دافيد دويتس
نسيج الحقيقة

ترجمة
منير شريف
مراجعة
عادل أبوالمجد

1401
أشار أحمد زويل إلى "الكمبيوتر الكم" باعتباره أحد مفاتيح القرن الحادي والعشرين، ومؤلف هذا الكتاب يعد من رواده، ومن رواد مجال الذكاء الاصطناعي، ومن هذا المنطلق يطرح وجهة نظر جديدة لإيجاد نظرية موحدة نظرية تجمع في سمط واحد بين القوى الطبيعية الأربعة الكبرى، "القوة الكهربية والمغناطيسية والنووية القوية والنووية الضعيفة"، فتنفتح مغالق الكون وأسراره مرة واحدة وإلى الأبد.

يقول دويتس إن لدينا وشائج أو روافد أربعة تربط الكون في سياق واحد... هي: نظرية المعرفة، ونظرية الكم، ونظرية الأنواع (التطور-النشوء والارتفاع-التكيف)، ومبدأ تورنجر في الحوسبة، والمؤلف أيضًا من مشاعع نظرية تعدد الأفكار أو الأفكار المتوازية التي تداخل ما يقع فيها من أحداث.

وعلى الجملة فإن دويتس يرى أن محاولة فهمنا الشامل للحقيقة هو ما كان يأمله إيان ستولته: "هل يتسمى للمرء أن يعرف كل شيء عن كل ما هو معروف في وقت من الأوقات؟".
نسيج الحقيقة
المركز القومي للترجمة
إشراف: جابر عصفور

العدد: 1401
- نسيج الحقيقة
- دافيد دويتس
- مثير شريف
- عادل أبو المجد
الطبعة الأولى 2009

هذه ترجمة كتاب:
The Fabric of Reality
by: David Deutsch
Copyright © David Deutsch, 1997

حقوق الترجمة والنشر باللغة العربية محفوظة للمركز القومي للترجمة.
شارع الجبلية بالأورا – الجزيرة – القاهرة . ت: 27354524 - 27354526 فاكس: 27354554
El-Gabalaya St., Opera House, El-Gezira, Cairo
e.mail:egyptcouncil@yahoo.com Tel: 27354524 - 27354526 Fax: 27354554
إعداد الهيئة العامة لدار الكتب والوثائق القومية
إدارة الشؤون الثقافية

<table>
<thead>
<tr>
<th>كتاب</th>
<th>نسخة الخريقة</th>
<th>تأليف</th>
<th>رجيم شريف</th>
<th>مراجعة</th>
<th>عبادل أبو المجد</th>
</tr>
</thead>
<tbody>
<tr>
<td>ط 1 - القاهرة: المركز القومي للترجمة</td>
<td>508 ص</td>
<td>24 سم</td>
<td>الفنزيا</td>
<td>نظرية</td>
<td>العلم - فلسفة</td>
</tr>
<tr>
<td>(أ) شريف، م. (مترجم)</td>
<td>(ب) أبو المجد، ع. (راجع)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

رقم الإصدار: 213-2000/9/1
الرقم الدولي: 2-227-479-477-978-978-978

طبع بالهيئة العامة لشئون المطبوعة الأميرية

تمهد إصدارات المركز القومي للترجمة إلى تقديم الاتجاهات والمذاهب الفكرية المختلفة للقارئ العربي وتعريفه بها، والأفكار التي تنتميها في اجتهادات أصحابها في ثقافاتهم، ولا تعبر بالضرورة عن رأي المركز.
"مناوشات مع الجذرية ... كتاب يدخل الرعب في النفس"

جوليان براون
المحتويات

* تصفير المراجع .. 9
* مقدمة الترجم ... 17
* مقدمة المؤلف ... 23
الفصل الأول : نظرية كل شيء ... 27
الفصل الثاني : الظلال .. 67
الفصل الثالث : حل المعضلات ... 97
الفصل الرابع : معياري للحقيقة 121
الفصل الخامس : الحقيقة التقديرية (التخيلية) 157
الفصل السادس : العالمية وحدود الحوسبة 191
الفصل السابع : حديث حول التبرير (أودافيد والاستقراء الخفي) 215
الفصل الثامن : معنى الحياة ... 247
الفصل التاسع : الكمبيوترات الكمية 283
الفصل العاشر : طبيعة الرياضيات 319
الفصل الحادي عشر : الزمن : أول مفهوم كمي 365
الفصل الثاني عشر : ارتحال الزمن (أو سريانه) 405
الفصل الثالث عشر: الخيوط الأربعة .. 445
الفصل الرابع عشر: نهایات الكون ... 475
تصدير المراجع

مؤلف هذا الكتاب - الدكتور دافيد دويتس - من مواليد عام 1952 ويشغل وظيفة أستاذ الفيزياء بجامعة أوكسفورد أعرق جامعات المملكة المتحدة، وله العديد من الأبحاث في الفيزياء النظرية أهمها في الحوسبة الكمية - ذلك العلم الذي نشأ في ثمانينيات القرن الماضي على يد مجموعة من الفيزيائيين منهم مؤلفنا هذا - ليواكب التطور السريع في إنتاج الحواسيب الإلكترونية الذي سيؤدي حتمًا إلى الحاجة إلى الاعتماد على رقائق ذات أبعاد ذرية مما يستلزم إدخال ميكانيكا الكم، أي ميكانيكا الذرات ومكوناتها، في علم الحوسبة.

وفي كتابه هذا يستخلص المؤلف خبراته في عالم الكم والحوسبة وغيرها محاولًا الإجابة عن السؤال الذي حيّر البشرية منذ آلاف السنين: ما هي الحقيقة؟ أو كما صاغها هو: ما نُسجت الحقيقة؟

ويجب المؤلف عن هذا السؤال بأن الحقيقة نُسجت أساسًا من أربع نظريات هي:

1- نظرية الكم في إطار التفسير الذي أتى به هيو إفريت واليمني على أن الكون الذي نعيش فيه ليس منفردًا ولكنه واحد من عدد لا نهائي من الأكوان.

2- نظرية المعرفة كما صاغها كارل بوير التي تهدف إلى تفسير واقعية للعلوم الحديثة بنية على الفرضيات والحدسات التي لا تقبل التذكير.

3- نظرية الحوسبة التي ابتدعها آلان تورنج وساهم المؤلف في إعادة صياغتها فيما يعرف الآن بنظرية الحوسبة الكمية.
4 - نظرية التطور لـ "تشارلز دارون" والتي خضعت خلال القرن العشرين لتعديلات كثيرة من نظرية الاستنساخ وفهوم "الملامس" اللذان يتوانان مع نظرية "بوري" عن حلول المشاكل.

وقد تبدو هذه النظريات للعديد من الناس متناقضة ولا علاقة لواحة منها بالأخرى إلا أن المؤلف يحاول ببراعة أن يربط بينها ليشكل منها "نظرية لكل شيء" وهو في هذا يستعين بهراء جهادبنة الفيزياء والفلسفة مؤيداً بعضها ومدقعاً البعض الآخر، وياتي بكثر من الشروط الجيدة للعديد من الظواهر لا يخلو بعضها من الطرافة.

وأنا أودُ في هذه المقدمة أن ألخص القارئ بعض الحقائق العلمية عن النظريات الأربعة هذه، وأبدأ ببعضها الكم التي نشأت في بداية القرن العشرين كتي تقترن نتائج عملية عجزت الفيزياء التقليدية عن تفسيرها بأن الضوء وما يملأه من الإشعاعات الكهرومغناطيسية يتكون من جسيمات تتصرف كما لو كانت موجات، إذ أن الفيزياء التقليدية تصف الظواهر الطبيعية إما كظواهر موجية وإما كظواهر جسيمية. فالطيعية الموجية، كالصوت على سبيل المثال موجات تمتلك تضاغطًا يتبعه تخلخلًا في الهواء يُحدثه مصدر الصوت وينقل عبر الهواء إلى أن يستمع، والضوء موجات كهرومغناطيسية تبثها ذرات مصدر الضوء في الفضاء المحيط بها حيث تنتشر إلى أن تصل إلى عين المشاهد. أي أن الموجات عادة ما تملأ الوسط الذي تنتشر فيه، وعلى ذلك فإن جهاز الراديو يصدر أصواتًا يسمعها كل شخص جالس في الغرفة، بينما جسيم كالرصاصة مثلاً - عندما ينتقل يُصيب ما يتصادف أن يقع في طريقه. الجسيم يتمركز في حيز محدد ومحدود بينما تكاد الموجات أن تملأ الوسط الذي تنتشر فيه سلوكاً مختلفاً ومتماثلًا، ولكن التجربة، وهي تمتلئ الحقيقة بالنسبة إلى العلماء تتطلب أن تكون الذرات ومكوناتها (تلك التي يسمى أعضاء الجسيمات دون الذرة) مزدوجة السلك، لذا أتت النظرية النسبية لمثلج الجسيمات بواسطة موجات تُعتبر عن احتمال وجود الجسيم في أي مكان في الفراغ. فالإلكترون الذي نفترض وجوده في
ذرة ما لا يلزم أن يكون حقًا في الذرة، ولكن يوجد في نفس الوقت في جميع النقاط في الفضاء، ولكن باحتمالات مختلفة. فمما هذه الاحتمالات أن يكون داخل الذرة، وهكذا تخلت نظرية الكم عن فكرة تمركز الجسيمات بل وسمحت بانتشارها على هيئة موجات: أو أن حركة الجسيم إما هي انتقال للموقع الذي تصل فيه قيمة احتمال وجودها إلى نهاية المنطقة من مكان إلى مكان آخر. وفي هذا الإطار نشأت ميكانيكا الكم كنظرية رياضية متكاملة سمحت بتحليل النتائج العملية التي تعرضت مع الفيزياء التقليدية في بداية القرن العشرين وفروع التجرب التي أجريت بعد ذلك، واليوم، وبعد أكثر من مائة عام، خلقت منذ بدأ الحديث عن الكم فيزيائيًا قلما يوجد من العلماء من يشكو في صحة هذه النظرية، سواء في معادلاتها أو في حلول هذه المعادلات، إلا أن الاختلاف يدور حول التفسير المنطقي لهذه النظرية، وبالذات كيف دخل الاحتمال إلى سلوك الجسيمات دون الذرة.

the interpretation which is found in most of the academic writing of mechanics of which the museum describes it, is that it is not a point, and the translation includes: Bourn and his colleagues and others. In the course of the century, the concept of quantum mechanics has been formulated, and it is the basis for this interpretation that the question of the quantum of the world and the results of the experiment are obtained by using the apparatus quantum mechanics. Bourn's interpretation is based on the interaction between the apparatus and the physical system of the experiment, and it is based on the apparatus quantum mechanics, so that the apparatus is capable of measuring the interaction between the apparatus and the physical system of the experiment. Moreover, the interpretation of the apparatus is based on the interaction between the apparatus and the physical system of the experiment, and it is based on the apparatus quantum mechanics, so that the apparatus is capable of measuring the interaction between the apparatus and the physical system of the experiment.
وصف سلوك الجسيمات دون الذرية والذي يؤدي بدوره إلى "الدوجية المعيارية". والجسيمية في وصف حركة الذرات ومكوناتها.

ولكن تفسير مدرسة كوبنهاجن لا يخلو من التناقض لاعتبار أن أجهزة القياس تتحكم بالفيزيولوجيا الكلاسيكية بينما المنظومات المقاسة تتحكم بقوانين أخرى، بل إن هذا التفكير يثير التساؤل عما إذا كان نظرية فيزيائية أن تصف لنا ما يراه المشاهد عبر القياس بدلاً من أن تصف لنا الظواهر التي تحدث بالفعل.

وهذا ظهرت في الأعمال العلمية والفلسفية التي تناول إيجاد تفسيرات أخرى لدخول الاحتمال في وصف سلوك الأجسام، منها التفسير الذي تبناه مؤلف هذا الكتاب والذي يقوم على نظرية فلكية تقول بأن الكون الذي نعرفه ليس هو الكون الوحيد بل إنه واحد من عدد من تانئ من الأكوان، سُميَت هذه المجموعة "Multiverse" وذلك بإبدال المقطع "Uni" الذي يعني "الوهم" في كلمة "Universe" بالمقطع "multi" والذي يعني "العديد"، وعلى مثال ذلك "المفهوم". ولهذا إذا كانت الأكوان هذا توجد ملايين الملايين من الأكوان التي تتطابق ظروفها تمامًا مع كوننا، وملايين الملايين من الأكوان الأخرى التي تختلف عننا. وبالتالي فإننا نستطيع أن نصف الفيزياء هو ما يحدث في جميع الأكوان المتطابقة، عليه فإن نفس الحدث يمكن أن تكون له قيمة مختلفة في كل من هذه الأكوان كل باحتمال مختلف.

والنظرية الثانية فيما يشكل نسيجًا للحقيقة كما يراه المؤلف هي نظرية المعرفة. وهي أحد الأفكار الرئيسية للفلسفة التي تعود ببدائاتها إلى عصر الإغريقي، وهي تُعرف عند المخترعين باسم الإغريقي لها وهو "الابستيمولوجيا" المكون من مفتيين الأول "إبستيمي"، وهي المعرفة والثاني "لوغوس" ويعني علم، وبحث هذه النظرية في ماهية المعرفة ومصادرة وحدودها، وقد بدأت النظرية بالتساؤل عن الخواص التي تؤهل المعتقدات كي تُعد من الحقائق، ومتطلبات التي تجعل نتائج التفكير مقنعة وقاطعة، ومع مرور الوقت اختفى اتجاهات الباحثين في علم المعرفة، فهناك أصحاب المذهب

12
التجربة "Empiricism" ومنهم "هيومن" وهم الذين لا يعتبرون المعارف ذات قيمة إلا إذا أمكن التحقق منها بواسطة المشاهدة والتجرية، وهناك أصحاب الذمم العقلي "Rationalism" مثل "ديكارت" و"لاباز" و"إسبينوزا" الذين لا يعترفون ما يبرره "Idealism" في نطاق الحقائق، والفلسفة المتبعة "Mythesism" تعتبر الحقائق صوراً عقلية، ليست بالضرورة أشياء مادية، وال💥 الفلسفة من روحاً لا يدرك العقل، والذمم العلبي "pragmatism" الذي يقول بأن أهمية المبادئ في نتائجها العلمية، والذمم التحفيذي "Traditionalism" الذي يرجع الحقائق إلى ما جاء في الرحى الإلهي وما أتى به التعلّيم التقليدي.

أما ما أختاره مؤلفنا فهو الفلسفة العلمية التي تعرف بنظرية المعفة الارتقائية والتي سادت خلال القرن العشرين وغيرت تماماً من النظرية إلى المعرفة، والفكرة الرئيسية فيها التي أتى بها "كارل بوير" تدور حول التمييز بين الزيف والحقيقة، فالزيف معرفة لا يمكن التحقق من صحتها بل يمكن تكديبتها، والحقيقة هي المعرفة التي يمكن إثباتها، أما المعارف التي لا يمكن إثباتها ولا تكديبتها، ينبغي على أنها حدسية أو بعبارة أخرى: عقيدة.

تسمى هذه النظرية "الارتقائية" نظرًا لأنها تستخدم فكرة النشوء والارتقاء التي تدور حول نظرية "دارون" للتطور - التي بعدها مؤلفنا النظرية الرابعة التي يمكن منها نسجية الحقيقة - إذ أن النظرية تقول إن تكديب حدس ما يجب أن يقود إلى استبداله بحاس بيد جديد لكن الحدس الجديد هذا لا يوجد له إثبات هو الآخر وهمكا فإن الاستمرار في المحاولة والخطأ هو الطريق الذي يؤدي في النهاية إلى الوصول إلى حقيقة العالم والذي يسمى "بوير" طريق الحدس والتكليب.

والجدير بالذكر أن طريق الحدس والتكليب هو الطريق الذي يتبعه علماء الطبيعة المعاصرة، فالنظرية العلمية تعتبر حقيقة طالما اتفقت مع نتائج التجارب العملية. فإذا ظهرت تجربة جديدة تتناقض مع التجربة فإن المجتمع العلمي يرفض هذه النظرية.
ويستبدها بأخرى، وهكذا فإن ميكانيكا الكم التي تحدثنا عنها قد أستحدثت بعد مجموعة من التجارب التي دلت على السلوك المرجعي للجسيمات الذي لم تستطع ميكانيكا "نيوتن" أن تصفه، كذلك نشأت النظرية النسبية كي تفسر ثبت سرعة الضوء. مهما اختلفت سرعة المشاهد على عكس ما أنى به نسبية "جاليليو" التي بنيت عليها نظريات "نيوتن" بان سرعة كل الأجسام (بما في ذلك جسيمات الضوء) سرعة نسبية - أي تختلف باختلاف سرعة من يرصدها، كما تبدو لنا الشمس والنجمون وهي تتحرك في السماء بينما نحن الذين نتحرك مع حركة الأرض، وكما نظن أن محطة القطار تتحرك عندما يبدأ القطار في السير على عكس الواقع الفعلي.

النظرية الثالثة التي بعدها "دويتس" ضمن نسج الحقيقة في نظرية الفيزياء التي أرسى قواعدها "الأَلَّان تورينج" عام 1937 حين قال بوجود آلة حاسبة مجردة وعالية (وتعرف حاليا بآلة بورينج) يمكنها إجراء أي حساب مما يستطيع أي حاسب مادي إجراءها.

وفي تطوره لصفحة "مجردة" يدخل "دويتس" الكمبيوتر الكم في زمرة آلات تورينج. وما زال علم الحوسبة الكميجية في مرحلة الطفولة وبعد "دويتس" من أهم مؤسسيه كما أسلفنا، إلا أن "دويتس" يؤكد على وجود كومبيوتر كمي عالي في نهاية الزمان والمكان تشرف عليه كائنات عائثة لديها القدرة والعرفة اللازمة لتضخيم ذاكرته ومضاعفة سرعته وتزويده بالطاقة اللازمة لذلك، بحيث يمكن من محاكاة أي بيئة في الوجود، وهو في ذلك يستعين بنظرية نقطة النهاية التي أوردتها فرانك بيلر في كتابه "فيزياء النهاية" مضيفا إليها مفاهيم جديدة نابعة من أبحاث "بوير" في نظرية الفيزياء، ويستفيد "دويتس" من تفسير ميكانيكا الكم في إطار تعدد الأكون في القول بأن الحاسب الكم العالي يستطيع إجراء حساباته في أكثر من كون في نفس الوقت، وهو بذلك يتفوق على آلة تورينج التي تستخدم الفيزياء الكلاسيكية في حساباتها ولا تستطيع أن تجري حساباتها إلا في كونها هذا.

14
ويحاول المؤلف تبسيط أفكاره هذه باستخدام مفهومه عن الحقيقة التقديرية، أي
الحقيقة كما يحسها الإنسان والتي قد لا تكون موجودة فعلاً - ومنها ما يشعر به
الطيار وكأنه يقود الطائرة وهو يتدرّب بداخل غرفة مخصمة لذلك - ويوجد منها الكثير
في مدارس الطيران بالدول المتقدمة، إذ أن موالدات الحقيقة التقديرية لا تنتج صورًا
فحسب بل تتعامل في نفس الوقت مع أكثر من حاسة من الحواس البشرية الخمس، بل
ويتوقع أن توصل موالدات الحقيقة التقديرية مستقبلاً مع الخلايا العصبية للمشاهد
 مباشره والعقل البشري نفسه في رأى "ديويتس" يُعتبر من موالدات الحقيقة التقديرية،
وبالتالي فإن رؤيتنا للعالم حولنا إنما هي حقيقة تقديرية أنتجتها عقولنا وحقيقة الحقها
لا يعلمها إلا الله.

وفي هذا السياق ينطرق "ديويتس" إلى مفهوم الزمن وذلك في قراءة مبتكرة،
فالزمن في رأيه لحظات يمكن تصويرة كنقاط متناジー على خط ممتد، ونحن ننتقل من
نقطة إلى نقطة على هذا الخط، فالزمن لا يذهب ولا يرجع ولا يرحل، ونحن إذا أردنا
أن ننتقل إلى زمن سابق لا يمكننا ذلك إلا بالانتقال من كوننا هذا إلى كون آخر يماثله
في "متعدد الآكوان"، ويسندل على ذلك بِمثالية معروفة - فلقد يمكن للشطر أن يرحل إلى
زمن سابق في عالمنا هذا، هل يستطيع هذا الشخص قتل جده لو أراد ذلك؟ طبعًا لا
ولا فإنه هو نفسه لم يكن ليولد، ويست behand ديويتس مثالة أخرى أكثر حكمة وأكثر
إقناعًا.

أما النظرية الرابعة ضمن نسب الحقيقة فهي نظرية التطور أو النشوء والارتقاء
التي أرسى قواعدها "داروين" في منتصف القرن التاسع عشر - وقد أثرت إليها توي -
والتي أثارت وما زالت تثير كثيرًا من الجدل، ولا أُدرج ضرورة لأنني أضيف هنا شيئًا
أكثر مما قد عرضه المؤلف في كتابه المائل بين يديك، وإن كنت أقترح على القارئ الذي
يريد التعرف على نظرية التطور من وجهة نظر أخرى أن يرجع إلى الكتب الممتازة الذي
صدر حديثًا عن مكتبة الأسرة بعنوان "الجديد في الانتخاب الطبيعي" لمؤلفه "روتشارد
دوكنز" والذي يستعرض فيه أراء المدارس الداروينية المختلفة.
هذه بعض من العديد من الأفكار الطريفة التي سيجدها القارئ في هذا الكتاب. نسيج الحقيقة، أنتجتها محاولات جادة لدمج أربعة من أحدث النظريات العلمية في نسيج واحد، لرسم صورة مبكرة عن المستقبل القريب والبعيد، صورة تفوق ما أتى به الكتب والشعراء ومؤلفو أفلام الخيال العلمي.

