 
law for the probability of different displacements 

/(%, #) in a quite unexceptionable manner. 

Svedberg 2 and Inouye made their measure- 

ments in similar manner in metal sols of appre- 

ciably smaller particle size, and found a good 

agreement with the formula with large particles, 

but systematic departures from it with small 

particles: this is most probably to be ascribed 

to a breakdown of Stokes’ law in connection 
with very small particles. They found the time- 
law well confirmed, and obtained approximately 

1 Perrin-Lottermoser, ‘“‘ The Atom,” Leipzig and 

Dresden, I914. 

2Th. Svedberg, ‘‘ The Existence of the Molecule,” 

Leipzig, 1912. 
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62-10% for Loschmidt’s number. Similar results 
were obtained by Nordlund with an automatic- 

registering photographic arrangement. 

Finally, a paper of K. Seelis? should be men- 

tioned, which forms a continuation of Seddig’s 

work and amplifies it suitably. 

The Brownian motion was first described in 

gases by F. Ehrenhaft,? who has also shown that 

the order of magnitude corresponds with the 

Einstein formula. A direct confirmation of Ein- 

stein’s formula is out of the question here, since 

the determination of the size of the particles 

cannot yet be carried out with accuracy ; never- 

theless, it appears to be established from the 

former investigations that the formula can be 

applied with accuracy in this case too.® 

(14) p. 23.—The law of Boltzmann mentioned 

here by Einstein is that known by the name of 

the e*x-theorem, which plays a great part in 

Statistical Mechanics. It leads to the inference 

that a system which is in statistical equilibrium 

with another of indefinitely large energy is actually 

subject to fluctuations, whose relative frequency 

is given by the law (I). Wherever, therefore, 

1K. Seelis, Zeit. f. Phys. Chem., 86, 682, 1914. 

*F. Ehrenhaft, Wiener Ber., 116, (IIa), 1139, 1907. 

* Further details will be found in the report of 

Th. Svedberg, Jahrbuch dey Rad. u. Elekty., 10, 467, 

1913; and R. Fiirth, ibed., 16, 319, 1920. 
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similar equilibria exist, this law should be applied 

for the calculation of the magnitude of the fluc- 

tuations. The reader will find a detailed dis- 
cussion of all phenomena of this type in Physics 
in Fiirth’s paper, ‘‘ Fluctuation Phenomena in 

Physics.” 1 

(15) p. 25.—M. v. Smoluchowski? has given a 

detailed theory of the Brownian movement under 

the influence of an elastic force, and, in this 

particular case, has set forth in a very pleasing 

manner the points of agreement and differences 

between the statistical and purely thermodynamic 

conceptions of natural processes, especially con- 

cerning the apparent contradiction between the 

principal reversible mechanical and the irrever- 

sible thermodynamic processes. He pointed out 

also that this case can be verified experimentally 

by observation of Brownian torsional vibrations 

of a small mirror fastened on a thin thread, or of 

the vibrations of the free end of a thin elastic 

quartz fibre. The last suggestion was experi- 

mentally verified quite recently by P. Zeeman, 

though finally satisfactory results have not been 

obtained up to now. 

1R. Firth, Vieweg Collection, No. 48, Brunswick, 

1920; and Phys. Zeit., 20, 1919. 

2M. v. Smoluchowski, Krakauer Ber., 448, 1913; 

Lectures on “ The Kinetic Theory of Matter and Elec- 

tricity,’’ loc. cit. 
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(16) p. 26.—If it be assumed that the energy E 

of the system is continuously divisible, from the 

definition of the mean value of a function we 

obtain for the mean energy per degree of freedom, 

regarding the energy itself as the parameter a, 

from the expression (I)— 

: | Ee7RTEdE 
E=| Eiw=3— 

0 | e RT’ dE 
0 

Accordingly the mean energy of a linear oscil- 

lator is also equal to this quantity. On the other 

hand, Planck has shown in the paper quoted that 

the mean energy of such an oscillator, which is 

in dynamic equilibrium with the radiation in a 

hollow body, is given by 

L3 

HY Bee 

where L indicates the velocity of light, v the fre- 
quency, and pvdv the energy of that part of the 
radiation per unit volume whose frequency lies 

_— 
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between v and v+dv. By equating the two 

expressions, it follows that 

edn? 
Now Savi’ 

and thence the expression given in the text for pv. 