د. عادل يحيى أبو المجد

مصر الجديدة في نوفمبر 2006
مقدمة المترجم

كنت ولم أزل مفتيناً بالعلم وإنجازاته المذهلة التي أصبحت أكبر من قدرة إنسان
اليوم على الاستيعاب على حد تعبير د. زويل، والذي تسارعت جذوته منذ النصف
الأخير من القرن الفاقي، وقد أشارت إلى هذا المعنى على نحو أو آخر عبر متن مقدمة
محاولة السابقة في الترجمة التي حملت عنوان "الاتجاه من الله"، والتي جاسب مؤلفه
د. بول دافيكس - المخصص حاليًا في العلوم الجديدة نسبًا - علم الأحياء
الكوني. في أعمق الكون محاولًا سبر أغواره كيف بدأ وإن لم يتوجه بنفسه ويبناع عملاً
بقول الله تعالى: "قل سيروا في الأرض فأنظروا كيف بدأ الخلق" (2.20، العنكبوت).

وهنا تجد - قارئي - محاولة أخرى لنفس المنظور ولكن من زاوية أخرى، حيث
يرى لبديء من العلماء أنه بتوجيه القوى الكبيرة المسطرة على الكون
"الكهرباءن الطبيعية والقوى النووية القوية والقوى النووية الضعيفة والجاذبية" في معادلة
واحدة ستكون قد وقفنا على سر الكون (تحقيق توحيد الأولي والثانية في شكل
الكهرباءن الطبيعية والجهود متصلة من أجل التوحيد النهائي وإن بشكل لا يوجى
باقتراح هذه النهاية على المدى المنظور) كما أن بعضًا من العلماء يرون أنه لا جويد
مناكم من توجه الجهود لهذا الضمجر، وقرب من الآخرين مؤلفنا الحالي إذ يرى أنه
لدينا عددًا من النظريات الناجحة التي قدمت لنا أفضل تفسير متاح للكون الخارجي

17
حولنا وبدرجة كافية للسيطرة على ما نحتاج إليه حيث لا بغية لنا سوى إدراك الحقيقة المحضة ما أمكننا ذلك للوقوف على نسيجها الحق الذي تتشكل خيوطه الأربعة من نظريات أربع هي: النظرية العامة للنسبية، ونظرية ميكانيكا الكم، ونظرية الشوهر والارتفاع، ثم نظرية المعرفة - تلُمَّك في السادة والأنهار للحقيقة التي نعيش فيها، وهي بدورها ليست باقية أبدًا على ما هي الآن ولكن سيلحق بها التطور والتحسين المستمران إلى حيث تصل بنا إلى غدً ما مأمول، وكل ما علينا هو أن نأخذها بالجدية الصارمة وأن نربطهم معًا برنا وثيق كما نبلغ ما نصبه إليه.

وأستطيع هنا أن أدعى لتأتي أجعل واحدًا من الرجال الذين تصورهم أفلاطون وهو يحب رمز الشهر زمز الكهف الذين كانوا يقيعون فيه وهم مقيدون من الخف وفداً وقدرة على النظر إلى ما ورائهم ووجههم مصبوحة إلى أمام حيث ينير الكهف التي تظهر عليه خيالات متكونة عليه مما كان يجري خارجه حيث الضوء الباهز الذي لا يسلل منه إلا في داخلة إلا النذر البسيط والذي يسمع ببعض الخيالات، فإذا ما قضى لأحدهم أن يفك إسارة متعلقًا إلى خارج الكهف إلى الضوء الغامر فلا شك أنه سيدرك أن ما يراه الآن هو الحقيقة وأن ما كان يراه قبلًا هو مجرد ظلال للحقيقة وبمجرد تمام هذا الإدراك عند هذه ستندل إليه الرغبة العارمة في الإسراع إلى زمانه لإبلاغهم بذلك. أي أن يقصد من قصته الزمنية تلك أن من بطل على ما يعتقد أنها الحقيقة فستدفعه الغرفة إلى ضرورة إبلاغ من لا يعلمون بها. وهذا هو ما ألقبه بالضبط. وأنا في هذا لست إلا مجرد هاور - ولست محترفًا في مجال العلم أو مجال الترجمة - لا يأتى جدًا ما استطاع إلى ذلك سبيلًا في تحرير الدقة والأمانة في نقل الموضوع الذي أرى أن أعطيه عنوانًا "كيف يفرون"؟ وعلم وصل إليه فكرهم وأكثره باد من أمامنا وحولنا ومن خلفنا ممثلاً في شارع للعلم ننمو به جنبًا.

هذا ما قصدته وما سأستمر عليه ما حبيت بعد أن أتساءل على الطرق على نحو كاف أن يبدو كأنه لا سبيل - في أمام مقبلة أو مقولة - إلى تدارك الأمر واللائق.
بالتناسبين الأول في المضمار، وبعد أن تخلفنا عن ركب العلم إلى درجة أكاد أصفها
بأنها مزية مخزية وهو ما يعرفه الجميع قاصراً كان أو دان ولست هنا في مجال وصف
وتفسير الظاهرة التي أوجبت أن تتجاوز ومن ثم تناول في أوطانا التي باتت لا تقدم
للعالم شيئًا على الإطلاق سوى الكلمات وحدها التي بدورها - وكرد فعل للظاهرة ذاتها
لم تعد مسموعة أو تحظى بأي اهتمام ينكره، ثنيي لا أجد أي خصوصية في أن
أواجه نفسي بذلك الحقيقة الجلية والمجرة في أن معنا، وأن يحذو غيري نفس المنحى حيث
لم تعد هناك نخبة أو عامة من يرون أن يماروا في هذا سوي البعض ممن يتجاوزون
الحاضر والمستقبل معًا اكتفيا بالماضي الذي انقضت عليه قرون عديدة حتى أصبح من
ثانيا التاريخ ومكانه لا يعد أوقف المكتبات محصورة على هؤلاء ممن يفتنون بوقائع
 زمن انقضت وقفة من الأخررين - تصل إلى حد الندرة - يأخذونه مأخوذ الاعتبار
والتدبر.

وعلى كل ما يؤخذ على الترجمة في عمومها من مأخوذ أو هناك والتي أجملها -
تقريبًا - السيد/ خيرى منصور في مقالته المعنونة "الترجمة" في العدد ٩٤ من مجلة
"الكتب" وجهات نظر في نوفمبر ٢٠٠٩ من المحتم أن يكب أناس على فعل الترجمة
لكافة صنوف المعرفة - وأرى أن العلم والأدب يأتين على رأسها. لتنقلا إلى العربية -
كيف يفكر الآخرون؟ وما الذي هدأ إليه هذا التفكير؟ ومن ثم يعكف آخرون من ذوي
 الخبرة والدراسة في تخصصه على التحليل والتثقيب عن السبب وراء تراجعا وكيفية
تجاوز المحقنة وبلغ الأرب والتي توصل لخطة مدروسة ذات مواقين محددة - مهما
طالب يجرى تنفيذها تحت مظلة جمة حرة لها ما يكفي من الوعي والإرادة والصولة
وعم طريق رجال بات الزمن شحيحاً بهم علينا، وربما يسبب هذه الخطة أكلها ويثير
من بين أشياء أخرى - من الشرء من يمتثل بهدف ويطلق وضعاً أمام ناظريه
هؤلاء الأفكار الذين غيروا بأعمالهم العقلية وجه العالم مرات إثر مرات - وإن بدرجات
متفاوتة - حتى وصلنا إلى ما هو عليه الآن.
لعلي - بعد ذلك - أكون قد أوضحت غايتي ومرامي من الأمر كلّه ثم لعلني وقفت في مسعاي بعد أن جاهدت قدرًا ما استطعت أن أتجنب تلك الهنات...
والله ولى التوفيق.
منير شريف
هذا الكتاب مُهَدٌدٔ لِذَكَرِى كَارل بوير وهيو إيفريت واَلْان تورنج تِم رِيتشارد داوكنز. لقد أخذ الكتاب أفكارهم بالجدية الواجبة.
مقدمة المؤلف

لم يكن هناك ما يعتبر حافزاً يمكن أن يكون وراء هذا الكتاب حول رؤية العالم، فهو الشك العمق والامتتان لتحقيق الاكتشافات غير العادية للعلم، نحن الآن نحوز عدة نظريات أكثر عمقًا عن بناء الحقيقة. إذا كان لنا أن نفهم العالم على مستوى أكثر مما هو ظاهر منه فيكون ذلك عبر البرهان وعبر هذه النظريات وليس من خلال مفاهيمنا المسبقة أو الآراء التي نستقبلها أو حتى الحس العام. نظريتنا الجيدة ليست فقط أصدق من ذلك الحس العام وإنما تذهب إلى مدى أبعد منه.

ومن الواضح أن نأخذها إذاً بجدية وليس مجرد الأساس البرمجاتي "الفعلي" لما تمنحه لنا من مجالاتها الخاصة ولكن كونها تفسر لنا العالم. كما أتمنى أن نستحق الكثير من وقائنا فيما يتعلق بفهم أكبر أو لم نأخذ كل واحدة منها على حدة وإنما باعتبارهم متصلين فيما بين بعضهم البعض، وباعتبار أن هذا الاتصال أمر لا يمكن تجنبه فهم مرتبط بشدة وعلى نحو لا ينفصَم.

قد يبدو اقتراحًا على جانب من الفراغ أننا نحاول تشكيك نظرة عقلانية ومتماسكة عن العالم ووفقًا للنظريات الأساسية، فذلك قد يبدو غريبًا أو نوعًا من القص. ولكن هذا هو ما يحدث عمليًا. شئة سبب لذلك يتحصل في أن هذه النظريات عندما نأخذها بالجدية الواجبة سنجد أن كلها منها يتضمن عدة حدسات متعددة أو متضاربة.

وبالتالي فكل أنواع المحاولات التي قامت لتجنب مواجهة المعاني المتضمنة في تلك النظريات من خلال التعديل أو معاودة التأمل فيها أو التطبيق المتضمن لجلالتها
المتعددة، أو استخدامها تجريبيًا دون انتظار الكثير من ورائها أو توسيع دائرة النتائج المرجوة منها. ولسوف أنتقد بعض هذه المحاولات التي أعتقد بعدم جدارة أي منها، وذلك عندما يصبح من المقنع أن أشير إليها لشرح تلك النظريات ذاتها. حيث إن هذا الكتاب - بصفة مبدئية - ليست دفاعًا عن تلك النظريات وإنما هو بغرض البحث فيما سيكون عليه نسيج الحقيقة فيما لو كانت تلك النظريات صادقة.
على سبيل التعريف والإقرار:

تطورت بقوة الأفكار التي تناولها الكتاب عبر المناقشات التي جرت بيني وبين
Enrico Rodrigo وMichael Lock Wood
Frank Tipler (1943-2023) وJohn D. Bower (1947-2010)
Dennis Sciama (1926-2018)

(1) بريس س. دي ويت (1961-2004) Bayerische Akademie der Wissenschaften (Bayerische Akademie der Wissenschaften) كان يعلم عالمًا استراتيجيًا في مجال الفيزياء، وتعلم مناهج جامعة ميونخ، والذي من بينها كتابه "المستقبل للحيوانات في الكون".

(3) ميشيل (مايكل) لوكوود (1947-2011) هو عالمًا استراتيجيًا في مجال الفيزياء، وهو واحد من أساتذة الفيزياء الكمية.

(4) دينيس ويليام سكيمانا (1926-2018) هو عالمًا استراتيجيًا في مجال الفيزياء، وهو واحد من أساتذة الفيزياء الكمية.

(5) فرانك جي تيلر (1943-2023) هو عالمًا استراتيجيًا في مجال الفيزياء، وهو واحد من أساتذة الفيزياء الكمية.

(6) تومي لان (1970-2010) هو عالمًا استراتيجيًا في مجال الفيزياء، وهو واحد من أساتذة الفيزياء الكمية.

(7) جون د. بور (1947-2010) هو عالمًا استراتيجيًا في مجال الفيزياء، وهو واحد من أساتذة الفيزياء الكمية.

(8) د. بور (1947-2010) هو عالمًا استراتيجيًا في مجال الفيزياء، وهو واحد من أساتذة الفيزياء الكمية.
وجون هولير وكليا رولف John Wheeler وكريستن نايت Caroline Knight وفادرا ميرشانداني Tikuoh Deutsch وأيضاً جون وودروف John Woodruff، وبصفة خاصة لـ سارة لورنس Sarah Lawrence لقرأتهم النقدية الشاملة للمرة الأولى لهذا الكتاب واقتراحاتهم لتصحيح وتطوير أفكاره. هذا بالإضافة لعرفاني لهؤلاء الذين أضافوا تطبيقاتهم على أجزاء منه لدى قراءتهم النسخة البدنية للكتاب والذين من بينهم Steve Graham وستيف جراهام Harvey Brown وريثيل نيرج Svuein Olav Nyberg ورسيل ر. سترمل Richard Dawkins وفراون تيلر Frank Tipler ونبرك دوكنز Oliver and Harriet Strempel وأوغرك ب. ر. سترمل.
الفصل الأول

نظرية كل شيء
أتذكر عندما كنت بعد طفلاً صغيراً حين كان يقال لي إنه من الممكن لشخص نال قدرًا عالٍ من التعلّم أن يعرف كل شيء عن كل ما هو معروف وقدّنت.

أما هذه الأيام فقد قيل لي أن المعرفة أصبحت كثيرة وأنه لا يمكن لشخص أن يعرف - يفهم - أكثر من شريحة رفيعة منها مما طال به العمر، مما أدهشني وخيّب ظني في أن معا. وفي الحقيقة رفضت أن أصدق ذلك وإن لم أكن قادرًا على التدليل على عدم تصديقي ذلك. ولكنني عرفت أنني لم أكن أريد للأشياء أن تكون كذلك كما انتابتي الإحساس بالحسد للدارسين القديم.

ولم يكن الأمر أنني أريد تذكر كل المعلومات المنصوص عليها في دوائر المعارف المختلفة عن العالم بل على العكس أنا أكره حفظ الوقائع والحقائق. ولم يكن هذا المستوى من العقل الذي قصدت أن تكون عليه فكرة معرفة كل ما هو معروف. وما كان ليجربني أن يقال لي إن كثيراً من المعاني المضمرة في الطبيعة تظهر كل يوم بما يفوّق قدرة المرء على الإحاطة بها على مدى عمره، أو مثلًا أن هناك ١٠٠٠٠ نوع من جنس الحنفيسة. ولم يكن لدى رغبة في تتبع مبزوّت كل عصفور. كما لم آتيح أن أحداً من الدارسين القديم ممن يفترض أنهم يعرفون كل ما هو معروف كان يعرف مثل هذا النوع من المعلومات. وإنما دارت في عقلني فكرة متميزة عما هو جدير بالعرفة. "العرفة" التي أعني بها "الفهم".

وفكرت أن المرء يمكنه أن يفهم كل ما هو قابل للفهم ربما تكون فكرة مبهرة ولكن من الواضح أن الفكرة الأقل إبهارًا منها أن تكون للمرء قدرة حفظ وتذكر كل الحقائق المعروفة. وعلى سبيل المثال فلا أحد يمكنه تذكر كل قائمة البيانات الملاحظة عن موضوع ضيق مثل حركات الكواكب، ولكن كثيرًا من الفلكيين "يفهمون" هذه الحركات لأقصى ما هو ممكن فهمه منها.

هذا ممكن لأن الفهم لا يعتمد على معرفة الكثير من الحقائق عن الموضوع وإنما على امتلاك مبادئ وتحليلات ونظريات صحيحة. إن نظرية بسيطة قابلة للفهم يمكنها
أن تغطي ما لا نهاية له من الحقائق التي تبدو عسيرة الهضم. كما أن أحسن نظرياتنا عن حركة الكواكب هي النسبية العامة لأنشطائنا (أ) التي نستند في وقت باخر من القرن العشرين بنظرية نيوتن عن الجاذبية والحركة حيث تتباث بشكل صحيح - من حيث المبدأ - ليس فقط حركة الكواكب بل أيضاً كل أثر الجاذبية إلى أقصى حد يمكن لمقاييسنا الصحيحة المتاحة أن تدركه. لأن أي نظرية تهدف للتنبؤ - من حيث المبدأ أيضًا - يعني أن التنبؤ ببعض النظرية ذاتها منطقياً حتى لو كان اختيارها يحتاج إلى قدر من الحوسبة أكبر من قدرة التكنولوجيا على أن نتواءم معه، وحتى لو كانت أضخم فيزيائيًا من أن نتمكن من سحب خواصها على أي مكان في الكون نجدها فيه.

إمكانية التنبؤ بالأشياء أو وصفها، بصرف النظر عن الصحة، ليست جميعها نفس الشيء كفهمها. التنبؤ بالأشياء ووصفها في الفيزياء عادة ما يعترف عنه بالمعادلات الرياضية. افترض أننا حفظت المعادلة، واستطعت، أو امتلكت الوقت والرغبة، حساب مواضع الكواكب المسجلة في الأرشيفات الفلكية ما الذي أكده قد جنحته، أكثر مما حصلت عليه من عملية حفظ الأرشيفات مباشرة؟ المعادلة أسهل في الحفظ والتنبؤ، ولكن منظور عدد من الأرشيفات ربما يكون أسهل من حساباتها من خلال المعادلة.

ميزة المعادلة أنه يمكن استخدامها في عدد من الحالات غير محدود فيما وراء قائمة المعلومات المؤرشفة، فيما يتعلق مثلًا بالتنبؤ عن المستقبل من خلال ملاحظاتها الآتية. ويمكننا أيضًا أن ندلنا على تاريخية مواضع الكواكب بشكل أكثر صحة ذاك أن المعلومات المؤرشفة تحتوي على أخطاء في الملاحظة. بالإضافة إلى هذا فإن المعادلة يمكنها تلخيص عدد لا نهائي من الحقائق أكثر مما هو متاح في الأرشيفة باعتبار ما

(أ) ألبرت أينشتتائين (1879 - 1955) فيزيائي أمريكي ألماني المولد، وفي عام 1921 Albert Einstein (Albert Einstein 1879 - 1955) American physicist of German origin. In 1921 (الترجمة : نيلز عام 1921)
نعرفه من أنها - الأرشفة - لا تعنى بفهم حركات الكواكب. الحقائق لا يمكن فهمها من مجرد تحليلها في معادلة باكثر من وضعها على الورق في قائمة لكي يمكن ربطها بالذاكرة الحافظة. وإنما يمكن فقط فهمها من خلال شرحها.

ومن حسن الحظ أن أحسن نظرياتنا تتضمن شروحات عميقة فضلا عن تنبؤات صحيحة. النظرية العامة للتفسير تشرح الجانبية من منظور هندسي رباعي الأبعاد لزمان ومكان منحنية. إنها تشرح بدقة كيف أن هذه الهندسة تؤثر في المادة وتتأثر بها. هذا الشرح هو أكثر ما يرضينا في النظرية، التنبؤ بحركات الكواكب هو واحد من التداعيات التي يمكن استخلاصها من الشرح.

ويجعل النظرية العامة للتفسير أكثر أهمية، ليس مجرد أنها تنبأ بحركات الكواكب بدرجة أكثر صحة مما تستطيعه نظرية نيوتن ولكن لأنها تكشف وتشرح مفاهيم مسبقة وغير متوقعة عن الحقيقة مثل انحناء الزمان والمكان وهذا بالضبط هو النموذج للشرح العلمي. النظريات العلمية تشرح الموضوعات والظواهر الموجودة بيننا وذلك المتضمنة في الطبيعة والتي لا تمر بها خبرائنا بشكل مباشر.

ولكن قابلية النظرية لشرح ما يتحلل تجاربنا ليس هو أهم مساهماتها، إلا أن مساهمتها الأهم هي أنها تشرح النسيج الذي تشكل منه الحقيقة. وكما سئر أن أهم مساهمة ذات معنى ومفيدة للتفكير الإنساني عموما هو القابلية لشرح والكشف عن نسيج الحقيقة.

ومع ذلك فإن بعض الفلاسفة وحتى بعض العلماء يضعون من قيمته الشرح في العلم، الأمر بالنسبة لهؤلاء هو أن أهم أغراض العلم ليس هو شرح أو شيء ولكن التنبؤ بما يخرج من نتائج التجارب. أقصى ما يرضيعهم هو تلك القدرة التنبؤية. بالنسبة لهم فإن أي شرح متساسك ومتين يمكن لأي نظرية أن تعطي لنا يتساوي مع أهميتها التنبؤية بل إن هذه الأخيرة تفضّل أي شرح على الإطلاق طالما ظل التنبؤ...
صحيحًا، وهذه النوعية من النظر هي التي يطلق عليها اسم "الادواتية" أو "النواتجية"، لأنها تقول أن أي نظرية ليست إلا ذريعة أو أداة لصنع النتائج. بالنسبة لؤلؤة فإن الفكرة القائلة بأن العلم يمكننا من فهم الحقائق المتضمنة في الطبيعة والتي تعتمد بها ملاحظاتنا، هي فكرة مضللة ووهيمية. إنهم لا يكادهم رؤية كيف أن أي نظرية علمية يمكننا أن نقول شيئًا وراء النتيجة بنتنبرج التجربة هو ليس أكثر من كلمات فارغة.

كما يلاحظون أن الشرح أساسًا هو مجرد دعوات سيكولوجية أو نوع من الخيال الروائي نجسه في شكل نظريات لجعلها أكثر سهولة في الحفظ والذكر أكثر ترضية لنا، والفيزيائيت (٦) ستيفن واينبرج: "الحاير على جائزة نوبل - كان واقعًا تحت تأثير المرج النواتجية حين وضع تعلقه المدهش التالي على شرح أيشتينايون للجانبية: أمم شيء هو أن تكون قادرًا على التنبؤ من خلال الصور الفلكية - الرقائق الصورة - بالترددات الخاصة بخطوط الطيف. وهكذا، وببساطة فليس مما أن نضع توصيفًا لهذه التنبؤات بناء على التأثيرات الفيزيوية لمجالات أو حقوق الجامعة على حركة".

٦ ضرب من البرامجاتية اصطناعية جون دوبي للمعرفة على أننا حياة أو وظيفة في جذوة الحياة حيث يقول: Instrumentalism إن العروفة التقنية قد تضمن عندما تصادفنا عقبة م، وأصبحت مفهومًا فلسفيًا أصاب نماذج وتقديمه على يد المثقفين الذين، في بعض الأحيان، أو فكرة ما هو قيمتة أو قيمتها كوسيلة للفعل، وأن أحد أن تكون هناك، وقد فعل دون ذلك الأفكار تحت لحلف المصطلح كعنوان لوجبات النظر في التعليم - كما أضاف هذه الدراسة أن الفهم لا ينتمي من أساس مسؤولية أو مسؤولية، ولكن ينتمي من الرفض الفعلي لوضع ناجح، ومن ثم فإن الأفكار يتم فيهم كاذبات من شأنها استبدال الصعوبة التي تبرز من مواجهة معضلة بالارتباك الذي يشعر به

(٦) ستيفن واينبرج Steven Weinberg (١٩٣٣ -...) فيزيائي أمريكي حصل عام ١٩٧٦ على جائزة Abdu Salam وشيدنون لي جلاشرو لبراءاتهم Sheldon Lee Glashow نويل مشاركة مع شهيدون لي جلاشرو في برنامج القضاء Abdus Salam Abdus Salam وشيدنون لي جلاشرو لإنشاء نظرية تفسير الحقائق المعروفة عن الإلكترونيماتيك. وتفاعل الضوء، وجعلت من الممكن التنبؤ بما يتحقق من تجربة تصميم فيها العناصر البدائية مع بعضها البعض ومن ثم ينتج عن ذلك التفجير المطلوب. (المترجم)
الكواكب والقوتونات (مثل الفيزياء السابقة على أينشتاين) أو على أساس اقحاء المكان والزمان (الجاذبية والكونية).

واينبرج والذئابيين الآخرون كانوا مخطئين لأنه من مهم الفيزيائيين النظرية
مثلى أن يصفوا الصور على رقائق الصور الفوتوغرافية لأن الدافع وراء إعداد
المعادلات ودراسة النظريات هو الفهم الأكثر والأحسن للعالم (من المؤكد أن هذا هو
نفس الدافع عند واينبرج وهو ليس مفروضاً لذلك برغبة المجادلة في أمر التنبؤ أو ألوان
الطيف) وحتى لدى أية دعاوى عملية محضة فإن قوة الشرح هي العظيم أما قوة
التنبؤ فهي قوة إضافية. إذا بدا ذلك مدهشاً، تخلص عالم يعيش خارج الأرض ثم جاء
زيارة الأرض وأعطانا أكثر من تكنولوجيا غاية في التقدم واستثثع هذا الوسيط
الروحيانى أن نجدنا باستطاعة التنبؤ بنتائج أي تجربة ممكنة دون أن نبدنا بآية
تفسيرات أو شروح، بالنسبة للذئابيين فإنه في وجود هذا الوسيط الروحيانى لن تكون
بحاجة إلى مزيد من استخدام النظريات العلمية إلا كوسيلة للمتعة. ولكن هل هذا
صحيح؟ كيف سنستخدم هذا الوسيط الروحيانى عمليًا أو في التجربة؟ سوف يحتوي
الوسائد على المعلومات اللازمة مثلًا لبناء سفينة فضاء تتحرك بين جاذبية الكواكب.
لكن كيف بإمكنا سيساعدنا هذا في بنائها بالفعل أو بناء وسيط روحيانى من نفس
النوع؟ أو حتى مجرد نوع آخرين من مصائد الفئران؟ الوسيط الروحيانى يمكنه فقط
التنبؤ بنتائج التجارب. ولذلك فإنه لكي يمكننا استخدام تلك السفينة الفضائية فإن من
أول ما يجب أن نساندهل التجربة إذا ما أعطينا تصميم السفينة والتفاصيل المقترحة
لاختبار الطيران، هو أن تخبرنا على أي نحو سيكون سلوك السفينة الطائرة خلال
رحلتها. ولكن حتى لو تنبؤنا بأن السفينة التي صممتها ستتفجر لدى إقلاعها فلن
يمكنها إخفارنا عما يجب أن نفعله لتجنب مثل هذا الانفجار. ولعل ذلك يظل ممكنًا
التعامل معه وقبل هذا التعامل وقبل حتى أن نشرح في تحسين التصميم بأي طريقة
فلا بد لنا من فهم، من بين أشياء أخرى، كيف من المفترض أن تعمل سفينة الفضاء

33
هذه. وهذا فقط عندما تكون لدينا فرصة اكتشاف ما الذي يمكنه أن يحدث مثل هذا الانفجار لدى الإقلاع. التنبؤ - حتى لو كان تامًا أو تنبؤ كونيا - ليس بديلا عن الشرح والتفسير.

وبالمثل فإنه في أي بحث علمي لن يدمج الوسيط الروحياني ذاك بيئة نظرية جديدة.

إلى حين أن تكون لدينا واحدة بالفعل وفقًا في تجربة ما لاختبارها. هل من الممكن أن نسأل ما الذي يمكن حدوثه فيما لو أشرت النظرية عن عدم تطابق مع تلك النظرية. وهكذا فإن الوسيط الروحياني لن يحل محل النظرية على الإطلاق، وإنما سيحل محل التجربة فقط وسيوفر علينا عناء إقامة المعالج والتسرع المتزايد للعناصر. وبدلاً من بناء نماذج سفن فضائية والمخاطر بإرجاء القادة الأخباريين لهذه السفن، فإنه يمكننا أن نقيم كل التجارب بقيادة يجلسون داخل سفنهم بنظام "الطيران التمثيلي" المحكوم السلوك مستعينين بنتائج الوسيط الروحياني.

سيكون الوسيط الروحياني ذاك مفيدًا في مواقف عديدة إلا أن فائدة ستعتمد دائمًا على قابلية البشر على حل المعادلات العلمية بالطريقة التي يعرفونها على الأقل باستفادة نظرياتهم الشارحة. وحتى إن يحل محل كل عملية التجربة لأن قابليته للتنبؤ بنتائج تجربة معينة سوف تعتمد عمليًا على سهولة وصف التجربة بدرجة من الدقة والصحة للوسيط حتى يتسنى له أن يعلمنا تنبؤ نفسه المستوي وعلى نحو مفيد وذلك بالمقارنة مع إجراء التجربة في الواقع. ربما يكون وصف بعض التجارب باستخدام اللغات التقليدية أكثر من غيرها إذ أنه من الناحية العملية فإن الكثير من التجارب معقد إلى درجة يصعب وصفها. ولذا فسيكون لدى الوسيط الروحياني نفس الزراعة واللامزيا كأي مصدر آخر من مصادر المعلومات التجريبية ولكن يكون مفيدًا فقط إلا في الحالات التي تكون استفادة أكثر إقناعًا لنا مما لو لجأنا إلى مصادر أخرى.

والتضح هذا المعني بعبارات أخرى: هناك بالفعل وسط آخر بالخارج هو العالم الفيزيائي. إنه يخبرنا بنتيجة أي تجربة ممكنة فيما لو وجهنا إليه السؤال باللغة.
المناسبية (أعني إذا قمنا بالتجربة فعليًّا) ولو أنه في بعض الحالات سيكون من غير الواقعي بالنسبة لنا الدخول إلى وصف التجربة كما هو مطلوب (أعني بناء وتشغيل الأجهزة). ولكنفق (الوسط) لن يمدنا بائيا شروحة.

في قليل من التطبيقات مثل الأرصاد الجوية سوف نرضى بوساطة روحاني تنبيؤ محض تقريبياً كما نرضى بوجود نظرية شارحة. وحتى هنا سيكون مفيداً ومباشرةً في حالة أن تكون تنبؤاته الجوية كاملة وتامة. عملياً فإن التنبؤ الجوي لا يكون تامًا أو كاملًا ولذلك فهم يضمتنون التنبؤات بشروحة تفسر كيف للمتبينين الجويين الوصول للنتائج التي ذكرها. الشرح هي التي من خلالها نستطيع الحكم على مصداقية التنبؤات واستنتاج مزيد منها تبعًا لاحتياجاتنا وموقعنا الجغرافي. على سبيل المثال فسيكون هناك فرق لو أن تنبؤات اليوم الجوي تخبرني أن الغد ستزداد فيه الرياح بناء على توقع اقتراب منطقة ضغط جوي مرتقي، أو الاقتراب من أي إعصار ما. وسوف يكون أكثر حذرًا مع هذه الحالة الأخيرة. نفس رجال الأرصاد الجوية يحتاجون لنظرية شارحة تفسر لهم الكثير حتى يتمكنوا من تخمين أي تقريبات أكثر أمانًا في العمليات الحسابية المثل (الجود المحاكي) في الكمبيوتر، وأي اللائيات الإضافية التي تسمح بالتنبؤات كتي تكون أكثر دقة في التوقيت وفي صحتها هي ذاتها وهم جرئ.

وعلى هذا يكون التلخيص الأمثل للذرائعى عبر هذا الوسيط الروحاني المتخيل هو إخلاء النظرية العلمية من شروحاتها سوف يكون بالتأكيد ذا نفع محدود. ودعنا نكون شاكرين أن النظرية العلمية ليست كذلك وأن البلاء في الواقع لا يعملن طبقًا لهذا المثال.

واحدة من الحالات القصوى للذرائعى تسمى الوضعية (أو الوضعية المنطقة) وتدعو أن العبادات التي لا تصف أو تتبع باللاحظة ليست فقط خادعة وإنما أيضًا غير ذات معنى ولو أن هذه العبارة الأخيرة ذاتها بغير معنى، وفقاً للفلس المعياري الذي
تستخدمه، ويرغم ذلك فقد كانت هذه النظرية هي السائدة طوال النصف الأول من القرن العشرين وحتى أيامنا هذه فإن الذراعية والوضعية لا تزال أفكارهما ذات قيمة، وواحد من الأساليب لأن تكون معقولة ولو ظاهريًا أنه لو أن التنبؤ ليس هو غرض العلم إلا أنه يمثل واحدة من سمات النهج العلمي. الأسلوب العلمي يفترض نظرية جديدة لشرح بعض مستويات الظاهرة ثم يقوم بإجراء تجربة اختبارية حاسمة، تجربة تنبأ بالنظرية القديمة بقيمة ما إحدى القياسات الناتجة عنها بينما تنبأ النظرية الجديدة بنتيجة أخرى وعلى المرء حينئذ أن يلزمه النظرية التي يثبت أن نتائجها كانت خادعة. وهكذا فإن نتائج التجربة الحرة أو الحاسمة تلك هي التي ستقرر أين النظرتين أحق بالتصديق بناءً على مدى اتفاق التنبؤات الصادرة عن أي منها مع نتائج هذه التجربة وليس بشكل مباشر من خلال شروط كل منهما. ذلك هو واحد من مصادر الالتزام في أن النظرية العلمية ليست أكثر من تنبؤاتها. إذ أن الاختبارات الجوهبية هي بدء مقياس العمليات الودية المحك في عملية نمو المعرفة العلمية. الأغلبية العظمى من النظريات العلمية التي تم رفضها كانت بسبب احتوائها على شروط سئية وليس لأنها لم تقع تجريبيًا. وقد رفضناها دون حتى الانتظار باختبارها. وعلى سبيل المثال النظرية القائلة بأن تناول ما مقداره كيلو جرام من الحشائش يشفي من مرض البرد. هذه النظرية تمثل تنبؤًا قابلًا لتجربة اختبارية: لو أن الناس حاولوا قبل هذا العلاج ووجدوه غير فعال فسوف يثبت أن النظرية زائفة. ولكنها لم تختبر وربما لن يحدث مستقبلاً ذلك لأنها لا تحتوي أي شروط أو تقديرات أو حتى كيف سيعمل هذا الشفاء المتطور وعلى أي شيء سيكون. نحن نرفضها دفعة واحدة ونفترض خداعها. يوجد دائمًا عدد من النظريات المشابهة المكثفة، متناشئة أو متساوية مع الملاحظات القائمة. نقيم تنبؤاتها عنها دون أن يكون لدينا الوقت أو المصادر التي يمكننا من اختبارها جميعًا. إننا نختبر تلك النظريات الجديدة التي تبدو كأنها تعدنا بشيء مشروحة أكثر مما تفعل تلك النظريات السائدة.
إن القول بأن التنبيؤ هو غرض النظرية العلمية لهما من قبيل خلط الوسائط بالانتهاكات. إن مثل القول بأن الغرض من سفينة الفضاء هو حرق الوقود لأن الواقع يقول أن حرق الوقود هو مجرد وحيد من بين أشياء عديدة على السفينة أن تقوم بها لتحقيق غرضها وهو نقل الشحنة (أيا كن أن) من نقطة في الفضاء إلى نقطة أخرى. اجتياز التجارب الاختبارية هو واحد من أشياء عديدة على النظرية أن تجريها لتحقيق الغرض الحقيقي للعلم ألا وهو شرح وتفسير العالم.

وكما قلت فإن الشرح يقدم لنا - على نحو لا يمكن تجنبه - في مصطلحات جزء من التفسير، لا تحلجها مباشرة مثل الذرات والقوى، وما هو داخل النجوم، ودورات المجرات المشابهة، وماضي وحاضرة قوانين الطبيعة، وكلما تعمقت الشرح كانت بعيدة عن التجربة الأدنى تبعًا للخصائص الحقيقية التي تشير إليها. وليس وجود هذه الخصائص من قبيل الخيال القصصي، على العكس من ذلك في جزء من نسيج الحقيقة الفعلي.

عادة - ما يجعل التفسير في طياته التنبيؤ بشيئة، بالطبع عندما يكون شيء - من حيث المبدأ - قابلا للتنبيؤ به فسكون الشرح الكامل عنه والرضى متضمنا - من حيث المبدأ أيضًا - من بين أشياء أخرى هذا التنبيؤ، ولكن عدبيًا من غير القابل للتنبيؤ (في ذاته أي من حيث جوهره) يمكن أيضًا أن يكون مشروحاً وقابلًا للفهم. على سبيل المثال لا يمكنك التنبيؤ بما هي الأرقام التي ستتوقف عندن عجلة الروبوت في مباراة عادلة (غير لتحليزه). ولكنك لو فهمت تصميم عجلة الروبوت وكيف تقوم بالأدأ في مباريات عادلة، حينئذ سوف تتمكن من تفسير كيف أن التنبيؤ بالأرقام هو من قبيل المستحيل، ولربة ثانية ليس مجرد عليك بأن عجلة عادلة هو نفس الأمر كفهمك للذي يجلبه عادلة.

فإن الفهم وليس مجرد المعرفة (أو الوصف أو التنبيؤ) وهو ما أناقشه. لأن الفهم يأتينا عبر نظريات شارحة، ويسبب العمومية التي قد تسم هذه النظريات، فإن تكاثر
وتواجد الحقائق المسجلة لا يجعلها عصيّة على فهم كل ما هو قابل للفهم. ويصرف النظر عن أن معظم الناس ربما يقولون - وهذا من تأثير ما كان يقال إلى مما استرجعه عن طفولتي - ليس فقط أن كمية الحقائق المسجلة قد تزايدت إلى مستوى هائل ولكن الزيادة شملت أيضاً عدد النظريات التي نفهم العالم من خلالها ومدى تعقدها. ويقولون أيضًا - يبعّذا لذلك - أنه سواء كان ممكنًا أو لا بالنسبة لأي شخص أن يفهم كل ما كان مفهوماً في وقت ما فإن ذلك بالتأكيد من المستحيل الآن، وإن الاستحالة سوف تزداد أكثر وأكثر مع نمو المعرفة. ربما يبدو أنه مع كل مزيد من الوقت يُكتشف شرح جديد أو تقنية جديدة تُفصّل أو تتصل بموضوع معين، نظرية أخرى تضاف للقائمة التي تلزم شخصًا يريد أن يتعلم ويفهم هذا الموضوع، وعندما يكون عدد تلك النظريات عن الموضوع هائلًا فإن فكرة التخصص تبرز حينئذ. علم الفيزياء على سبيل المثال قد انتشر إلى علوم عديدة منها: الفيزياء الفلكية، الديناميكا الحرارية، فيزياء الجسيمات الأولية، نظرية المجال الكم، وكثير غيرها كل منها مؤسس على إطار نظرى ثرى جداً لدرجة تساويه مع ثراء الفيزياء منذ مائة عام، بل وكثير منها قد تشبع بالفعل لزيد من التخصص داخل التخصص. وكما اكتشفنا المزيد كلما صعب تجنب انخرطانا في عصر التخصص، وكلما بعد ذلك الزمن الثاني القائم على الافتراضات حين كان شخص واحد يوصف بأنه يفهم فإن فهمه يتضمن كل ما كان مفهوماً وقتئذ.

وفي مواجهة هذا النمو المتسارع والواسع لقائمة الطعام (إذا جاز التشفير) والتي تشتمل جميع النظريات المسجلة منذ بداية الجنس البشري، فإن المرء أن يشك في أن أي أحد يمكن أن يتنوق واحداً من كل أطباق القائمة على مدى عمره. على الرغم من أن هذا سبب أن كان ممكنًا يومًا. فإن الشروح هي نوع غريب من الطعام وأي مقطع كبير منه ليس صعب البلع بالضرورة. إن نظرية جديدة قد تزود أو تلغي أخرى سابقتها لأنها تحوز مزيداً من الشرح، وعلى تصبح النظرية القديمة فائضة عن الحاجة.
بينما نشجع نكم أكثر فهماً وفي حاجة أقل للدرس والتعلم كما كنا عليه من قبل. هذا
عن Nicolous Copernicus
ما حدد عندما ظهرت نظرية نيقولاس كوبيرنيكوس (فسح).
دوران الأرض حول الشمس التي أزاحت النظام البطليموسي المعقد الذي وضع الأرض
في مركز الكون أو تكون النظرية الجديدة عبارة عن تبسيط لنظرية قائمة، مما جاء
الأعداد (ذات النظام العشري) بديلاً عن الأرقام الرومانية (النظرية هنا مفهومة ضمن
كل ملاحظة تعاليم عملية ممتعة وعبارات وأفكار عن الأرقام أكثر بساطة من غيرها
والذّاك كانت تحوّى نظرية عن أي العلاقات بين الأرقام تكون ذات فائدة ومتمتعة).
وأو أن النظرية الجديدة تصبح مجرد توحيد بين نظريتين قد رنتجما وتعطينا فهماً
أكثر مما أو استخدمنا كل نظرية منها على حدة كما حدث عندما وجد ميشيل
James Clerk Maxwell و جيمس كليرك ماك심ويل (فسح)
فاداراي (فسح) نظريتي الكهرباء والمغناطيسية في نظرية واحدة "الكهرمغناطيسية". كثير من الشروح
غير المباشرة في أي موضوع تهدف إلى تنمية تقنية أو مفهوم أو لغة نستطيع من

(فسح) نيقولاس كوبيرنيكوس (1473 - 1543)

الاعتراض على نظام مركزية الأرض المنشوب إلى بطليموس، واستبداله بنظام مركزية الشمس الذي
تسمي باسمه الباب، وسمع للعلم الحديث. (الترجم)

(فسح) مايكل فاداراي (1824 - 1877)

فيزيائي و كيميائي إنجليزي ساهمت تجاربه
بشفاء في الكهرباء والمغناطيسية، وفي عام 1831 اكتشف الموتير الكهربائي وصنع موديلًا بانائيًا له ثم
طوره بعد ذلك بعد اقتتاله بالعلاقة المتداخلة بين الكهربائية والمغناطيسية (الكهرمغناطيسية). كما انتج
أول ديامش ودرس العوازل الكهربائية، ومن أبرز مؤلفاته "معانيات كيمياوية" و"بحوث تجريبية في
الكهرباء" و"بحوث تجريبية في الكيمياء والفيزياء" و"رسالة محاضرات في التاريخ الكيميائي للشمعة
وزحل القوى المختلفة في الطبيعة". (الترجم)

(فسح) جيمس ماكسويل (1831 - 1879)

فيزيائي إسكتلندي، وقد أعطت نظرية في
الكهربرومغناطيسية، كما تسمي باسمه: "حول التدفق المغناطيسي في السطح"، وقدم وهو في
سن 14 بحثًا عن اكتشافات الإطارات، فضلاً عن أنه أول من أنتج صورة طلودية، كما بحث في
الحلقات المعطينة بكركل زحل ورابطةها بالميكانيكا والنظرية الديناميكية للف zar (الترجم)
خلالهم فهم موضوعات أخرى، وهكذا هي المعرفة بشكل عام بينما تزداد انتشارًا، وتتكاثر فهى من حيث بنائها تصبح طبعة لأن تكون مفهومة.