But if it be assumed that the energy E is not dis- 

tributed to the oscillator in a continuous manner, 

but only in multiples of an elementary quantum 
hv, where hf is a universal constant, as Planck and 

Einstein have assumed, there is obtained for E a 

summation of the form 

E Donkeys ¢ 54 jis pe 
60 N 

-l_hW. 
Ss @ RT nahi: 

So hy 
peg aa ok ee eee 

eg as te Mi RPE seve 
(1-« eT”) ekrT —TI 

As can be seen by expanding the denominator, 

for small values of v and for high temperatures 

respectively this formula becomes E = kT, which 
agrees with the former expression. In general, 
however, by equating the value of FE with Planck’s 

value given above, there is obtained 

Br ye 

ee 
ékt — 1 
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from which follows 

8rvrh 

Atleniomcerstie 77 Xe — 2) 
which is in agreement with Planck’s radiation law. 

Hence the ‘‘incompleteness of our physical 

conceptions” perceived by Einstein is related to 

the necessity for introducing the quantum hy- 

pothesis. 
(17) p. 27.—This expression can be interpreted 

again, in the meaning of statistical mechanics, in 

two ways (vide Note 10). If one considers a very 

great number of particles similar to one another, 

it gives the relative mass of those particles 

which will be found on an average at a height 

% ...%-+dx above the ground. As the form 

of the expression shows, the “ space-summation ”’ 

of the particles corresponds with the well-known 

vertical aerostatic distribution : which is implied 

by the nature of the case, since only a quantita- 

tive, and not a qualitative, distinction exists 

between the gas built up of molecules and a sus- 

pension of microscopic particles. We can now 

investigate whether a suspension of small, similar 

particles is actually arranged in accordance with 

this formula, and, on the other hand, whether it 

agrees with the absolute figure, ie. whether by 
determining the other data Loschmidt’s number 
can be calculated. This was the manner in 
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which, for the first time, an exact confirmation of 
Einstein’s theory was obtained, a result for which 
thanks are due to Perrin and his pupils (vide 
Note 13). Their method of procedure was first 
to prepare, by the device of “ fractional centri- 

fuging ’’ worked out by Perrin, a suspension of 

gamboge or mastic with particles of exactly equal 

size. This was then enclosed in a microscopic 

chamber and the distribution in height of the 

particles determined, after equilibrium had been 

established, by counting in the microscope the 

particles in different layers above the bottom of 

the chamber. In order to facilitate the counting, 

a small screen was introduced in the ocular of the 

microscope, so that at all times only a small 

number of particles were in the field of vision at 

the same moment; these were made visible at 

regular intervals of time by intermittent illumina- 
tion of the preparation, and so a great number 

of observations were arranged for. Observations 

carried out on different sizes of particles and 
suspension-media showed throughout a very good 

agreement between theory and experiment, and 

for Loschmidt’s number figures between 55 and 

80 - 1072, 
Perrin’s investigations have been recently ex- 

tended by Westgren ! to still smaller particles of 

1A, Westgren, Zeit. f. Phys. Chem., $3; 151, 1013; 

89, 63, 1914; Arch. f. Mat. Astr. och Fystk, 11, Nos. 8 
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colloidal metals, which were prepared of equal 

particle-size by the germ method of Zsigmondy. 
The method of observation was somewhat similar 

to that of Perrin; the results of the extremely 

accurate investigation were in complete agreement 

with the exponential distribution in height ex- 
pected, and give, therefore, pretty well the most 

accurate direct determination of Loschmidt’s 

number, which was fixed thus as (60-6 + 2:0) . 107. 
If the concentration of the particles becomes 

so great that the forces (operative at a distance) 

acting between the particles exclude the assump- 

tion of the mutual independence of the particles, 

we must expect divergences from the aerostatic 

distribution in height. Actually, Costantin 

found such divergences in gamboge emulsions 

at very high concentrations, following Perrin’s 

method: which can be accounted for, in the 

manner indicated, by forces of repulsion between 

the particles, which are evidently of an electrical 
nature. 

But principally we can look upon our formula 

in quite a different manner, namely, as a picture 

of the time-summation for a single particle, if we 

imagine that a single particle is freely movable 

and 14, 1916; Zeit. f. anorg. Chem., 98, 231, 1915; 95, 

39, I9I6. 

+R, Costantin, C.R., 158, 1171, 1914; Ann. de phys. 

et chim. (9), 3, O11, 1915. 
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above a floor to which it cannot adhere. Then, 

as a result of its Brownian motion, it will not 

simply sink to the bottom, as one might expect, 

and remain lying there, but will always raise 

itself spontaneously and dance hither and thither 

in an irregular manner. The formula gives, then, 

simply the “relative length of sojourn”’ of the 

particle in the different layers . . . x + dx above 

the bottom within a long period of observation. 