فمن المسلم به، وهو ما يحدث عادة، أن النظريات القديمة عندما تصبح جزءًا من كل أكبر ضمن نظرية جديدة فإن تلك القديمة لا تهمل أو يتم نسيانها. حتى الأرقام الرومانية لا ما زالت تستخدم اليوم لأغراض معينة. الأساليب المعقدة التي كان يستخدمها الناس في الحساب مثل إيجاد أن حاصل ضرب في XIX يساوي XVII 017 × 19 = 322 لم تعد من الأمور الجادة أو البازرة وإن كانت بلا شك لا تزال معلومة ومحفوظة في مكان ما، مثلا لدى مؤخرين الرياضيات هل يعني هذا أن الآلة لا يستطيع فهم كل ما هو مفهوم دون معرفة الأرقام الرومانية وحسابهم الملغز والعكس هو الصحيح. فإن أي رياضياتي معاصر لم يسبق له أن سمع بالأرقام الرومانية يمكنه أن يجري فهم كامل ما يتصل بها من عمليات رياضية. بل أن تعلم ما يتعلق بالأرقام الرومانية لن يضيف إليه معرفة جديدة، إلا ربما بعض حقائق لها سمة تاريخية، حقائق عن خصائص بعض الرموز المعرفة تحكمًا أكثر مما يجب أن يعرفه عن الأرقام نفسها. مثل أي عالم حيوان يتعلم كيف يترجم أسماه الأنواع إلى لغة أجنبية عنه، أو فلكي يتعلم كيف اختفت حضارات مختلفة في ضم مجموعة من الاجهود في أبرز.

إنه لأمر آخر أن تعرف وجهة النظر التاريخية - كيفية الحساب بالأرقام الرومانية - افترض أن نظرية تاريخية ما - أو بعض من الشروط - تعتمد على تقنية الرومان في عملية "الضرب" (والآخرون على سبيل المثال، وكما تم حديثه، أن تقنيتهم في

(5) الترقيم الروماني نظام الأرقام ابتدته روما القديمة مبني على مجموعة من الأرقام وهي (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) (L = 50, C = 150, D = 500, M = 1000, X = 10) وكتبت الأرقام بناءً على قاعدتين الأولى أن حرفها أو أكثر مكتوبًا، بعد حرف آخر أكبر مباشرة تجمع الأرقام فالرقم XX يساوي 20 والرقم XXV يساوي 25 والمقدار الثاني أنه إذا سبق رقم أصغر رقمًا أكبر تطرح الأرقام V يساوي 40 وXL = 900 و(XL) (المراجع)
الأعمال الصحية المعتمدة على الواسير الوراثية قد تسببت في تسميم مياهم، وبالتالي ساهمت في تراجع الإمبراطورية الرومانية. وفي هذه الحالة سنحتاج لفهم هذه التقنيات من أجل فهم التاريخ. وأيضًا لفهم كل ما هو مفهوم، أما في حالة عدم وجود تيار تاريخي يعتمد على عملية "الضرب" فإننا لن نفهم جيدًا أو بشكل كامل، ولذا فإن تسجيلنا لهذه التقنية هو نوع من جعلها حقيقة أثرائية (من قبيل الأثار). كل شيء مفهوم يمكن فهمه بدون الحاجة لمثل هذه الحقائق. فيما ننظر إليها (المعلومات الأثرائية) عندما نطلع ونحتاج لفك شفرة مخطوطة قديم ترد به الإشارة إليها.

واستمرارًا في محاولة التمييز بين الفهم وبين مجرد المعرفة، أنا لا أرغب في فهم أهمية المعلومات المسجلة غير الشرارة. بالطبع هي ضرورية في كل ما يتعلق بإعادة إنتاج النظم البيوكرستوبيولوجية العضوية (التي فيها مثل هذا النوع من المعلومات في جزيئات الدنا الخاصة بها) بالنسبة للاقتصاص تفكير بشرى تجريدي. وهنا ما الذي يميز الفهم عن مجرد المعرفة، ما هو الشرح أو التفسير في مواجهة مجرد عبارة عن حقيقة مثل وصف (صحيح) أو تنبؤ ما؟ من الناحية العملية فنحن عادة ما نستطيع التمييز بينهما بسهولة كافية. فنحن نعرف عندما لا تفهم شيئًا حتى لو كان موصوفًا أو متناً، وهكذا نحن نحو صحيح بمعنى عملية وجود مرض معروف ولكن من غير المعروف أصله عضويًا. ثم نعرف عندما يساعدنا شرح ما على فهمه أكثر أو أحسن. ولكن من الصعب وضع تعريف محدد للشرح أو "الفهم". على سبيل المقول - مجرد القول - الشرح يتعلق بـ "لماذا؟" والفهم ينطلق من "ماذا؟". أما عن العمل الداخلي في الأشياء: عن كيف تكون الأشياء في حقيقتها وليس كما تبدو في ظاهرها؛ حول ما يجب أن تكون عليه وليس مجرد ما يحدث منها؛ حول قوانين الطبيعة أكثر من أن تكون حول قوانين تشير لهذه الطبيعة. إنها أيضًا حول حساب التماسك والتبسيط بالمقابل مع التحكم والتقدير حتى ولو أنه ليس سهلا أيضًا تعريف ذلك. وعلى أي حال فإن الفهم هو واحد
من أهم وظائف العقل والمخ لدى البشر، ووظيفة أيضًا متفردة. وكثير من وظائف النظام الفيزيائي مثل أمخاخ الحيوانات والكمبيوترات والمانكنين الأخرى يمكنها أن تستوعب الحقائق وأن تعمل عليها. ولكننا حاليًا لا نعرف أي كائن قابل لفهم الشروح أو راغبًا فيه بالدرجة الأولى - سوى العقل البشري. إن أي اكتشاف لأي شرح أو تفسير جديد، وكل عمل من شأنه جنِّي شرف قائم يتمتع على الخاصية الفريدة لدى البشر المتمثلة في التفكير الإبداعي.

المرء يستطيع أن يرى ماذا يحدث للأرقام الرومانية عند تنزيل مستواها من نظرية شارحة إلى مجرد وصف للحقائق. مثل هذا التنزيل في الدرجة يحدث دائمًا عندما ننمو معارفنا. ويصفها مبدئية أو جذرية فإن النظام الروماني للأعداد يشكل جزءًا من الإطار المفهومي والنظر إلى منها خلاله يفهم الناس العالم. أما الآن فإن الفهم المطلوب الحصول عليه في هذا الاتجاه - فهم العالم - هو مجرد رفعة رفيعة من الفهم التعمق المتضمن في النظريات الرياضية الحديثة، بما تحوه من استخدام الرموز.

هذا من شأنه أن يوضح مساهمة أخرى للفهم. فمن الممكن أن تفهم شيئًا دون معرفة أن شخصًا آخر قد فهمه، أو حتى مجرد سمعه. قد يبدو هذا كما لو أنه متناقضًا، ولكن من حيث أقصى درجات العمق، فإن الشروح العامة تطلى المواقف غير المعتادة مثل تلك المعتادة بالفعل. إذا كانت رياضياتيًا معاصرًا تواجه الترقيم الروماني لأول مرة ربما لا تميز لأول وهلة أنك بالفعل قد فهمته. سوف تحتاج في البداية أن تتعلم نطاقه ثم تنظر إليه من منظور فهمك الحديث. ولكن بمجرد أن تفعل ذلك سوف تكون قابلاً في استخدامه للأحداث - للتساؤل: لم يُسهم هناك جديد وراء الحقائق في هذا النظام الروماني؟. وهذا يعني القول بأن الترقيم الروماني في قاعدته المفسرة ليس أكثر من نظام عتيق تمامًا.
وهذا يشبه قولي إنني أنظر كيف يؤثر انحناء المكان والزمن على حركة الكواكب حتى في نظام شمسية لم أسمع عنها، وأننا هنا لا أدعى أنني يمكن دون أفكار مستجدة أن استدعى لعقلنا أي شروح تقضيات دوران أو تذبذب مدارات الكواكب. ما أعنيه أنني نفهم النظرية التي تحتوي كل هذه الشروح، ولهذا أستطيع أن أستنتج آليا منها طبقا لتغذيتها عندما أحصل على معلومات عن أي كوكب معين. وعندما أفعل ذلك أستطيع القول – عند استرجاع ما حدث – *نعم أنا لا أرى في حركة هذا الكوكب سوى مجرد حقائق لم يكن سبق شرحها في النظرية النسبية العامة.* إننا نفهم نسبيا الحقيقة فقط بفهم النظريات التي تشرح ذلك، وطالما هي تشرح لنا أكثر مما ننتبه إليه على الفور يمكننا أن نفهم أكثر مما لم ننتبه له منا.

أنا لا أعني بقولي هذا أنه عند فهمنا للنظرية فإن ذلك يستتبع بالضرورة أننا فهمنا كل ما يمكن أن تشرحه. فمع النظريات المتعمقة للغاية فإن التعرف على أنها تشرح ظاهرة معينة يعني في حد ذاته اكتشاف له معاونه يحتاج شرحًا مستقلًا. على سبيل المثال: أشباح النجوم هي مصادر مضيئة للغاية للإشعاعات في مركز المجرات – والتي كانت لعديد من السنوات واحدة من ألغاز الفيزياء الفلكية. كان مُعتقدًا في إحدى المرات أن الفيزياء الحديثة تحتاج إلى شرح ذلك إلا أننا الآن نؤمن أنه تم شرحها من خلال النظرية النسبية العامة ونظريات أخرى كانت معروفة بالفعل قبل اكتشاف أشباح النجوم. نحن نعتقد أن أشباح النجوم تكون من مادة ساخنة (ملتهبة) في طريقها للتحول إلى البقع السوداء (ويحذو النجوم انحرار على نفسها إلا أن مجال جاذبيتها مركز لدرجة أن أي شيء لا يستطيع الإفلاس منها). ولأن الوصول إلى هذه النتيجة تطلب أعوامًا من البحث سواء على أساس الملاحظة أو على أساس التنظير فإننا الآن نعتقد أننا جنبًا إلى جنب لفهم أشباح النجوم ولا نظن أننا كنا نمتلك مثل هذا الفهم من قبل.

وشرح أشبة النجوم، ولو من خلال النظريات القائمة، قد أعطانا فيما جدلياً عبقريا، وبما أنه من الصعب تعريف ما هو الفهم فإنه من الصعب أيضًا تعريف الشروح كجزء
مساعد من عملية أن يكون الشيء مفهوماً، وعندما يعتبر مصطلفاً كجزء من نظرية أعمق. إنه من الصعب تعريفه ولكن ليس صعباً تعييذه. لأنه في الشرح بصفة عامة فإنه من الناحية العملية فإنا سنعرف ما هو جديد من الشروح حين نجدها. مرة أخرى يتعلق الفرق بالإبداعية. شرح حركة كوكب معين، حينما يكون المرء فاعلاً الشرح العام للجانبية، يصبح مهمة ميكانيكية حتى لو كانت مهمة معقدة. ولكن استخدام نظرية قائمة لحساب أشباه المجوم يتطلب تفكيراً إبداعياً. وهذا لفهم كل شيء في الفيزياء الفلكية اليوم على أن تعرف نظرية أشباه المجوم بالتفصيل لكنك لن تحتاج لمعرفة المدار الخاص بآي كوكب معين.

وعليه فإن مخزوننا من النظريات المعروفة، أشبه بمكتبة التلج المخزنة لدينا. مخزوننا من الحقائق المسجدة، كليهما لا يجعل البناء الكلي أكثر صعوبة مما كان عليه في مجال الفهم. لأنه بينما تصبح نظريتنا الخاصة عديدة وأكثر تفصيلية فهي تستمر في أن تصبح أقل في الدرجة طالما تجاوزتها بما تحويه من فهم، النظريات الأكثر عمكاً وعمومية. وهذه الأخيرة تصبح أقل من حيث العدد ولكنها أكثر عمقاً وأكثر عمومية. وأقصد بـ "أكثر عمومية" أن كلا منها يقول ما هو أكثر عن مستوى أعرض لحالة أكثر مما قالت فيه مضى النظريات المتميزة. وأعني بـ "أكثر عمقاً" أن كلا منها يشرح أكثر مما يتضح فيما أكثر - مما احتوته أسلافها من النظريات مجتمعة.

منذ قرون مضت إذا كنت تحتاج إلى تشييد بناء كبير مثل كوبير أو كاتدرائية لا شك كنت تستخدم في هذا معلم بناء. وكان لا بد أن يعرف مثل هذا الرجل بعض المعلومات عما يحتاجه هذا البناء ليصبح قويًا ومستقرًا باقل ما يمكن من النفقات والجهد. ولم يكن قابلاً للتعبير عن الكثير من هذه المعلومات بلغة الرياضيات والفيزياء، كما نستطيع أن نفعل اليوم. وبلاً من ذلك سوف يعتمد على مجموعة معقدة من الحدود "البدئيات"، والعادات، وقواعد البناء والتي تعلمها جميعًا من معلمه السابق الذي تدرب على يديه وربما يضيف إليها بعضًا من تحسيناته هو ومستندته إلى خبرته.
العملية. ومع هذا فإن مثل هذه الحدوسات والعادات وقواعد العمل حتى في النظريات ذات التأثير إما واضحة جلية أو غير ذلك والتي تشمل المعلومات والمعرفة عن الموضوع الذي نطلق عليه في أيامنا هذه "الهندسة و الهندسة المعمارية". لقد كانت المعرفة التي تحتويها تلك النظريات والتي من أجلها كنا سنستخدم مثل هذا الرجل فقيرة للغاية وجديدة بالشفقة إذا ما قورنت مع ما نعرفه عن ذات الموضوع اليوم، وأيضًا ذات نطاق ضيق في مجال القابلية للتطبيق. عندما يعجب الناس بعظمة الأبنية القديمة عادةً ما ينسون أن ما يرون هو فقط الأبنية التي لم تزل قائمة. الأغلفة العظمي الهائلة من أبنية القرون الوسطى وما سبقها من قرون انهارت جميعها منذ أزمة طويلة بل وبعضها سقط بعد بناؤها بوقت قصير. لقد كان هكذا الأمر، ابتكارًا في ميدان البناء. لقد كان معتقدًا أو مضمونًا أن الإبتكارية تعني المخاطرة المأساوية، ونادرًا ما كان البناءون يحيدون عما أثبتته تقاليدهم طويلة الأمد وجعلته أكثر صلاحية. وبالمقارنة بآيامنا الحالية فمن النادر أن أي بنا - حتى ذلك الذي لا يشبه أي شيء سابق بنائه من قبل - يمكن أن ينهار بسبب أخطاء في التصميم. أي شيء كان "العلم" القديم قد بناء فإن زملائه الحديثين يمكنهم بناء ما هو أحسن منه بمجهود بشري أقل بكثير. بل يمكنهم بناء ما كان هو لا يتجاوز على العلم به، مثل ناطحات السحاب ومخططات الضوء. يمكنهم استخدام مواد لم يكن ليسمع بها مثل الألياف الزجاجية أو الأسمدة "المقوية" والتي كان سيستخدمها بصراحة حتى لو أثبتت له، ذلك أن لديه فهماً ضيئلاً ومغفلًا عن كيف تعمل هذه المواد.

الوصول لما عليه معرفتنا الجارية لم يبيّن فقط على تراكم نظريات أكثر حول ذات الموضوع، كما كانت معافرة "العلم" القديم. إن معافرةنا الواضح منها وغير الواضح ليست فقط أكثر مما كان يعرف ولكن اختلفت من حيث بنائها أيضًا. وكما قلت فالنظريات الحديثة أقل في العدد ولكنها أكثر عمقًا وأكثر عمومية. لأن كل حالة كان يواجهها ذلك "المعلم" أثناء قيامه بالبناء في زمنه - قال مثلاً قراره بتقديم سمك هائل
لم تتحمل قدرًا معيّناً من الثقل عليه (قوة التحميل) وما شابه - فقد كانت لديه مجموعة حدوات متوازنة وقواعد عمل ليسير عليها ولو استخدمت في أبتينية حديثة فربما تكون حلولها لنفس الحالات خاطئة. اليوم الرجل يستنتج مثل هذه الأشياء من نظرية لها من العمومية بما يمكن تطبيقها على حائط مهما كانت المادة المستخدمة في بنائه: فوق القمر، تحت الماء أو في أي مكان. لماذا هي عامة إلى هذا الحد ذلك أنها تقوم على شروط عميقة عن كيف تعمل المواد وكيف يعمل البناء. لكي تعرّف على سمع الحائط المصنوع من مادة غير معتادة سوف تستخدم ذات النظرية شأن أي حائط آخر فقط أبدا حساباتك بفترات مجموعات حقائق مختلفة مستخدمة العديد من القيم المختلفة المقابلة. على المرء أن يتخذ في الاعتبار هذه الحقائق، مثل شدة (التيتر) المادة وقوتها ومرونتها، إلا أن المرء لن يحتاج إلى فهم أكثر. بالرغم من أنه لا مقارنة بما احتاجه البناء القديم من فهم عما يحتاجه العملي الحديث، فذالك هو السبب في أن الأخير يطلب له تدريبا أطول وأكثر مشقة. إن نظرية تقليدية في بحث يقرر طالب ربما تكون أصعب في الفهم عن كل ما كان لدى البناء القديم من قواعد العمل، وإن كانت النظريات الحديثة أقل عددًا إلا أن قوة شرويحها تمنحهم خواصًا أخرى مثل الجمال، النطق الداخلي، إيجاد العلاقات بين الموضوعات المختلفة مما يجعل قدرتهم على التعلم أكثر سهولة. بعض من قواعد العمل القديمة تُعرف الآن على أنها خاطئة، وبعضها صحيح، أو قريبة من الصحة، ونحن نعرف لماذا هي كذلك. القليل منها لا يزال يستخدم. ولكن أيها منها لم يعد بعد مصدرًا لفهم أي ما كان عن كيف يقوم البناء.

بالطبع أنا لا أنكر أن التخصص يُعد تصحيحيًا في عدد من الموضوعات عبر تطور المعرفة والتي من بينها الهندسة المعمارية. إنها ليست عملية ذات اتجاه واحد، لأن التخصص يحتاج إلى ديوان العجلات لم تعد تصنع أو تصمم من خلال حقوق مختبرها ولا تحتوي الأرض عبر حقوق صاحب المحراث الأول أو تكتب الحروف من خلال
الخطأين. ولو أنه مجرد دليل على أن الميل للتبوع والتوجيه الذين وصفتهم ليس وحدهما في العمل إنما التوسع يرجى أيضًا في نفس الوقت. أي أن أفكارًا جديدة دائمًا لا تنسيغها فقط وإنما أيضًا تبنيتو وتوجد أفكارًا أخرى. وتمتد بالفهم البشرى إلى مناطق لم تكن قبلا مفهومة على الإطلاق ولا كان وجودها ذاته يرد على أي فكر. هذه الأفكار تفتح فرصة جديدة، ومعضلات جديدة، وتخصصات جديدة. وحين يحدث ذلك فإنها تطلينا - ولو بشكل موجه - الميزات لتعلمنا كي نفهم الكل.

علم الطب ربما عادة ما يظهر لنا حالة كثرة التخصص هذه بما تزداد فيه المعرفة التي تحتتمها العلاجات الأحسى ومحاولات شفاء المزيد من الأمراض التي تكتشف تباعًا. ولكن حتى في مجال الطب - أي على عكس ما سبق - فإن الاتجاه للتوضيح أيضًا حاضر ويزداد قوة. أعرف أن وظائف عديدة للجسم لم يزل فهمها محدودًا، وكذا آليّة الكثير من الأمراض. وتبعدًا لذلك ف희مة مناطق في المعرفة الطبية لا تزال تحتوي أساسًا مجموعة من الحقائق السجلة، وتفسير الأمر بالنسبة لمهارات الأطباء حديثهم الذين لديهم الخبرة بأمراض معينة وعلاجات معينة، وهي الخبرات والحدس التي تنتقل من جيل إلى الذي يليه. ويكمل أجزئه أخرى فإن جزء كبير من علم الطب لا يزال في عصر قائمة قواعد العمل، وعندما تكتشف قواعد جديدة للعمل فهناك بالطبع إعتنًا للتخصص. إلا أن البحوث الطبية وبحوث الكيمياء الحيوية تأتيتنا بشرح أكثر عمقًا عن عمليات الأمراض والعمليات الصحية في الجسم أي مزيد من الفهم، ثمة مفاهيم عامة تحل محل مفاهيم محددة في عادة، تنطوي تحت السطح الظاهر للجسد في بعض أجزائه، تصل تلك المفاهيم إلى الميكانيزم الجنسي لأمراض غير مشابهة أو متتاينة. بمجرد إمكان فهم مرض ما متموضعا في إطار عام فإن قاعدة التخصص يقل شأنها هنا. وبدلا من هذا يأتي الطبيب إلى مرض غير مألوف أو تعقيدات نادرة ليعتمد بشدة على النظريات الشارحة. إنه يستطيعون ذلك بالأخذ في الاعتبار الحقائق.
المفهوم. ولكنهم بعد ذلك يكونون قابلين لاستخدام نظرية عامة في العلاج المطلوب
ويتوقع أن تكون فعالة حتى ولو لم يسبق استخدامها من قبل.
وعلى هذا فإن عملية فهم كل ما هو مفهوم هيل تصبح أصعب أم أسهل، مسألة
تعتمد على التوازن العام بين أثرين متعارضين تبرزهما عملية نمو المعرفة: التوسع
الرائد في نظرياتنا، والزيد من التعميق لها. التوسع يجعلها أصعب بينما التعميق
يجعلها أسهل. واحدة من فرضيات هذا الكتاب أن التعميق يربع الجولة بالتأكيد ولكن
ببطء. وبكلمات أخرى، فإن الاقتراح الذي رفضته أثناء طفولتي هو بالتأكيد خادع
وبتحديد فإن عكسه هو الصحيح. إننا لا نستطيع إلى أن شخصا واحدا يمكنه فهم كل
ما هو مفهوم ولكننا نسير في هذا الاتجاح.
ليس معنى هذا أننا في القريب ستتمكن من معرفة كل شيء فذاك موضوع آخر
مختلف كلها. أنا لا أعتقد أننا الآن ولا في المستقبل سنكون قريبا من هذا الفهم لكل
شيء قائم. أنا فقط أناقش إمكانية فهم كل شيء ممكن فهمه والذي يعتمد على بناء
معرفتنا أكثر مما يعتمد على محتوى هذه المعرفة. ولكن بالطبع فإن بناء معرفتنا
- حيث توجد نظريات قابلة للتعبير عنها ومتناوبة مع بعضها البعض بحيث تؤدي إلى
فهم عام - يعتمد على ما هو نسج الحقيرة، على نحو عام. فإذا ما كانت المعرفة
مباشرة إلى نهاياتها - المفتوحة - وأنا متجهون إلى حالة أن فرد ما يمكنه فهم ما هو
مفهوم فإن على عمق نظرياتنا أن يستمر في النمو السريع كفاية لتصبح هذه الحالة
ممكنة. وهذا يحدث فقط إذا أمكن تحقيق توحيد عالم المستوى لنسج الحقيرة حيث
يصبح مفهوما أكثر وأكثر نمو المعرفة. وإذا ما حدث هذا ستكون نظرياتنا عامة
جدًا وعميقة ومتمايزة مع بعضها البعض وتصير - بشكل فعال - نظرية موحدة لنسج
الحقيقة. هذه النظرية ستظل غير شارحة لكل مظاهر الحقيقة قابلة فهذا مما لا يمكن
إجرازه. ولكنها سستحتوي كل الشروط المعروفة ويمكن استخدامها لكل نسج الحقيقة
طالماً أمكن فهمه، بينما كل النظريات السابقة يتعلق كل منها بموضوع معين فهذ

ستكون نظرية كل الموضوعات: نظرية كل شيء.

والطبع لن تكون هذه النظرية في الأخيرة وإنما الأولى فقط. نحن في العلم نكون

دائماً متناقدين (طبيعتهم) أنه حتى أحسن نظرياتنا ليست تامة بالكامل وأن بها

إشباليات على نحو ما، كما نتوقع أن يتم إزاحتها من خلال نظريات أكثر صحة وأكثر

عمقًا، ومثل هذا التطور لا يوقف في حالة اكتشاف نظرية عامة. وعلى سبيل المثال فقد

أعطانا نيوتن أول نظرية عامة عن الجاذبية وميكانيكا موحدة أرضية وسموائية (وذلك

من بين أشياء أخرى) إذ أن نظرية تلك تم إزاحتها عن مكانتها بواسطة النظرية

العامة للنسبية لأينشتاين التي أضفت رابطة بين الهندسة التي اعتبرت رسميةً من

قبل الرياضيات وبين الفيزياء وعلى هذا النحو أبدننا بشرح أعمق وأكثر دقة. أول

نظرية عامة بالكامل والتي سُميتها "نظرية كل شيء" مثلها مثل كل نظرياتنا قبلها

وبعضها لن تكون صادقة بالكامل ولا غير متنازلة العمق أي هي الأخرى سيتم

إزاحتها، ولكن هذه الإزاحة لن تتم بتوحيدها مع نظريات ن موضوعات أخرى لأنها

نفذهنًا فعلاً ستكون نظرية كل الموضوعات، بعكس النقلات الكبيرة في

الفهم تأتي عبر توصيات كبرى أو عبر تغييرات بنائية في الأُطُهاذة التي نفهم بها

موضوع معين - مثلنا كنا معتقدمين بفكرة أن الأرض هي مركز الكون. بعد أول نظرية

كل شيء فلن تكون هناك توجيهات كبرى، كل المكتشفات الكبرى التالية لها ستأخذ

شكلاً مختلفاً في الأُطُهاذة التي نفهم فيها العالم ككل، مجرد دورات في وجهة نظرنا

عن العالم. إحراز نظرية لكل شيء سوف يكون آخر توجيه كبير وفي نفس الوقت

النقاط المفصلية نحو نظرية جديدة للعالم. وأنا أعتقد أننا الآن في الطريق إلى ذلك، إن

النظرة المشتركة للعالم هي الهدف الأساسي لهذا الكتاب.

لا بد أن أؤكد هنا وتوثى أنني أستشير إلى مجرد نظرية كل شيء التي يأمل

بعض فيزيائيين الجزيئات الأولية في الوصول إليها قريباً. نظريتهم المأهولة تلك ستكون

49
لتوضيح القوى الأساسية المعروفة في الفيزياء وهي بالتحديد: الجاذبية والكهرباء والمغناطيسية والقوى النووية القوية والضعيفة. والتي أيضًا، يتضمن كل جسيم دون ذري موجود مثل الإلكترون والبروتون والنيترون، حجمه ودوراته المغزولية وشحنته الكهربائية، وخصائص أخرى، كما تصف كيفية تفاعل هذه الجسيمات. إن إعطاء وصف محدد لكل نظام فيزيائي مغزول سوف يعطني - من حيث المبدأ - تنبؤًا عن سلوكه في المستقبل. حيث إن السلوك الفعلي لأي نظام لا يمكن التنبؤ به جوهريًا، فإن التنبؤ سيصف لنا كل السلوكيات الممكنة واحتمالاتها. التجربة العملية تقول لنا إن الحالة المبدئية لأي نظام يوجب اتباعنا عادة إلى ما لا نستطيع تأكيده على نحو دقيق جدًا، وعلى أي حال فإن حسابات التنبؤ ستكون معقدة إلا في الحالات البسيطة. ومع ذلك فإن مثل هذه النظرية الموحدة للجزئيات أو القوى الموجودة بالإضافة إلى تحديد الحالة الابتدائية للكون "الانفجار العظيم" سوف تشمل بالضرورة - من حيث المبدأ - كل المعلومات الضرورية للتنبؤ بكل شيء يمكن التنبؤ به.

(انظر شكل 1 - 1)

(شکل ١ - ١) تصوير غير واقع لنظرية كل شيء
ولكن التنبؤ ليس هو الشرح. النظرية الماملة عن كل شيء حتى لو تم ضمها إلى الحالة المبدئية لكون سوف تعطينا - في أحسن الأحوال - مجرد شريحة رقيقة من سطح نظرية حقيقية عن كل شيء. ربما نستطيع - من حيث المبدأ - التنبؤ بكل شيء، ولكن لا يمكن التوقع بأنها سترتحل لنا أكثر مما تفعله النظريات القائمة، فيما عدا قليل من الظواهر الدقيقة التي لا تكاد ترى بالعين المجردة للجزئيات دون الذرة وتفاعلاتها مثل التصادمات التي تحدث لها داخل الجسيمات. التحولات التي نختبرها على هذه الأجسام الأولية خلال الانفجار الكبير، ما الذي يجرينا لاستخدام مصطلح "نظرية كل شيء" مثال هذا المجال الضيق من المعرفة. إن كان مذهلاً أعتقد أننا خطأ في النظرية المبسطة العلمية نستعملها كثير من نقاد العلم بينما (الأسف) يوافق عليها عدد من العلماء. تلك النظرية التي تصف العلم بأنه يتعلق ب"التوصيل" أو التدريع لشرح الأشياء بتصغيرها عبر تحويلها إلى محتوياتها الأصغر. على سبيل المثال: مقاومة حائلة لأعراض أو الهدوم يتم شرحها بالنظر إلى الحائط كتكامل كبير لتفاعلات بين جزيئاته. خواص هذه الجزيئات يتم شرحها في ذاتها عبر ذراتها الأساسية والتفاعلات التي تتم بينها، وهكذا نزولاً إلى أصغر جزيء أو قوة أساسية. "التوصيل" يعتقد أن كل شرح علمي (وربما كل شرح عميق إلى درجة كافية) يجب أن يتحو من المنحى.

مفهوم التوصيل يقودنا طبيعياً إلى تصعيدات طبقية (هرمية أو ترابية) في النظريات باعتبار مدى قربها من أدنى مستوى من النظريات التنبؤية المعروفة. في هذه الطبقية يكون المنطق والرياضيات هما المحرك الأساسي الذي يبني عليه صرح العلم. أي أن الأحجار الأساسية (التأسيسية) لهذا الصرح سوف تكون نظرية التوصيلية.

(*) وجهة نظر فلسفية تعني أن وجود أي نوع هو تجمع من أشياء أصغر منه، وتجمعه في الواقع على نحو سببي أو كثير تبين على أساس النوع أو التعبير الذي يدل.
نظرية كل شيء، نظرية كونية لما دون الذرات والقوى والزمان والمكان جميعًا مع نظرية
عن الحالة الابتدائية للكون وكيف كانت. أما باقى الفيزياء فيتشكل الطوابع الأولى
الفلك والكيمياء يكتمل في مستوى أعلى والبيولوجيا ربما أكثر علوا وعمقًا. والصروح
الآخرى الفرعية في كثير من القمم ذات المستوى الأعلى والتلميذية هي مثل
 الموضوعات الكيمياء العضوية والبيولوجيا ذاتها وعلم الجينات. بينما تتعرّف في اللحاق
بالقمة أو ما يشبه السفر إلى الطبيعة العليا من الفلاسفة مجموعات مثل: نظرية
التطور، الاقتصاد، علم النفس وعلوم الحاسب التي ستكون في مثل هذه الصورة من
غير المتفائل أنها مشترسة من غيرها.

في الوقت الحالي لدينا تقدير تقريبي لنظرية كل شيء التصويرية والتي في
مقدورها أن نتبني بداية بقوانين حركة الجزيئات دون الذرة وهي منفردة وتستقع
كمبيوترات هذه الأيام من خلال هذه القوانين حساب حركة أي مجموعة منجزلة
للمجتمعات المتفاعلة بقدر التفاصيل إذا علمنا ما كانت عليه حالتها الابتدائية. ولكن
حتى قطعة صغيرة من أي مادة مرئية للعين المجردة تحتوي على تريليونات الذرات كل
منها يتكون من مجموعة جزيئات تتفاعل باستمرار مع العالم الخارجي لها. وعليه فإنه
من المتعذر التنبؤ بسلوكها جزئيًا بعد جزئي (أعني منفردا عن الآخر) ولكن بإضافة
القوانين المحددة للحركة ببرامج مختلفة متعددة يمكننا التنبؤ ببعض سمات سلوك
أكبر لبعض الموضوعات الكبيرة فعلا. مثلا عند أي درجة حرارة ستندوب أو تغلع تركيبة
كيميائية معينة. كثير من الكيميائيات صُغرى إلى الفيزياء على هذا النحو. ولكن في

= على هذه الوجوهات الأساسية، والفكرة وراء هذا أن الأجسام الفيزيائية عبارة عن تجمعات من
النوات، كما أن الأشكال هي تجمعات لتاثيرات الخص، وكليهما تشكلت للتصغير. وشبكة مثلي معي
التصغير جاء في فلسفة القرن الـ18-19. الوضعية المعلوماتية، التي تقول أن كل شيء، عبر عنه بعبارة
تنضم في طياتها وسيلة التحقق منها، تبدأ التحقق، 2- مناصرو وحدة العلم ذهبوا إلى أن وجود
النظام لبعض الخلاص الكبيولوجيا وعلوم النفس يتم تعريفها فيه بمصطلحات العلوم الأساسية مثل
الفيزياء، وعبر قوانين هذه العلوم. (الترجم)
العلوم ذات المستوى الأعلى فإن برنامج التصغير هذا هو مسألة مبدأً فقط. لا أحد يتوقع بالفعل استنتاج مبادئ علم الإحياء أو علم النفس أو السياسة على نحو ما يتم في الفيزياء. والسبب أنه لا يمكن دراسة هذا المستوى من العلوم على هذا النحو لأنه في ظروف معينة تجد أن هناك سلوكيات مذهلة ومعقدة لعدد واسع من الجزئيات تسمح (تنحل إلى) بمياع من التبسيط والقابلية للفهم. وهذا ما يسمى الانتباه: emergence

الظواهر ذات المستوى العالى التي تحور حقائق مفهومة ليست مستندة من نظريات ذات مستوى ضعيف تسمى ظواهر انترناشيونال على سبيل المثال: ربما يكون الحانق قويًا لأن بناته خشوا أن أعدائهم قد يحاولون إسقاطه في طريقهم إليهم. هذا شرح من المستوى العالى لقوة الحانق، ليس مستنبطًا من شرح آخر من النوع الضعيف حتى لو كان السبب المطروح حتى الطلب. استخدمت هنا بناء واعدا وخشية ومحاولة وهي جميعًا من قبيل ظواهر الانترناشيونال. الغرض من العلوم ذات المستوى العالى هو جعلنا قابلين لفهم هذه الظواهر والتي من بين أكثرها أهمية، كما سنرى، الحياة، التفكير، والحوسبة.

وبالم�نة فإن على العكس من التصغير هناك "القدسية" وهي الفكرة القائلة بأن أي تفكير صحيح وشرعي هو ذلك الشرح الذي يرجع إلى الأشياء إلى نظم متعلقة وهو نوع آخر أشد خطأ من التصغير، والذي يتوقع منه هؤلاء القدسيين أن نفعلها. انظر إلى بحوثنا عن الأصل الجزيئي للأمراض؟ ماذا إذا رفضت أن البشر مصنوعون من جزيئات دون ذرة؟ أيين تقع الشروط التصويرية؟ أنها تأمل وتتفاوت شأنا شأن كل الشروط الأخرى، إذ العلم كله قابل للتصغير إلى علم أقل في المستوى، عليه فإن المسيطر علينا نحن العلماء أن نعثر على هذه "التصغيرات" وذلك مثل أي اكتشاف لأية معارف أخرى.
التصغيري: يرى أن العلم ما هو إلا تحليل الأشياء إلى مكوناتها الأصغر.
الذراوي: يرى أنه "التبؤ" بالأشياء. وبالنسبة لكليهما فإن مسألة وجود علم ذات مستوى عالي هي مسألة ملازمة. التعقيد يحقون دون استخدام الفيزياء الأساسية في إجراء التنبؤات العالية المستوى. ولذلك فوضوعًا عن ذلك فإننا نحن ما ستقود عليه هذه التنبؤات إذا كنا قادرين على عملها - الإنصافيات (التي أشرت إليها) تساعدنا في إجراء ذلك بنجاج - ونفترض من ثم أنها ستقود موضوعًا للعلم ذات المستوى العالي.
هكذا الأمر بالنسبة "التصغيري" والذراوي: الذين على النحو يرفضون البناء الحقيقي والفرض الفعلي للمعرفة العلمية. قاعدة الطبقية التنبؤية تقوم بتعريف "نظرية كل شيء". وبالنسبة لأي آخر فإن المعرفة العلمية تحتوي على الشروح، وبناء أو تشكيك الشرح لا تعكس الطبقية التصغيرية. هناك شروح في كل مستوى من الطبقية. كثير منها استقلالي أي مفرد بنفسه ويشير فقط إلى مفاهيم هذا المستوى بعينه (مثال: الدب أكل العسل لأنه جوعان) الكثير من الاستنتاجات تذهب إلى عكس اتجاه الشرح التصغيري. لأنهم لا يشرحون الأشياء على أنها مشتقة على ما هو أصغر وأبسط منها ولكن على أنها هي نفسها جزء مما هو أكبر منها وأكثر تعقيدًا، والتي رغم ذلك لدينا نظريات شارحة لها. على سبيل المثال: فلننظر إلى إحدى نرات النحاس الواقعية على أرمنة أنف تمثال ونشيلت تشرشل بميدان البلان. ودعنا أحاول أن نشرح لما أصبحت هذه النرات موجودة في هذا الموقف: السبب أن تشرشل خدم كرئيس للوزراء في مجلس العموم بالقرب من المكان، ولأن أفكراه وساهمته في نصر الخلافة في الحرب العالمية الثانية، وأنه من التقاليد تكريم مثل هؤلاء الأشخاص بإقامة تماثيل له، ولأن البرونز هو معدن مالوف استخدامه في ذلك والبرونز يدخل النحاس في تركيبه... الخ.... هكذا نشرح ملاحظة فيزيائية في مستوى منخفض (وجود نرة نحاس في موقع محدد) عبر نظريات عالية المستوى جداً عن الظواهر الإنتباثية مثل: "الأفكار" و"الزعامات" و"الحرب" و"التقاليد" وهي جميعًا من قبيل الظواهر الإنتباثية.
ليس هناك سبب – حتى من حيث المبدأ – لوجود أي شرح منخفض المستوى لوجود ذرة النحاس أكثر من السبب الذي أشار إليه، افترض أن نظرية تصويرية لكل شيء سوف تصنع لنا – من حيث المبدأ – تنبؤًا من مستوى منخفض عن احتمالية وجود هذا التمثال، بدلًا حالات النظام الشمسي (مثلًا) في وقت قريب وأنها ستوصف أيضًا – من حيث المبدأ – كيف من المحتمل أن التمثال أصبح هناك. ولكن هذا الوصف وهذا التنبؤ لن يشرح لنا شيئًا (فضلاً عن خشونته وصعوبة تطبيقه) ربما سيصفون المنحني الذي تأخذه أي ذرة نحاس صادرة من النجم في طريقها إلى “المصهر” بأنيقة النحات وهكذا … ويمكنهم أيضًا أن يقرروا كيف أن هذا المنحني قد تأثر بفضل هذه النذر مع مثيلاتها المحيطة بها بما فيها أجساد رجال المناечен والنحاتين، وهكذا يتبناون بوجود شكل التمثال. في الواقع فإن مثل هذا التنبؤ لا بد أن يشير إلى كل الذرات في كل الكواكب، فضلاً عن التحركات المتعددة والصعبة التي نطلق عليها “الحرب العالمية الثانية” من بين أشياء أخرى. وحتى لو كانت لديك قدرة بشوية فائقة على تتبع هذا التنبؤ الطويل المدى الخاص بوجود ذرة النحاس هناك فلا تكون قادرًا على أن تقول: “نعم، لقد فهمت الآن لماذا هي هناك.” كل ما هناك هو مجرد معرفة أن وصولها إلى هناك بهذه الطريقة هو مما لا يمكن تجنبه (أو ما يشبه ذلك أو أيا ما يكون) عبر ما أعطيته من شكل مبديء للذرات فضلاً عن قوانين الفيزياء. فإذا ما كنت ما زلت راغبًا في معرفة السبب فلم يزل عليك (دون خيارات) أن تخطو خطوة أخرى.

لا بد أن تبحث في المظهر أو الشكل الذي تأخذه الذرات، وتلك المنحنيات التي يعطيها النزوع لتنمو في هذا الموقع. حتى هذا البحث سيكون من قبل المهمل الإبداعية شأناً كشفاً لمكتشفات الأخرى دومًا. كان تكتشف بأن مظرةً معينًا لبعض الذرات يبدأ ويساعد الظواهر الانتباهية مثل “الزعامة” وال”الحرب” التي ترتبطان مع بعضهما عبر نظريات شارحة من المستوى الأعلى. وعدناها فقط أى عندما تعرف تلك النظريات سوف تعرف لماذا أصبحت ذرة النحاس تلك في موقعها ذاك.
بالنسبة لوجهة النظر "التصويرية" للعالم فإن القوانين التي تحكم تفاعلات الجزيئات تحت الذريّة تكون لها الأهمية العليا لأنها أساس للطبقية القائمة في جميع المعارف. ولكن في البنية الحقيقية للمعرفة العلمية، ولكل معارفنا بصفة عامة، فإن هذه القوانين دور أكثر تواصعاً.

ما هو هذا الدور؟ يبدو لي أن أي من النظريات المرشحة كشيء من النظريات المرشحة كشيء هي التي لا تزال في مرحلة تأمل المحتوى أكثر من أن تكون نظرية شارحة جديدة. ربما أكثر وأحدث مجالات الاقتراب لذلك هي نظرية "الأوتار الفائقة" التي تحتوي على أجسام ممتدة "الأوتار" بدلاً من الجسيمات الشبيهة بالنقطة كائنات بناء المادة. ولكن أي اقتراح قائم حتى الآن لم يعطينا أي نوع جديد من الشروط أو التفسيرات. أعني بالتوافق مع تقديرات أيقنتان لقوى الجاذبية والانحناء الزمان والمكان. نظرية كل شيء تتوقع أن ترى في عناصر شروحتها، ومفاهيمها الفيزيائية، ولغتها، وتشكيلاتها الرياضية، وشكل شروحتها من النظريات القائمة فعلاً من المغناطيسية الكهربائية والقوى الذرية والأيونية. وعلى ذلك فعلياً ننظر لتلك المعارف وراء النظرية المستجدة والتي نعرفها بالفعل من النظريات القائمة وذلك من أجل مساهمة الفيزياء التأسيسية في مجال فهمنا الشامل والكلي.

ثمة نظريتان في الفيزياء تعتبران أعمق من غيرهما. الأولى هي النظرية العامة للنسبية، التي كما قلت قبلًا من أحسن ما لدينا عن الفضاء والمكان والزمان والجاذبية، والثانية هي نظرية الكم، وهي الأكثر عمقة. وبين هاتين النظريتين (ولبس هناك ما هو قائم فعلا أو يجري العمل به أو مما يتصور فيما يتعلق بالجزيئات دون الذريّة) يمكن أن يبدنا بشرح تفصيلي وإطار عام معتبر عما عبرته نظريات الفيزياء الحديثة قاطبة، وما يمكن أن يشكل ما يشبه قوس السماء (يقصد سقفًا) للعمل المعني لدرجة أن أي نظريات أخرى تكاد تتطابق معها وتطبع مبادئهما وافتراضاتهاهما. توحيد النظرية العامة للنسبية ونظرية الكم معا - ل büطياتنا نظرية جاذبية كمية - كان البحث
الأهم للفيزيائيين النظربيين على مدى عقود زمنية مضت، كما كان ليشكل جزءًا من أي نظرية لكل شيء سواء بالمعنى الضيق للمصطلح أو المعنى الواسع له، وكما سنرى في الفصل التالي فإن النظرية الكمية، مثلها مثل النسبية، قد أحدثت مراجعة ثورية في مجال شرح الحقيقة الفيزيائية. والسبب في أن النظرية الكمية أعمق من الأخرى يمكن خارج الفيزياء أكثر ما هو بداخلها. لأن فروعها وتشعيباتها عريضة للغاية وتعد إلى ما بعد الفيزياء وإلى ما هو أبعد من العلم نفسه كما هو مفهوم عنه عادة. النظرية الكمية هي واحدة مما سميته "البطفة الرئيسية" التي تشكل فهماً السائد لنفس الحقيقة ومما يتكون.