This procedure was introduced by R. Fiirth,? 
and he was able to show that the formula applies 

very well to the movement of the particle: here 
there is further the advantage over the former 

method that it is necessarily independent of 
irregularity of particle size and of forces acting at 

a distance between particles. It was also possible 

in this manner, by simultaneous determination of 
the size of the particle according to Stokes’ law, 

to make a fresh determination of Loschmidt’s 

number: which gave N = 64.10%. We see 

established here in the most pleasing manner 
Einstein’s assertion that the particles can be 

suspended in the liquid if they be fine enough. 

(18) p. 30.—On account of the small magnitude 

of 4, we can put the lower limit of the integral in 

Mz equal to zero, and develop the function F in 

the following manner :— 

F(a + A) = F(a) + 4. F'(a%). 

1R, Fiirth, Ann. d. Phys., 58, 177, 1917. 
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Thence it follows further that 

Nee eae (A)oA. 

If we exchange here the order of the integrations 

the limits for é will be o and J, and the limits for 

A, 0, and o, from which it immediately follows 

that 

Neg — Nz = — F'(a)| A*y(A)ad 

FF lag eae 

on account of the condition that 

$(4) = $(— 4). 

(19) p. 31.—In the original paper there is given 

here in error 4.1073: actually the value of 

Loschmidt’s number is N = 60:6 . 107, according 

to the most accurate measurements that we possess 

up to the moment. 

(20) p. 33.—The formula for the rotary 
Brownian movement was established in 1909 by 

Perrin, by suspending spheres of mastic of about 

I2u diameter in water and following their rota- 

tional movement, as a function of the time, by 

observation of small, differently coloured inserts 

in the particles. The formula could thus be 

closely confirmed, as well as the absolute dimen- 

sions: for Loschmidt’s number was obtained 
Ni==65 «107. 
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(21) p. 33.—If we call e the quantity of elec- 
tricity that is displaced across any given cross- 
section of the conductor in time #, and identify « 

with the quantity of electricity which has flowed 
across this cross-section since the time ¢ = 0, 

then 4 =e, and « will be the current 7. The 

potential energy corresponding to the displace- 

ment J is evidently identical with the electrical 
potential difference, and hence the fictitious force 

of the E.M.F. E. According to its definition, 
therefore, 

Bs = the 

if w indicates the resistance of the closed circuit. 

We obtain therefore 

A number of similar questions which are form- 

ally related in the closest manner with the 

Brownian movement have been dealt with by 

Frau de Haas-Lorentz ! according to the method 

of Einstein and Hopf.? The list of possible in- 

vestigations given by her could be considerably 

increased : however, it has not yet been possible 

to discover these phenomena experimentally, 

1G. L. de Haas-Lorentz, ‘‘ The Brownian Movement 

and Related Phenomena,” Sammlung Wissenschaft, 52, 

Vieweg, 1913. 

2A. Einstein and Hopf, Aun. d. Phys., 38, 1105, 1910. 

8 
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since on account of their minuteness they escape 

our measuring instruments.! 
(22) p. 35.—For the lower limits of validity of 

Einstein’s formula and its substitution by a more 
accurate one valid for any desired small time- 

interval, refer to Note (8). R. Firth has also 

derived an estimate for the lower limits of validity, 

from the formula quoted above and from other 

considerations communicated in the same paper, 
and arrives at the conclusion that this time must 

be of the order mB, where m indicates the mass 

and B the mobility of the particle. Actually, one 

obtains in this manner, i.e. in ‘he order of magni- 

tude, an agreement with Einstein’s estimate. 

(23) p. 36.—A correction of the following paper 
appeared a few years later with the title: A. Ein- 
stein, “‘ Correction of My Paper, ‘A New Deter- 

mination of Molecular Dimensions’” (Ann. d. 

Phys., 34, 591, I911I), in which some numerical 

errors in the previous communication were 

rectified, which had also some influence on the 

results. In the reprint given here the resulting 

corrections are already introduced in the text 

with the aid of the paper mentioned, in order to 

facilitate the reader’s task. The points of correc- 

tion are indicated in the text by reference to this 
note. 

?R. Firth, “ Fluctuation Phenomena in Physics,” 

Sammlung, Vieweg, No. 48, Brunswick, 1920. 
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(24) p. 39.—On account of the incompressibility 
of the liquid, the “‘ divergence ’’ of the liquid flow 

must be, on the whole, equal to zero, i.e. 

2 kad iad Yer a div u Set anertat 0 
or 

A+B+C=0. 