قبل أن نذكر الخيوط الثلاثة الأخرى، فإنه يجدر أن نشير إلى إحدى الطرق التي تفشل "التصغيرية" في تقديم بناة المعرفة العلمية بها. ليس فقط في افتراضها أن أي شرح لا بد أن يحتوي على تحليل أي نظام إلى نظام أصغر وأبسط منه، وإنما أيضًا لافتراضها أن أي شروح هي وقائع متنخرة بالمقارنة مع ما يمكن وصفه بوقائع مبكرة، ويعبّق آخر أن الطرق الوحيدة لشرح أي شيء هي الإقرار بسياقه. وهذا يعني أنه كمما شرحنا شيئًا على أساس حالتنا البدائية أي حالتنا البدائية، كلما كان شرحاً أفضل، حتى أن أحسن شرح نهائي لكل شيء يجب أن يكمن في عبارات وصف الحالة البدائية للكون.

 إن نظرية كل شيء التي تستخدم أو تقصى أي تخصيص للحالة البدائية للكون، لا تمثل وصفًا كاملاً للحقيقة الفيزيائية لأنها لا تمدنا إلا بقوانين الحركة، وهذه القوانين بذاتها لا تصنع سوى تنبؤات مشروطة. أو أنها لا تقرر لنا مستويات ما يحدث، وإنما ما الذي يحدث في وقت معين دون ما سيحدث في وقت آخر. فقط إذا كان هناك وصفًا كاملاً للحالة البدائية فإنه يمكن من حيث المبدأ استنتاج وصف كامل للحقيقة الفيزيائية. النظريات الكروزمولوجية (نظريات نشأة الكون) السائدة لا تمدنا بتصنيف كامل للحالة البدائية، حتى من حيث المبدأ ولكنها تقول أن الكون كان في
البداية صغيرة جداً وحارة جداً ومتجانسة جداً من حيث النسب، ونحن نعرف أيضاً أنه لا يمكن أن يكون متجانساً بدرجة من التسامح لأنه طبقاً للنظرية ذاتها سيكون متعذرًا تفسير هذا التوزيع للمجرات الذي نلاحظه الآن في السماء. التنوع (5) المبدئي للكثافة والكتل النافية لا بد أنها توزعت بهذا الجمال بفعل تجمعات الجاذبية (ذاك أن المناطق النسبية للجاذبية أعطت المزيد من المادة لتصبح أكثر كثافة). التي لا بد أنها كانت ضئيلة جداً في البداية، ولكن ولو أنها كانت هكذا فهي ذات معنى عملي في أي وصف تصويري للحقيقة، لأن كل ما نراه حاليًا حولنا بدلاً من توزيع النجوم والمجرات حتى وجود تمثال من البرونز على كوكب الأرض - من وجهة نظر الفيزياء الأساسية. هو نتيجة لهذا التنوع (التغير). إذا كان الوصف التصويري لا يغطي إلا الملاحم الكبرى لكوننا المذكور، فإننا إذن بحاجة لنظرية تحدد لنا كل التفاصيل الهامة المبدئية لعدم التجانس هذا.

دعاى أحاول محاولة التساؤل بدون هذا الخط الانحراف للمصورة. بالنسبة لأي نظام فيزيائي فإن قوانين الحركة تعطينا تنبؤات مشروطة وهي التي لا يمكن تجنبها فيما يتعلق بتاريخه هذا النظام (هذه المسألة مستقلة عن حدود التنبؤات التي وصفتها نظرية الكم التي سأشرحها في الفصل التالي). على سبيل المثال فإن قوانين الحركة هي التي تحكم مسار قذيفة من مدفع ينتج عنها العديد من الملاحظات التي تصف هذا المسار، أو ارتفاع فوهة الدفع عندما يوجه إلى الهدف وأطلق منه القذيفة (شكل 1-2) من الناحية الرياضية فإنه يمكن التعبير عن قوانين الحركة من خلال معادلات تسمى "معادلات الحركة". وهذه المعادلات تتضمن حلولاً مختلفة أي منها يصف كل منحنى ممكن، وتحديد أي من تلك الحلول هو الذي يصف المنحنى الفعلي، (6) هو "التغير". ولكن ربما تكون هذه الكلمة الأخيرة ثقة الواقع (مراجع).
لا بد من أن نضيف بيانات أخرى بعضها عن الذي وقع فيما. واحدة من الطرق للوصول إلى هذا هو أن تحدد الحالة الإبداعية، وفي هذا المثال نحن إلى أي اتجاه كانت تشير إليه. ولكن هناك طرق أخرى على سبيل المثال فإنه يمكننا بالمثل تحديد الحالة النهائية أي الموضع والاتجاه الخاص بالنقلة وقت وصولها للأرض. أو أن نحدد أقصى نقطة وصل إليها المحسن. لا يهم أي نوع أضفناه من المعلومات المساعدة طالما أنها تلتقط (أو تتجاوب) حالياً مناسبة من قوانين الحركة. التركيب بين أي معلومات ثانوية مع قوانين الحركة تكون مهمة لأي نظرية تصف كل ما حدث للقنيفة منذ إطلاقها وحتى اصطدامها بالأرض.

(شكل 2-1)

بعض المنتجات الممكنة لقنينة أطلقها بدقة. كل منها محكوم بقوانين الحركة. ولكن واحدًا منها هو المنتج الذي اتخذه القنينة فعلًا.

وبالمثل فإن قوانين الحركة بالنسبة للفيزياء بصفة عامة يمكن أن تحوي عدباً من الحلول، كل منها يتواجد مع لحظة تاريخية مميزة. ولكي نستكمل الوصف يلزم أن نحدد اللحظة التاريخية التي وقع خلالها الأمر بالفعل، عن طريق إضافة مزيد من المعلومات.
الإضافية الكافية لتسمح باستخدام واحد من الحول التي تطرحها قوانين الحركة.
وعلى الأقل، ففى واحد من النماذج الكيميولوجية فإن واحدًا من وسائل إضافة مثل هذه المعلومات هو تحديد الحالة البدنانية التي كان عليها الكون، أو بدلاً من ذلك يمكن تحديد الحالة النهائية للكون، أو حالته ليس كما في وقت آخر، أو ربما تعطى بعض المعلومات عن الحالة البدنانية وبعضها عن الحالة النهائية ومعلومات عن بعض الحالات بين الحالتين، أو تجميع معلومات كافية بهذا الشكل مع قوانين الحركة سوف تعطينا وصفاً متكاملاً، كبداً، للحقيقة الفيزيائية.

بالنسبة لحالة الطاقة (البنيوية) التي سبق تحديدها فلنقل إن الحالة النهائية تؤدي بناء مباشرة إلى حساب الحالة البدنانية والعكس بالعكس، حتى أنه لا فرق معين بين مختلف المناهج لتحديد المعلومات الثانوية. ولكن بالنسبة للكون فإن هذه الحسابات لا يمكن تعقبها. لقد قلت إننا خمننا وجود التنبؤات البارزة في الشروط البدنية للكون من خلال ملاحظة التنبؤات في يومنا هذا. إلا أن هذا يعد استثناءً لأن معظم معرفتنا عن المعلومات الثانوية الممكن إضافتها - من بين ما تحدد أنه وقع بالفعل - هي في شكل نظريات ذات مستوى عال عن الظواهر "الإيجابية" وبالتالي - وطبقًا لتعريفها ليست قابلة عمليًا لشرحها بعبارات تستخدم في وصف الحالة البدنية. على سبيل المثال ففي معظم الحول المتاحة في معادلات الحركة لا توجد لدينا الحالة البدنانية من الخواص، لسمح الحياة أن تظهر فيها أو أن تنشأ عنها. ولذلك فإن معرفتنا أن الحياة قد نشأت هو من قبيل المعلومات ذات العلاقة المهم في قائمة المعلومات الثانوية. ربما لا نعرف بالضبط ما هي الشروط المعينة والتنسجية حول بناء أو نسيج الانفجار الكبير ولكن يمكننا أن نستخرج منه نتيجة مباشرة. على سبيل المثال فإن أقرب مقياس لعمر الأرض قد يبني على أساس نظرية بيولوجية للتطور بالتنافس مع أكثر التفسيرات الفيزيائية البديل. justo، "الإيجابي" التصوير هو الذي يشعرون أن هذا هو - إلى حد ما.
شكل أقل مصداقية للتبسيط، أهله في عمومه ليس إلا نوعًا من التنظير التأسيسي.

وحتى في مجال الفيزياء الأساسية فإن فكرة أن النظريات عن الحالة الابتدائية
تشتمل على أعمق معلوماتنا هو تصور خاطئ. وأحد أسباب ذلك أن المنطقة ليست
إمكانيًا شرح أو تفسير الحالة الابتدائية نفسها - كيف كانت الحالة الابتدائية على ما
كانت عليه - ولكننا نملك في الواقع تفسيرات لأوجه عديدة للحالة الابتدائية. وعلى
شكل أكثر عمومية فيليست هناك نظرية للزمن يمكنها أن تشرح هذه الحالة بدلاً من أي شيء
سابق لها، ونحن على الرغم من ذلك عندما شرح عميق لطبيعة الزمن عبر النظرية
العامة للنسبية، بل وأكثر منها من خلال النظرية الكمية، (انظر الفصل 11).

ومن ثم فإن كثيرًا من سمات أوصافنا ونبؤاتنا وتفسيرات الحقيقة لا تحتمل
إضافة صورة أو شبه صورة عن الحالة الابتدائية فضلاً عن قوانين الحركة التي تقودنا
إليها "التصغيرية". ليس هناك سبب للنظر إلى نظريات المستوى العالي على أنها من
مواطني الدرجة الثانية بأي حال. نظرياتنا عن الجزيئات دون الذرية وحتى النظرية
الكلية والنسبية، وبشكل لا محيص عنه لها ميزة الاتصال بالنظريات المتعلقة بالخصائص
المثبتة. ليس من بين هذه المناطق للمعرفة ما يمكن أن يُصف وحده ضمن نظرية منها.
كل منها لها توظيف منطقية الأخرى، لأنها خواص منبثقة من مجالات أو ميدان
النظريات الأخرى. وفي الواقع فإن استخدام مصطلحات "المستوى العالي" و"المستوي
الهابط" هو نوع من الاستخدام المغلوب. فنقل مثلا: علم البيولوجي (علم الحياة) وهو
ذو مستوى عالٍ قد ابتُثت كنتيجة لقوانين الفيزياء، ولكن منطقيًا بعض قوانين الفيزياء
هي إذن نتائج منبثقة عن البيولوجي. ويمكنها أيضًا أن تكون كحالة بين هذا وذلك
القوانين التي تحكم الظواهر البيولوجية وتلك المنبثقة والتي من شأنها أن تحدد قوانين

61
الفزياء الأساسية. وعلى أية حال فعندما يكون هناك اتصال بين نظريتين فإن المنطق لا يقرر لنا أي منها التي تعتبرها محددة للآخرين سواء بصفة عامة أو جزئية. هذا يعتمد على العلاقات الشارحة بين النظريات. النظريات الفضيلة فعلا ليست تلك التي تشير إلى أي مقياس مدرج عن الحجم أو التعقيد، أو تلك التي تصنف أو توضع عند مستوى معين في الطبقية (التمثيلية) التنبؤية - وإنما هي تلك التي تحتوي التفسيرات الأعمق. نسيج الحقيقة لا يتضمن فقط الاستنتاجات التفسيرية مثل الفضاء والزمن والجسيمات تحت النظرية ولكن أيضا الحياة والتفسير والحوسبة والأشياء الأخرى التي تشير إليها هذه التفسيرات والشرحات، والذي يجعل من أي نظرية أميل للتاريخية عن أن تكون اشتراطية ليس هو قربها من مستوى التنبؤ المفترض في الفزياء ولكن قربها من أعماق نظرياتها التفسيرية.

ونظرية الكم واحدة من هؤلاء كما سبق أن قلت ولكن الثلاثة الرئيسية الأخرى التي من خلالها نسعى لفهم نسيج الحقيقة جميعها من ذوات المستوى العالي من وجهة نظر الفيزياء الكمية، وهي نظرية التطور (بصفة أساسية تطور الأعضاء الحية)، ونظرية المعرفة، ونظرية الحوسبة (بيان الكيمياء وما الذي تستطيع أن تفعله أو لا تفعله من حيث البداية: الحساب). وكما سأوضح فإن مثل هذه العلاقات العميق، والتنوعية التي تم اكتشافها بين المبادئ الأساسية لهذه الموضوعات الأربعة المستقلة بوضوح والتي من الصعب بدون الوصول لأحسن فهم لأي منها بلا فهم للثلاثة الأخرى. هذه الأربعة معًا، إذا أخذنا بشكل شرح محكم ومتسق - بما توصلنا إليه حتى الآن - فإنهم يوفرن فهما أكثر للعالم حولنا بما يتضمنونه من حقائق ومحارف، أو أنهم من وجهة نظرية يصلح أن نسميهم أول نظرية لكل شيء. وهذه الطريقة تكون قد وصلنا إلى حقبة مميزة في تاريخ الأفكار - اللحظة التي بدأ فيها مدى فهمنا يصبح كونيًا بالكامل. لقد كان الأمر حتى الآن أننا نفهم بعض عناصر الحقيقة والتي ليست هي
كلم. في المستقبل سوف يتعلق الأمر بفهم موحد للحقيقة: كل الشرح ستكون مفهومة
في مواجهة الستارة الخلفية للكونية، وكل فكرة جديدة سوف تتحب بطريقة تلقائية
إضاءة ليس فقط موضوعًا بعيدنا ولكن كل الموضوعات بشكل أكثر اتساعًا. القدر من
الفهم الذي سنحنى من هذا التوحيد الأخير سوف يضم ما هو أبعد كثيرًا مما جنيداه
سابقًا.
لأننا سنرى أن الفيزياء وحدها هو التي وُجدت وفسرت هنا، وليس فقط العلم
ولكن أيضًا سيتضمن الأمر الفلسفة والمنطق والرياضيات وعلم الأخلاقيات والسياسة،
وعلم الجمال، وربما كل ما نفهمه عادة وحتمًا أيضًا أن نفهم ما لم نفهمه بعد.
ما هي النتيجة إنن التي يمكن أن أقرروا لشخصي منذ كنت صغيرًا، رفض أن
ننمو المعرفة جعل العالم أقل فهماً. كنت أوافق على ذلك، إلا أن تفكيري الحالي أن هذا
ليس هو الموضوع الأم (إن واحد من نوعنا البشري وما يفهمه يمكن فهمه أيضًا
بمعرفة أخرى من نفس النوع البشرى).
ولكن الأكثر أهمية هو هل تسيح الحقيقة موحد بالفعل ومفهوم. هناك سبب قوى
لكونه كذلك. عندما كنت طفلا كنت مجرد أعرف ذلك، أما الآن فأستطيع أن أفسر ذلك
وأشرحه.
<table>
<thead>
<tr>
<th>الاصطلحات</th>
<th>معلومة المعرفة</th>
<th>التفسير</th>
<th>الوضعية</th>
</tr>
</thead>
<tbody>
<tr>
<td>دراسة لطبيعة المعرفة والعمليات التي تنشئها.</td>
<td>نظرية المعرفة: Epistemology</td>
<td>التفسير: Explanation</td>
<td>الوضعية: Positivism</td>
</tr>
<tr>
<td>(بصفة عامة) هي تقرر عن طبيعة الأشياء وأسبابها.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>شكل متشد من الذرائعية التي ترى أن كل العبارات غير التي تتصل بالوصف أو التنبؤ بالملاحظات ليست ذات معنى (هذه العبارة نفسها بغير معنى وفقاً لمبادرتها ذاته).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>الشروح التي تعني بالتصغير هي تلك التي تعمل من خلال تحليل الأشياء إلى محتوياتها الأصغر منها.</td>
<td>التصغير: Reductive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>وجهة النظر التي تقرر أن الشروح العملية هي بطبيعتها (فظياً) عبارة عن تصغير بالمعنى السابق.</td>
<td>التصويرية: Reductionism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>الفكرة التي تقول إن التفسير الشرعي أو الصحي هو الذي يعود بالأشياء إلى نظام متعالية، وهي ضد التصويرية.</td>
<td>القدسة: Holism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ظاهرة الانثتقاط (كالحياة والتفكير، والحوسبة) هي التي تدور حول حقائق يمكن فهمها وتفسيرها دون الرجع إلى نظريات من مستوى أدنى ولكن يمكن إدراكها أو التنبؤ بها عبر نظريات المستوى العلوي التي تشير مباشرة إلى تلك الظواهر.</td>
<td>الانثتقاط: Emergence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
الخلاصة:

المعرفة العلمية شأنها شأن كل المعارف البشرية تشتمل مبديًا على الشروط.

الحقائق يمكن النظر إليها والتبؤات تكون مهمة، فقط لكي تحكم التجارب الحقيقة والاختبارات التي تميز بين النظريات المتانة التي بالفعل قد اجتازت اختبارات أثبتت جودتها كشروط ناجحة. وبما أن النظريات الأحدث تزداد ما قبلها فإن معرفتنا تصبح أعرض (لن موضوعات جديدة قد استحدثت) وأيضًا أكثر عمقًا (إن نظريتنا الأساسية أصبحت تشرح أكثر واكتسبت مزيد من العمومية). العمق يتفوق ويفوز في السباق لأننا لا ننطلق من حالة الشخص الذي يمكنه فهم كل ما هو مفهوم ولكن في اتجاه هذه الحالة. نظريتنا الأكثر عمقًا قد تم دمجها مع بعضها البعض حتى أنه لا يمكن فهم أي منها منفردة دون الأخريات، كما لو كانوا نظرية واحدة موحدة لتسليط الحقيقة، لأن نسيج الحقيقة لا يحتوي فقط على أجزاء صغيرة مثل: الفضاء، الزمن، والجزيئات تحت النظرية ولكن أيضًا - وعلى سبيل المثال: الحياة، والفكر، والحوسبة.

والأفرع الرئيسية الأربعة للشرح والتي يمكنها أن تنشئ أول نظرية لكل شيء هي:

الفزياء الكمية: الفصول: 9، 10، 11، 12، 13

نظرية المعرفة: الفصول: 1، 2، 3، 4، 14

نظرية الحوسبة: الفصول: 5، 6، 7، 8، 10، 13، 14

نظرية التطور: الفصول: 8، 13، 14
والفصل التالي سوف يكون حول أول أولئك الأربعة وأكثرهم أهمية وهو الفيزياء الكمية\(^6\).

في القرن 18 أعتبر معظم الفيزيائيين أن قوانين نيوتن من المقاسات ولكن مع عشرينات القرن 20 بدأ أن الفيزياء الإشعاعية تتضمن فزياء نيوتن التي كانت تحمل في الأصل مع الأحجام الكبيرة ولا تنطبق على الأحجام متناهية الصغر، ومن ثم ظهرت ميكانيكا الكم التي يمكن التعبير عنها في أبسط صورة ممكنة: إذا عرفنا مكان إلكترون بدقة أصبحت سريعته غير محددة إلا احتماليًا، وإذا عرفنا سريعته أصبح مكانه غير محدد إلا بالتقريب، ومن هنا يأتي المبدأ المركزى في النظرية والتمثل في "اللايفين". (المترجم)
الفصل الثاني
الظللال
ليس هناك ما هو أحسن، كما لم يعد هناك بابا مفتوحا تستطيع الدخول منه للفلسفة الطبيعية، إلا من خلال الأخذ: بظاهرة الشمعة في الاعتبار.

ميشيل فاراداي

Michael Faraday

(في واحدة من ست محاضرات عن "التاريخ الكيميائي للشمعة")

اعتد ميشيل فاراداي عبر محاضراته المعروفة عن "العلم" في المعهد الملكي أن يبحث مستمتعيا، في محاولتهم لتعلم شيء عن العالم – أن يأخذوا في اعتبارهم ما يحدث للشمعة وهي تذبل وتزروي. وبدلاً من ذلك فسوف يأخذ في اعتباره هذا بطارية إضاءة كهربائية أو مصدر للضوء الساطع، هو مناسب للغاية لأن التقنية التي تقوم عليها البطارية الكهربائية – قد تأسست على مكتشفات فاراداي.

وسوف أصف بعض التجارب التي توضح الظواهر التي تقع في مجرى الفيزياء الكمية. تجارب من هذا النوع والتي تعددت وتتنوعت وأدخل عليها المزيد من التصحيحات كانت دوماً بمثابة الزبد والخبر (الغذاء الرئيسي) بالنسبة لعلم البصريات الكمية وقد تعددت من السنين. لم يكن ثمة جدل حول النتائج، ولو أنه – حتى في وقتنا الحالي – فضفة البعض منها لم يزال من الصعب تصديقه. والتجارب الأساسية تعتبر من وضوح البساطة يمكن فهمها لا تحتاج أساساً إلى أدوات علمية متخصصة ولا معرفة كبيرة بالرياضيات أو الفيزياء، كلي ما في الأمر هو إطلاق "الظلام" وتعقبها.

ولكن نموذج الضوء والظل الذي تطلقها بطارية مضيئة هو من الفرابة الشديدة يمكن أيضًا. عند أخذنا لهما بالجدية الواجبة والحذر فستجد لهما تفرعات أو تشعبات غير عادية. وشرح هذه التشعبات لا نستطيع فقط قوانين فيزيائية جديدة، ولكن مستوى جديد من الوصف والتفصيل يذهب إلى ما بعد ما كان معروفًا من قبل على أنه "المدى".
الذي ذهب إليه العلم، وفي البداية فإنهم يكشفون عن وجود أكوام متوازية. كيف ذلك؟ ما الذي يقدم لنا هذا النمط الحسوس من الظلال؟ تخيل أن بطارية قد أضمت في غرفة مظلمة. سوف يبعث شعاع ضوء من فوهة البطارية ليملاً جزءًا من الغرفة مخروطًا الشكل، ولكي لا تصنيع التجربة أكثر تعقيدًا من خلال الضوء المنعكس، فإن حواجز الحجرة يجب أن تمتص الضوء بشكل كامل أي تكون سوداء قاتمة السواد. أو بدلاً من ذلك - بما أننا فقط نتخيل هذه التجربة - فيمكننا تخيل حجرة ذات حجم فلكي بحيث لا يكون هناك وقت للضوء لكي يصل للحوائط ثم يرتد قبل أن تنتهي التجربة. شكل ٢ - يوضح لنا الموقف. لكن سيكون الأمر مخادعًا إلى حد ما لو كنا نراقب البطارية من موقع يمكننا فيه أن نراها أو لا نراها، وبالطبع ضوءها "الحجوب" أو "غير المنظور" هو واحدة من الخصائص المباشرة للضوء. نحن لا نرى الضوء إلا إذا دخل أعيننا (ولو أُننا عادة نتحدث عن أننا نرى الأشياء في مدى رؤيتنا طالما أنها تتأثر بالضوء).

(الشكل ٢ -١) ضوء المنبعث من بطارية (أو مصدر للضوء الموحّج)
نحن لا نرى الضوء، وكأنه مجرد خط يمر إلى جوارنا. إذا كان شملي، يعكس الضوء أو مجرد قطرات مياه تبعثر الضوء، سوف نستطيع أن نرى موقعه. ولكن ليس هناك شيء من ذلك. كما أنت لا تلاحظ هذا الضوء من موقع خارج مصدره حيث لا يصلنا - شخصيًا - أي منه. واستعراض صحيح لم يكن أن رؤاه ستكون صورة مظلمة تماما. لو كان هناك مصدرًا ثانيًا للضوء سوف يمكننا رؤية البطارية ذاتها، وليس ضوءها. حزمة أشعة الضوء حتى أكثرها قوة التي يمكن أن نستوردها (من هذه الأخيرة) تمر من خلال بعضها البعض وكان لا شيء هناك تماما.

في شكل 2 - 1 نجد الضوء أكثر قوة بالقرب من فوهة البطارية ولكن يقل توجه ويزداد عتبة أكثر كلما انتشرت مساحات أكبر. بالنسبة للبطارية بعيد عن حزم الضوء، يبقى مصدرًا مفتوح البطارية، سوف يبدو العاكس أصغر حتى يمكن رؤيته كنقطة واحدة، وأكثرها شحيحة. هل يمكن هذا؟ هل يمكن للضوء أن ينتشر مرة بعد مرة ويقل سماكة في كل مرة هكذا بلا حدود؟ الإجابة هي لا. على مسافة تقدر بحوالي 10000 كم من البطارية سيكون ضوئها خافتًا لدرجة عدم إمكانية رؤيته بالعين البشرية ولكن لن يرى الملاحظ شيئًا هذا بالنسبة للكائن البشري ولكن ماذا عن حيوان لديه حساسية رؤية أكثر منه. عيون الضفادع تتمتع بحساسية للرؤية تتضاعف عدة مرات عن البشر وقد تحقق اختلافات واضحة في هذه التجربة لو كانت الضفادة هي التي تقوم باللاحظة، وفقط تتحرك مبتدأة عن البطارية فإن اللحظة التي ستتافت فيها رؤية ضوء البطارية لن تجيأ أبدا. وبالأثر من ذلك ستظل ترى ضوء البطارية ولكن بشكل متدرج أو كمضات خاطفة. تلك الوضاءات ستبدو - ويشكل شاذ - وعلى فترات على أنها أطول في المدة كلما ابتعدت الضفادة أكثر ولكن توزع الوضاءات ثم خفيفة لم نقل الى بعد مائة مليون كم من البطارية سترى الضفادة تقريبا، مضيئة واحدة في اليوم الواحد، ولكن سيظل توزع (وخبو) الوضاءة مثل ما كان عليه على أي مسافة كانت.
الضفادة لا يمكنها أن تخبرنا بما تراه. وإذا فإنا نستخدم في التجارب الحقيقية مكافئ للضوء (كاشف للضوء أكثر حساسية من عيون الضفادة) وضعاف حدة الضوء بإرساره عبر فلاتر ظلماة بدلا من ملاحظة من على مسافة مائة مليون كم. البداية هو نفسه، وكذا النتيجة فلا إطارات واضح ولا شكل يتضح للمناخ، والضوء المنبعث من مصدر فردية يوحي (يتوجه ثم يخيّب) بشكل واحد مهما كانت عاتامة الفلاتر المستخدمة. هذا الوضع المترجح يشير إلى أن هناك حدودا لم يتمكن من الوصول إليها في زيادة حدة الضوء (بجعله رفيعا) في مجال انتشاره على التوازي وباستعارة مبسطات صائغ المجوهات فإن يكمن القول بأن الضوء غير قابل للطرق لأي إعاقة. مثل الذهب فإن كمية صغيرة من الضوء يمكنها أن تستغرق عبر منطقة واسعة جدا، وأخيراً أو حاول المرء أن ينشرها أكثر فستصبح ثقبة متلاطمة الكثرة. حتى لو كان يمكننا منع ذرات الذهب من - ولو على نحو ما - التجمع على شكل كتلة ولكن هناك نقطة تقع وراء القدرة على تقسيمها يستحيل بعدا، وتبقي ذهم على ما هي عليه. وعلى ذلك فإن الطريقة الوحيدة التي يستطيع بها المرء أن يصنع شريحة رقيقة من الذهب سمكة ذرة واحدة في الفضاء هي بعثتها أكثر وأكثر، مع وجود فراغات بين ذراتها. وعندما تبتعد الذرات عن بعضها بدرجة كافية فسوف يكون مخادعاً التفكير في أنها تشكل مسطحا مستمرا، على سبيل المثال لو أن ذرة تبتعد بضع سنتيمترات عن جدارتها فإن المرء يمكنه أن يحدث عبر "الشريحة" دون أن يمس أي ذهم على الإطلاق، وعلى غرار ذلك فإن هناك منتهى للكتل الضوء وهي "ذراتها Photon" التي تسميها "الفوتونات". كل وضة تراها الضفادة هي نتاج لاصطدام الفوتون بشبكة عينها. والذى يحدث عندما تخيل حزمة الضوء لا يرجع إلى أن الفوتونات نفسها قد خبت بيدها ولكنه يعني أنها تباعدت أكثر، ويمزيد من المساحات بين بعضها البعض (شكل 2-2)، وكلما خبت الحزمة الضوئية بشدة كلما كان مخادعاً أن تسمى حزمة لأنها ليست مستمرة. وخلال الفترات البيئية للوضاء وهي
تتوهج وتخبو وحين لا ترى الضفادة شيئًا فليس معنى ذلك أن الضوء الذي دخل عينها كان ضعيفًا ولكن لأنه لم يدخل عيونها أي ضوء على الإطلاق.

هذه الخاصية عن ظهور الحزم الضوئية في أحجام منفردة هي التي تسمى "الكم" (جمع كم). واكتسبت "نظرية الكم" اسمها من هذه الخاصية، والتي تنبس إلى كل الكميات الفيزيائية القابلة للقياس ليست فقط بكميات الضوء أو كتلة ذهب التي يمكن تكميمها (قياس كميات منهما) باعتبارها في جوهرها مكونة من جسيمات، وهكذا فإن التعبير عن امتداد متصل، هو نوع من الخيال.

(شكل ٢٠) الضفادع يمكنها أن ترى فوتونات منفردة.

وحتى بالنسبة لكم المسافات - مثلًا - بين ذرتين فإن فكرة مدى استمرارية المقادير هنا تصبح مثالية، ليس هناك قياس مستمر لأي كمية في الفيزياء. دائمًا هناك مؤثرات جديدة في الفيزياء الكمية، وعملية "الكميم" تلك هي واحدة من المألوفات فيها، كما سنرى. ويعني ما تبقى هي المفتاح لكي شيء آخر، لأنه لو جرى تكميم كل شيء فكيف لأي كمية واحدة أن تتغير من قدر إلى آخر؟ وكيف لأي موضوع أن يتحرك!

73
من مكان إلى غيره إذا لم تكن هناك مستويات تدخلات دائمة تعترض طريقة سوف أشرح في الفصل 9 كيف يكون ذلك. ولكن دعني أطرح هذا السؤال جانبيًا الآن، ونقترب من البطارية حيث تبدو الحزمة الضوئية مستمرة لأنه يتداخل منها كل ثانية حوالي 10١٤ (مئة تريليون) من الفوتونات لكل عين تتطلع فيها.

في الحدود بين الضوء الباهر والظل المتكامل، هل ثمة منطقة رمادية؟ عادة ما تكون بالفعل كذلك كما تكون عريضة نسبيًا وواحدًا من بين أسباب ذلك يوضح في الشكل 2-3. هناك منطقة ظلمة (umbra) حيث لا يمكن لشعاع الضوء أن يصل إليها. وثمة منطقة متوهجة وهي التي يمكنها استقبال شعاع الضوء وليس من مصدر آخر. ولأن هذا الشعاع ليس نقطة هندسية، ولكن له حجم معيّن، فثمة منطقة واقعة بين منطقة التأتق ومنطقة الظلام: وهي المنطقة التي يمكن أن تصلها أجزاء من نفس شعاع الضوء وليس من مصادر أخرى. ولو أن الملاحظ قام باللاحظة من المنطقة الرمادية هذه فإنه سيرى فقط جزء من شعاع الضوء وأن الضوء في هذه المنطقة أقل تأتقًا من المنطقة المتوهجة والمتلاقة بالضوء.

هكذا كان حجم شعاع الضوء ليس لهذا الحجم وحدة يرجع حدوث هذه المنطقة الرمادية. الضوء ينتشر في كل الطرق الأخرى إلى جاكي يعقم أمام المصباح، بالزجاج الموجود في مقدمة البطارية، بما شائبة أو عميق، وهكذا. وللإنه تتوقع نمذجة معقدًا للضوء والظل الناجم عن البطارية. ولكن المكونات المثالية للبطاريات ليست هي مقصدينا في هذه التجارب. وراء سؤالنا عن ضوء البطارية يقع سؤال أكثر تأسيسًا عن الضوء بصفة عامة: من حيث البداية هل هناك حدود لدى حدة الظل (وكلمات أخرى على أي حجم من الضيق يمكن أن تكون عليه منطقة شبح الظل؟) على سبيل المثال لو أن البطارية مصنوعة من مادة تامة السود (الظلمة) أي لا تعكس أي ضوء، ولو أن المرء
استخدم فتيلة (أي السلك الرفيع الذي يضيء داخل اللامثة) أصغر حجم يمكن للمرء أن يصنع من منطقة شبه ظل (المنطقة الرمادية) أضيق وأضيق هكذا فلا حدود؟ (شكل 2-3) يجعل الأمر يبدو وكأن ذلك ممكنًا. أو أن الفتيلة بل حجم فلن تكون هناك منطقة ظل. ولكن وقت قيامي برسم هذا الشكل فقد صنعت ضوءًا معينًا بشأن الضوء وهو أنه يرحل في خط مستقيم من تجارب الحياة اليومية نرى الأمر كذلك لأننا لا نستطيع رؤية كل الأركان الدائرية المحيطة بنا. ولكن في التجارب الحذرة لا نشاهد الضوء المرتبط في خط مستقيم على الدوام. تحت بعض الظروف يقوم الضوء بالانحناء.

من الصعب عرض ذلك من خلال البطارية وحدها لأنه من الصعب صنع فتيلة رقيقة جدًا، وكذا سطوع بالغة (السواز) هذه الصعوبات العلمية هي التي تغلب الحدود التي تضعها الفيزياء الأساسية على "حالة" ظلال. من جسن الحفظ فإنه يمكن عرض انحناء الضوء بطريقة أخرى. افترض أن ضوء البطارية يمر عبر ثقبين ناجحين وصغيرين عبر شاشة غير شفافة، كما يظهر في شكل 2-4 وأن الضوء الذي يظهر منهما يسقط على شاشة ثالثة بعدهما.

سؤالنا الآن هو هذا: هل أن التجربة أعيدت من خلال ثقوب أصغر وتغاضى أكبر بين الشاشة الأولى والشاشة الثانية هل يمكن للمرء أن يجد العتمة - المنطقة الكاملة للأظلام - أكثر قربًا وبلا حدود بالنسبة للخط المستقيم من الضوء عبر المركزي الثقبين؟ هل يمكن للمنطقة المضيئة بين الشاشة الثانية والشاشة الثالثة أن تكون مثقوتًا ضيقاتًا على نحو اعتباطي؟ وباستعايرة لغة الصباغ هل نحن الآن نتساءل عن شيء مماثل عن مدى كون الضوء مباشراً (قابلًا للطرق في لغة الصباغ)؟ ما مدى دقة شريحة الضوء أينذاك؟ الزهر يمكن تحويله إلى رقائق سميكة واحد من آلاف من المليمتر.
يبدو أن الضوء ليس في طواعية الذهب قبل أن يصل إلى جعل الثقوب تعادل جزءًا من عشرة آلاف من المليمتر بمراحل - في واقع الأمر بدأ من ثقوب قطرها أكبر قليلاً من اللليميت ثالث أن الضوء بدأ في التمرد، إذ بدأ من مروحة في خط مستقيم عبر الثقوب. إنه يرفض تلك الاستقامة وينتشر بعد كل ثقب منها. وفي انتشاره ذاك يتفرع في بيئة تشعبيات. وكلما كان الثقب أصغر كلما انتشر الضوء أكثر بدلاً من

(شكل 2-4) صنع حزمة ضوء ضيقة من خلال إمرار الضوء من ثقبين متتاليين.

(شكل 2-3) العتمة وشبه الظل في مساحة الظلال.
الخط المستقيم المفترض يظهر لنا نموذج معقد أو عصى على التحليل من الضوء والظل. ولم نعد نرى منطقة مضيئة ومنطقة معتمة على الشاشة الثالثة وبينها منطقة شبه ظل لكونا نرى حلقات متمركزة من الإضاءة متعددة الألوان. هناك أيضًا اللون لأن الضوء يتألف من خليط من الفوتوتونات مختلفة الألوان، وكل لون ينتشر ومن ثم يتشعب في نماذج رفيعة مختلفة. (شكل 2 - 5) يوضح مشهدًا نموذجيًا لما نراه على الشاشة الثالثة عبر ضوء أبيض يمر من ثقبين في الشاشتين الأوليتين. تذكر أن لا شيء يحدث هنا غير أننا نتعقب الظل الذي سبق أن تعقبناه على الشاشة الثانية في (شكل 2 - 4) ولو أن الضوء يرحل في خط مستقيم فلن تكون هناك سوى نقطة بيضاء (أصغر كثيرًا من النقطة النهائية المركزية في شكل 2 - 5) محاطة بدائرة ضيقة جدًا من شبه الظل. وفي الخارج من ذلك ستكون هناك عتمة وإطلاع كاملي.

(شكل 2 - 5)

نموذج الضوء والظل الندان يتشكلان بسبب ضوء أبيض يمر عبر ثقب مركزي مستدير.
ولو أنه أمر محيري فرضاً أن أشعة الضوء لا بد أنها تنحنى عندما تمر من الثقوب الصغيرة، وربما لا تنحنى، واعتقل بصفة أساسية أن ذلك يدفع للانضطراب. وفي حالتنا هذه فافذاً يهمنا لغرضاً الحال أن الضوء ينحني. وهذا يعني أن الظل عمومًا لا تحتاج إلى ان تكون خيالاً تسيليبيت، للأشياء التي تعقبها. والأكثر من ذلك فإن هذا ليس فقط مسألة ضبابية أو عدم وضوح بسبب شبه الظل. فنحن نجد أنه عائقًا به نمط معقد من الثقوب ينتج وجود ظل مختلف لنموذج مختلف تمامًا.

(شكل 2-6) يظهر لنا، بشكل تقريبي، حجمه الفعلي، نموذج الظل يتعقب ثلاثة أمطار من زوج متوازي ومستقيم من الشقوق في حاجز غير شفاف (لا ينفذ الضوء) للشقوق بعيدة عن بعضها. بمقدار 1/5 مليمتر مضضاءة بواسطة حزمة ضوئية متوازية نقية الأحمر صادرة عن مصدر ليزر على الجانب الآخر من الجميل. لما ضوء الليزر وليس ضوء البطارية؟ لأن الشكل الدقيق للظل يعتمد أيضًا على لون الضوء المتعقب، الضوء البيضاء المستقيم عن بطارية يتشكل خليطًا من كل الألوان المنظورة، وعلى هذا تتعاقد فيه ظلال أهدافها متعددة الألوان. وذلك فإن في التجارب حول الأشكال المحددة للظل يكون من الأفضل استخدم ضوءًا له لون واحد. يمكننا وضع فلتر ملون (مثل شريحة زجاجية ملونة) أمام مقدمة البطارية حيث يمكن للون المضائي للون الزجاج وحده أن يخرج الشريحة. هذا يمكن أن يساعد ولكن الفلاتر جميعها ليست على هذا النحو من التميز، وأفضل طريقة هي استخدام ضوء الليزر لأن الليزر يمكنه إطلاق اللون الذي نريد أو نختاره بدرجة من النقاء لا يسمح بها غيره.

(شكل 2-6)

تعقب الظل على حامل يشمل شقين متوازيين ومستقيمين.
إذا كان الضوء يرحل (أو يسافر) في خط مستقيم فإن النموذج في (شكل 2-1) سوف يتكون من زوج من الأحزمة الضوئية البامرة مفترقة عن بعضها بمقدار 1/5 المليمتر (أوضاع من أن تميزها على هذا النحو من القياس) وبانحرف حادة وظل باقي الشاشة في منطقة الظل. ولكن في الحقيقة الضوء يمنحى لدرجة تشكيك حزم مضيئة وأخرى معتمة وبدون حواف حادة على الإطلاق وإذا تحركت الشقوق بعيدا مع بقاء مصدر الضوء (الليزر)... يتحرك النموذج بنفس قدر تحركها. وعلى هذا النحو، الواجب التقدير - فإن الظل هنا يسلك بنفس طريقته كظل في مقياس رسم أكبر، والآن ما الذي يمكن أن يحدث لو أننا أحدثنا شقين أخرين في الحاجز متماثلين تمامًا مع زوج الشقوق الموجودة على أن يقعا بينهما بحيث يصبح لدينا أربعة شقوق بين كل منهما والأخرى حوالي 1/10 المليمتر؟ ربما نتوقع أن يشبه النموذج تقريبًا لشكل (2-2)، وبعد كل شيء فإن الزوج الأول من الشقوق سوف يصنعان ظلا كما في (الشكل 2-1)، وبعدما قالت لنا، فإن الزوج الثاني من الشقوق سيستعيد عنه نفس النموذج ولكن فقط على مبعدة 1/20 المليمتر وتقريبًا في نفس الموقع. نحن نعلم أن أشعة الضوء تختبر بعضها البعض بدون مؤثرات ولذا فإن زوج الشقوق يلزم أن يعطينا بالضرورة نفس النموذج مرة أخرى، وإن كانت في شكل حزم متلاصمة بدرجة أخف ولكن أكثر تألقاً (الدرجة الضعيف).

هذا لا يحدث في الحقيقة، فالظل الفعلي الذي يظهر على حائل له أربعة شقوق مستقيمة ومتوازية يبرزه (الشكل 2-7 أ)، والمقارنة فقد كررت أسفله نموذج الضوء الذي يمر من زوج من الشقوق (شكل 2-7 ب). من الواضح أن الخيال الناتج ليس تجمع من اثنين من الشقوق يحلان محل اثنين أخرين ينتبجان الظل، لكنه نموذج جديد أكثر تعقيدًا. وفي هذا النموذج توجد أماكن كتلك مشار إليها بحرف X والتي تكون مظلمة في نموذج الأربعة شروخ ولكن أكثر تألقاً في حالة الزوج الواحد. هذه الأماكن تكون متناقضة في حالة وجود شرخين في الحائل ولكن بريقها يقل وتصبح أكثر عتمة
عندما نشقت الشرخين الآخرين ليمر الضوء عبر الأربعة شروخ. ففتح الشرخين الآخرين
يتداد مع الضوء الذي كان يصل قبلا للنقطة X.

(شكل 2-7) تعبير الظل على حامل يحوي: أ- أربعة ثقوب (شقوق)، وب- ثقبين (شقين)
متوارين ومستقيمين.

إذن فإن إضافة مصدرين جديدين للضوء يتسبب في اعتام نقطة X وإزاحة
هذين المصدرين يجعل النقطة X متالقة من جديد كيف؟ المرء يمكنه تخيل زوج من
الفوتونات متوجهين للنقطة X ثم يرتدان معا كما في كرات البياري. كل واحد منها
سوف يصطدم بالنقطة X ولكنها سيتدلاعان معا بحيث ينتهي كل منهما في نقطة
مختلفة. سوف أوضح حالياً أن هذا التفسير ليس صحيحا. وأيا ما كان فإن الفكرة
الأساسية غير قابلة للهرب منها. إن شيئاً آخر لا بد أنه تدخل في إعتام الضوء الواعل عبر
زوج الشروخ الأول عند مرور نفس الضوء عبر الأربعة شروخ مما الوصول بنفس
الدرجة عبر الشقين الأخيرين وذلك عند النقطة X. ولكن ماذا؟ يمكن أن نعثر على ذلك
بإقامة مزيد من التجارب.