(25) p. 44.—Since 

ete p 
de? p> op?” an? ® p®’ a2 pe rie p? 

we obtain in (5a) 

2 
wD _5 {2 4 38 2é } ae A = eee 

Pe las R40 6 dé 

ae + By +ce) —%A} 
Since A + B + C = 0, two of these terms vanish, 

and the remainder, put in u (5), gives 

rene tom SPeas : — Spx! (Ag? + By? + CL2) 
P 5Pleagt 4 Bit + Ct) + + Speak — Ae 

from which equation (6) follows immediately. 
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(26) p. 48.—A remark is omitted here which 

refers to the amount of energy consumed, since 

this is no longer involved after correction of an 

error of calculation (vide Note (23)). 

(27) p. 53.—Following from Gauss’ law 

§ div u do = Suds ; 

since u lies in the direction of the x-axis, and in 

sum-total is equal to u, then 

: ou 
divu = — 

: > 
and 

a 
% 

Un = 4 COS (x, 2) = u-. 

(28) p. 62.—The values given here for the 

radius of the sugar molecule and Loschmidt’s 

number agree remarkably well with determina- 
tions of these quantities made in other ways. 

The most accurate value for Loschmidt’s num- 

ber at the moment is 6-06 . 107°, determined from 

the “Faraday” of electrolysis and Millikan’s 

value for the elementary quantum. The values, 

from the Brownian movement, given in the pre- 

ceding notes, agree, therefore, remarkably well ; 

as well as that derived from the radiation of heat 

according to Planck’s equation, 64.1022. Further, 

from the Einstein'-Smoluchowski? theory of 

1A. Einstein, Ann. d. Phys., 33, 1294, 1910. 

*M. v. Smoluchowski, Ann. d. Phys., 25, 205, 1908. 
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density-fluctuations in gases and liquid mixtures, 
a value can be obtained for Loschmidt’s number 
from measurements of “critical opalescence,’’ in 

gases in the neighbourhood of the critical tem- 
perature, in liquids in the neighbourhood of the 

critical miscibility point. The former observa- 

tions were carried out by Kamerlingh Onnes and 

Keesom,! and gave approximately 75.102, the 

latter by R. Fiirth? gave 77.107*, and by F. 

Zernike * with more accurate equipment, 62 to 

65.1072. According to this theory, Loschmidt’s 

number can also be determined from the extinc- 

tion-coefficient of air for sunlight, by which 
method Dember* obtained 64.1077. We see, 

therefore, that a very large number of completely 

independent methods exist which all lead to 

approximately agreeing values for this important 

constant. 

With regard to the size of the sugar molecule, 
there is available for comparison the diameter of 

the first electron ring of hydrogen, derived from 

Bohr’s theory of the hydrogen spectrum, about 

0°5 . 10° cm., whilst the sugar molecule would be 

about roo times as large as this, the smallest of 

the atoms. According to the kinetic theory of 

1W. A. Keesom, Ann. d. Phys., 35, 597, I9II. 

2.R,. Firth, Wiener Ber., 124 (2a), 577, 1915. 

3 F, Zernike, Dissevtation, Amsterdam, 1915. 

4H. Dember, Ann. d. Phys., 49, 590, 1916. 
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gases, the diameters of gas molecules are of the 

order of magnitude 107’ cm. 
(29) p. 63.—Th. Svedberg, “On the Spon- 

taneous Movements of Particles in Colloidal Solu- 

tions.” First paper, Zeit. f. Elektrochem., 12, 

853-860, 1906. Second paper, Zeit. f. Elektrochem., 

12, 909-910, 1906. 

(30) p. 65.—From 

it follows that 

~ GrkP v 
and by integration 

m 
 6nkP 

or, since when ¢ = 0, v will equal v, 

f= log v + const. 

== aL GakP 18 
from which it follows, for v = v)/10 

__ milogio _ m 

OmkP —— 0:434.. 6nkP" 

(31) p. 66.—See, e.g., the treatment in Section 
I of this volume on p. 17. 

(32) p. 70.—Compare, e.g., the section, ‘‘ Os- 
motic Theory,’ in W. Nernst, ‘ Theoretical 
Chemistry ”’ (Stuttgart), under Electrochemistry. 
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(33) p. 75.—Compare Section 1 of this volume, 

paragraph 3, p. 12. 

(34) p. 76.—With reference to the Note on p. 75, 

the uncertainty in the value of N indicated here 

corresponds with the contemporary state of pro- 

gress inthe enquiry. To-day this uncertainty can 

be put at scarcely more than 2 percent. Vide the 

agreement in the different methods for the deter- 

mination of N, Note (28), p. 116. 
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