أولا لا يظهر لنا نموذج الأربعة شروخ (شكل 2-7) إلا إذا كانت إضاءتهم
قادمة من مصدر ليزر. فإذا كانا شقين فقط فحال الذي سيظهر لنا هو النموذج الخاص

80
بالشقيقين، وإذا كانوا ثلاثة شقوق مضاءة سيظهر نموذج الثلاثة والذي سيبدو مختلفاً.

وهكذا مهما كانت أشكال اعتراض الضوء القادم من مصدر الأصلي، نموذج الشقوق يعود للظهور إذا ملأنا اثنين من الشقوق بشيء معتوم (غير مُنْفَذ للضوء) وليس الأمر كذلك لو ملأناهما بما هو شفاف (منفذ للضوء). وكيكلمات أخرى فإن جوهر التداخل يُوقَّع بائي شيء من شأنه إعاقة الضوء، حتى لو كان ضعيفاً مثل الضباب. ولكنه يمكن أن يخترق أي شيء يسمح للضوء بالمرور حتى لو كان غير قابل لاختراق أي مادة له كالماس. ولو أن نظاماً معقداً من المرايا والعدسات تم وضعه في أي مكان أو أي موضع من الأجهزة، فإنه طالما تمكن الضوء من المرور عبر كل شق ليصل إلى نقطة معينة على الشاشة فإن الذي سيلاحظه عند هذه النقطة هو جزء من نموذج الشقوق الأربعة. وإذا كان الضوء عابراً الشقوق فقط إلى نقطة معينة على الشاشة فالذي سنراه أو نلاحظه هو جزء من نموذج الشقوق، وهكذا.

وإلى فإن أي شيء يسبب التداخل يسلك تماماً سلاسل الضوء. هذا ما نجده في أي مكان على امتداد شعاع ضوء وليس خارجه أنه يتعكس أو ينتقل أو يغسل بسبب عاكس أو ناقل أو غالق.

ربما تعجب لنا ألح وأجاه في هذه النقطة. بالتأكيد من الواضح أن الضوء الذي عابر تداخل فيه الفوتونات الخارجية من أي شق مع الفوتونات الصادرة من الشق الآخر. ولكن من حقك أن تميل لشك فيما هو واضح بعد التجربة التالية التي تمثل حلاً للغز المسلط.

ما الذي نتوقع حدوثه لو أن هذه التجارب أجريت كما لو أن فوتون واحد هو الذي يرحل في كل مرة على حدة؟ على سبيل المثال: افترض أن البطارية أمكن زحزحتها إلى مكان بعيد جداً لدرجة أن فوتون واحد هو الذي يسقط على الشاشة، ما الذي ستلاحظه عندما نجلس على الشاشة؟ إذا كان صحيحًا أن التداخل مع فوتون هو من فوتون آخر، إذن سيقل التداخل عندما تكون الفوتونات ضئيلة أو 81
متناثرة، أليس كذلك؟ إذ لا يمكن حصرها أو الإمساك بها عندما يمر فوتون واحد أمام الأجهزة في أي وقت متفرد! ربما تتوقع أيضًا وجود شبه الظل، ما دام الفوتون قابلا لتغيير مساره عندما يمر من الشق (ربما عندما يصطدم بلطف أسفل الحافة). ولكننا متأكدون أننا لن نجد أي موقع على الشاشة مثل X يمكنه استقبال الفوتون عندما يفتح شقان، ولكنه يصبح مظلمًا عندما يفتح شقان أخران.

إن الذي سنلاحظه فعلا أن نموذج الظل سيبقى على ما هو عليه مهما كانت الفوتونات قليلة. حتى لو أجريت التجربة بفوتون واحد في كل مرة، لن يصل أي منها إلى النقطة X عند فتح الشق الأربعة. فقط سنحتاج لغلق شقين منهم حتى تصل "الدرجة" إلى X وتبدأ من جديد.

هل يقسم الفوتون متخذا صورة شظايا أشعاعية عند مروره بالشق في غير مساره ثم يتحد ثانية؟ يمكننا أن نسيطر على هذه الإمكانية أيضًا. لو عدنا لإطلاق فوتون واحد عبر الجهاز ولكن مع استخدام أربعة كواشف واحد عند كل شق فلن يسجل أيهم أي شيء لأنه في مثل هذه التجربة لن نلاحظ أبدا أن اثنين من الكواشف سيفقان معًا مرة واحدة، ويمكننا القول بأن جوهر ما يكشفه لم يتم فقدته.

وهكذا، لو أن الفوتونات لا تنقلف في شكل أجزاء من أشعة ولم تتغير بسبب فوتونات أخرى، ما الذي يحرفها إذن؟ عندما يمر فوتون واحد عبر الجهاز في المره الواحدة ما الذي سيمر أو يتدخّل معه في الشق الأخر.

٨٢

دعنا نعيد تثبيت ذلك: الذي وجدناه عندما يمر فوتون واحد عبر الجهاز:
• إنه يمر عبر واحد من الشقوق، وعندئذ يتدخّل معه شيء ما، فينحرف نتيجة لذلك بطريقة تعتمد على ما إذا كانت الشقوق الأخرى مفتوحة.
• الكيان المتداخل مر عبر بعض الشقوق الأخرى.
الكيان المتفاعل يتصرف بنفس طريقة سلوك الفوتوتات تماما... إلا أننا لا نستطيع أن نراه.

سأبدأ الآن في تسمية الكيانات المتفاعلة بالفوتوتات، أنها حقًا كذلك ولن أĦاء في هذه اللحظة يبدو لنا أن الفوتوتات نوعان: ساستهما مؤقتاً الفوتون واقعي ملموس، وأخر هو "ظل الفوتون" الواقع هو الذي يمكننا رؤيته أو استكشافه من خلال الآلات، بينما الفوتوتات "الظل" هي غير المدرك (غير المنظورة) ولا يمكن استكشافها بطريقة غير مباشرة فقط عبر تأثير تداخلها مع الفوتوتات المدركة. (سنرى فيما بعد أنه لا يوجد فرق جوهري بين النوعين: كل فوتون يكون مدركاً في كون واحد ويصبح غير مدرك في الأكون الوازية - هنا أنا استقبال الأفكار) الذي استنتجناه حتى الآن هو أن كل فوتون مدرك تصاحبه بطانة من فوتوتات "ظل"، وأنه كلها عبر فوتون من واحد من شققتنا الأربعة فإن بعض من فوتوتات "الظل" تمر من واحد من الشقوق الباقية، وبعض هذه الأخيرة يمر من الثلاثة جميعاً. وحيث أن تداخلات مختلفة تظهر عندما تفتح شقوقاً في أماكن أخرى على الشاشة، فضلاً عن الحزمة الضوئية هي نفسها، فإن فوتوتات الظل لا بد أن تصل إلى الجزء المظلم من الشاشة عند وصول الفوتون المدرك إليها. وبناء أن هناك فوتوتات ظل أكثر من الفوتوتات المدركة، كم عدد هؤلاء التجارب لا تعطينا رقمًا محددًا لها ولكنها فقط تقدم الحد الأدنى. ففي المعاليم أقصى ما يمكننا أن نضيعه بواسطة الليزر تقدر مساحته بمتر مربع واحد، وأقل شق يمكن السيطرة عليه ربما يكون حجة جزء من الألف من الليتر. أي أن هناك حوالي 16 تريليون واحد من القبول المكتبة على الشاشة وبالتالي يكون هناك على الأقل تريليون فوتون ظل مصاحبه لكل فوتون مدرك.

وهكذا نكون استنتجنا أو استدالنا على شيء غام ولهدش في تقعيد: عالم خفي من فوتوتات الظل وهي ترحل بنفس سرعة الضوء، وترتبط أمام المرايا، وتتوقف أمام الحوامل المعطية والفلاتر ذات اللون الخفأ ولا تستثير حتى أكثر الكواشف حساسية.
والفوتون المدرك المصاحب لفوتون الظل هو الشيء الوحيد في الكون الذي يمكننا من ملاحظة تأثير هذا الأخير. وولا هذا النوع من التجارب بما تعطيه من نماذج غريبة للولا لظلت فوتونات الظل غير ملحوزة.

التدخل ليس خاصية تنفرد بها الفوتونات. لأن النظرية الكمية، وما تؤكده التجارب، تتنبأ بأن هذا يحدث مع كل العناصر. وهكذا فكل نبض مدرك لا بد أن تصاحبه عصبة من نبضات الظل وهكذا الإلكترونات وهل جرا.. خلال تداخلها مع حركة المدرك منها مع نظيره غير المرئي.

ويتبع عن هذا أن الحقيقة أكبر كثيرا مما تبدو عليه وبالذات بمعنى أن أكثرها غير منظور. ما نلاحظه ويمكن لآليتنا ملاحظته هو مجرد قمة جبل الجليد.

الآن فإن العناصر المدرجة لها خاصية تدفعنا لكي نسميها بشكل جملي "الكون". هذه ببساطة هو تعريف هذه الخاصية باعتبارهم مدركين طالما أنهم يتفاعلون معا وبالتالي يمكن الكشف عنهم بواسطة أدواتنا وطالما كانت الأعضاء أو الأدوات تتشكل وتصنع من عناصر مدركة. وظاهرة التداخل ليست مقطعة كليّةً من بقية الحقيقة (أي من جسيمات الظل) فلو كان الأمر كذلك لآكدشفنا أنه ليس هناك سوء العناصر المدركة. ولتستيض أفضل يمكن أن نقول إنها تضم الكون كما نراه في حياتنا اليومية من حولنا والكون أيضًا المثار إليه في الفيزياء (ما قبل المرحلة الكمية) الكلاسيكية.

لأسباب مشابهة يمكننا أن نسمى العناصر "الظل" وبشكل كل: الكون الموازي، لأنها تتأثر بالعناصر المدركة فقط من خلال ظاهرة التداخل. ولكننا يمكننا أن نفعل ما هو أفضل من ذلك. لأن عناصر الظل تلك يحدث أنها تستقبل فيما بينها تماما بنفس الطريقة التي تستقبل بها العناصر المدركة منهم. وبكلمات أخرى: أنهم لا يشكلون.
كونًا مجازيًا متناقضًا أكبر جدًا من الكون المدرك بل عددًا كبيرًا من أكوان موازية، كل منهما مشابه في التكوين للكون المدرك، وبطبيعة نفس قوانين الفيزياء، وتتنوع عنصريه كما تنوع مواضعها في كل كون.

والتما ملاحظة خاصة بالصطلحات فكلمة كون تستخدم عادة لعنف: كل الحقيقة الفيزيائية. وبهذا المعنى فلا يمكن أن يوجد سوى كون واحد. يمكن أن نتمسك بهذا التعريف ونقول أن الجوهر الذي اعتبرنا تسميته الكون، اسمها، هي المادة الممكن إدراكها والطاقة حولها وفيضان المحيط - هي ليست كل الكون ولكن قطعة صغيرة منه. وعلى فيه أن نخترع اسمًا جديدا لهذه القطعة الصغيرة المدركة. إلا أن كثيرًا من الفيزيائيين يفضلون الاستمرار في استخدام كلمة الكون لتدل على جوهر ما دلت عليه دوما حتى ولو أن الكلمة تدل الآن على قطعة صغيرة من الحقيقة. كلمة جيدة معتددة الألوان لتدل على الحقيقة الفيزيائية ككل هي: "متععدد الأكوان".

تجارب التداخل لمجسي واحد مثل التي وصفتها هنا تطلعنا على أن متعدد الأكوان موجود ويشتمل على نظائر لكل عنصر في الكون المدرك. وللوصول إلى النتيجة الأبدي بأن متعدد الأكوان ينقسم، ولو بطريقة جافة، إلى أكوان متوازية لا بد أن تُعتبر أن ظاهرة التداخل تتعلق باكثر من عنصر مدرك. وأبسط طريقة لذلك أن نسأل، بطريقة التجربة الفكرية، ما الذي يحدث على المستوى الميكروسكوبى عندما تصطدم فوتوتات الظل مع شيء معتم؟ نحن نعلم بالطبع أننا نستطيع الإمساك بظاهرة التداخل عندما يوضع حائل معتم في مسار فوتوتات الظل. ولكن لماذا؟ ما الذي يوقفهم؟ يمكننا استعداد الإجابة الباحثة أننا أُمست في ذرات الحائل ملثما يحدث للفوتوتات المدركة فنحن نعرف أولا أن فوتوتات الظل لا تتفاعل مع الذرات المدركة. ثانيا أنه يمكننا أن نعرف لقياس الذرات (بالتحديد بإحلال مكتشف في مكان الحائل) أنها لا تستهلك طاقة ولا تغير حالاتها بناءً طريقة إذا إذا استخدمت بها فوتوتات مدركة ذلك أن فوتوتات الظل لا تأثير لها.
ولنضع ذلك بطريقة أخرى فإن الفوتوتات المبردة وفوتوتات الظل تتاثران بطريقة متماثلة عندما يصلان لحائل ما ولكن الحائل نفسه لا يتأثر بنفس الطريقة بكل منهما.

وبأبعد ما يمكن قوله هنا إنه في الحقيقة لا تتأثر البيئة لفوتوتات الظل. هذا هو ما نعرفه عن خاصية فوتوتات الظل لأنه لم كانت هناك أي مادة لوظفتها تتأثر بها كانت هذه المادة ستستخدم ككشف لفوتوتات الظل هذه والظاهرة برمتها ولم تكون عملية التداخل كما وصفتها سابقاً.

وهكذا فإن كان هناك نوعا من حائل الظل في نفس الموقع الذي يوجد به الحائل المدرك، فإن يأخذ منا فسحة مما من تخيل أن ذلك يشمل كون حائل الظل ذلك مكون من ذرات الظل التي عرفنا أنها لا بد من وجودها كتتاغن الذرات المبردة في الحائل هناك الكثير منها لكل ذرة مدرك بالطبع فإن الكثافة الكلية لذرات الظل في ضباب خفيف ستكون كافية لإيقاف سيارة إذا استطاعت التأثير عليها، دعنا إذن من الفوتوت، وطالما وجدنا حوائط شفافية (منفعة للضوء) لها نفس درجة الشفافية لكل النوعين "المدرك و"الظل" فذلك يستتبع أنه ليس كل ذرات الظل المارة في طريق فوتوتات الظل يمكن أن تكون مستفادة من إيقافها أو سد طريقها. كل فوتوت ظل يقابل نفس نوع الحائل الذي تقابله الفوتوتات المبردة كما ستفعل الذرات المكونة له، وحائل يستعمل فقط على قطاع رفيع من كل ذرات الظل.

لنفس السبب كل ذرة ظل في الحامل يمكنها أن تتفاعل مع قطاع صغير من ذرات الظل القريبة منها وبالنسبة للذرات المبردة منها والشكلة للحائل، وكذا... كل المادة والعمليات الفيزيائية لها نفس البناء إذا كان الحائل المدرك هو عدسة عين الضفادة فلا بد أن تكون هناك الكثير من عدسات الظل كل منها يمكنه أن يوقف فقط واحدة من نظائر الظل لكل فوتوت. كل عدسة ظل تتفاعل فقط بقوة مع فوتوتات الظل المتواصلة معها ومع ضفاعة الظل المتواصلة معها أيضاً... وهكذا، ويكملا بعض أعلاه العناصر تأخذ شكل تجمعات في الأكمان المتوازية. هذه الأكمان متوازية يعني أنه في كل كون منها
تتفاعل عناصره مع عناصر الآخر بنفس الطريقة التي تتفاعل به في الكون المدرك، ولكن كل كون منها يؤثر في الآخرين بدرجة طفيفة عبر ظاهرة التداخل.

وهكذا تكمن قد وصلنا إلى نتيجة لسلسلة التسبب التي بدأت بالأشكال الغريبة للظلال وانتهت بالألوان التпозازية. كل خطوة أخذت شكل التداخل على أن سلوك الأشياء التي نلاحظها لا يمكن تفسيره إلا من خلال سلوك أشياء لا نلاحظها على الرغم من أنها موجودة وأن لها خصائص محددة، وفي القلب من المناقشة هنا يبدو أن تداخل جسيما وحيدا ينبغي قطعياً، ويشكل غير ملتبس أن الكون المدرك وحده هو الموجود حولنا. ليس هناك ثمة جدل حول حقيقة أن مثل ظاهرة التداخل تلك تحدث بالفعل.

ولكن فكرة الألوان المتعددة لا تشيع إلا بين قلة من الفيزيائيين، لماذا؟

الإجابة - لأسف - لا تعكس بالضبط وجهة نظر الأغلبية، ولدي الكثير لقوله عن ذلك في الفصل 13، ولكن دعني الآن أشير إلى أن المناقشة التي عرضتها في هذا الفصل استهدفت هؤلاء الذين يبحثون عن التفسير. أما هؤلاء المكتشفين بالتنبؤ والذين ليست لديهم رغبة في فهم مخرجات التنبؤ التي أتت بها التجربة كيف جاءت وكيف تعمل، ربما يريدون ببساطة في إنكار وجود أي شيء خالف ما وصفته بأنه خواص مدركة. بعض الناس كالناشطين والموسيقيين يتخذون هذا المنهج من التفكير كبدأ فلسفى. لقد سقطت بالفعل ما أراه بالنسبة لهذه المبادئ، وأيضًا سبب ذلك. أناس آخرون يرفضون مجرد التفكير في الأمر. وبعد هذا كله فهي نتيجة عظمى، وأيضًا محبة لدى سماعها لأول مرة ولكن أعتقد أن هؤلاء الناس يتقابلون غطاء. لأنني أريد أن أدفع القراء - الذي يضيفون معنى - إلى أن فهم العوامل المتعددة هو شرط أولي لفهم الحقيقة بفضل ما يمكننا. مهما كان قول ذلك بشكل شديد مروعًا أو ضارًا للبحث عن الصدق، حتى لو كان غير متسامع تقليًا (ولكن أنين أمل أن اتخاذ هذا السلك لابضطربي الأمر). الأمر بالعكس لأن الخلاص يوجه نظر عن العالم هو أمر متكمال وله معني بكثير من الطرق عن أي وجهة نظر مسبقة عن العالم، وبالتأكيد أكثر من
مجرد النظرية الكبيرة (الطائرة التحتية في الدوافع البشرية) البرامجية التي عادة في أيامنا هذه ما يناسب إليها أو يعتمد عليها العلماء في تكوين وجهة نظر عن العالم.

لذا لا يمكننا فقط أن نقول: هذه الفوتونات تبدو كأنها تتفاعل مع كيانات غير متطورة، لماذا لا نتركها عند هذا الحد؟ ولذا نضطر للذهاب لأبعد من ذلك، كما أن هذه الكيانات غير المتطورة موجودة بالفعل؟ لذا يتداخل بعض الفيزيائيين. وثمة وجهة نظر غريبة على ما يجب أن تكون عليه الفكرة الأساسية إذ نقول: هذا الفوتون المدرك حقيقي، أما فوتون الظل فهو غير ذلك أو بالكاد هو طريقة تسمح للفوتون الحقيقي أن يتصرف على نحو ما يمكنه أن يفعل ولكنه لا يفعل.

وهكذا فالنظرية الكبيرة هي حول التفاعلات بين ما هو "حقيقي" وما هو "ممكن". وهذا على الأقل يبدو عميقًا على نحو ما. ولكن هؤلاء الذين يأخذون بأن وجهات النظر هذه ومن بينهم بعض العلماء البارزين هم الذين يجب أن يعلمو كيف يتنوع وتنتمى الهنات أو الزلازل أو الانحرافات الفكرية في هذه النقطة أو في هذا "المامبوجامبو" (Mumbo-Jumbo) نشاط معقد يقصد به التشويق والإدعاء بما هو غير حقيقى) حول ذات النقطة. إذا دعنا نحتفظ برؤوسنا باردة، الواقع المفتوح أو الحقيقة الدامغة هي أن الفوتون الفعلي المدرك يسلك طريقًا مختلفًا نتيجة لوجود أشياء في المرات المفتوحة أمامنا في مكان ما في الأجهزة تباعد أو يرتجل فيها وفجأة يعترض طريق هذا الفوتون المدرك شيء ما يساهم عبر هذه المرات ورفض تسمية بأنه حقيقى هو مجرد لعب بالالفاظ. "مكان" لا يمكن أن يتفاعل مع "الحقيقي": الكيانات غير الموجودة لا تسبب انحراف الكيانات الموجودة عن مسارها. إذا انحرف فوتون عن مساره فإلا بداية أن شيئًا قد تسبب في هذا الانحراف. وهو الشيء الذي سميته "فوتون الظل". وإعطاء اسم لا يعني أنه حقيقي، ولا يمكن أن يكون صادقًا إلا في واقعة فعلية مثل وصول وانحراف فوتون مدرك، وإلا لكان السبب في ذلك واقعة متخيلة أو كان نقول: ما كان يمكن أن يفعله الفوتون ولكنه لم يفعل. إن ما يحدث فعلاً
هو الذي يتسبب في أن شيئًا يحدث بالفعل. إن الحركات المعقدة لفوتونات الظل في تجارب التداخل ليست إلا إمكانيات لم كانت قد حدثت بالفعل وإنما كانت ظاهرة التداخل لتقع بدورها.

السبب في أن تأثيرات التداخل هي في العادة ضعيفة ومن الصعب استكشافها يمكن وجوده في قوانين ميكانيكا الكم التي تحكمها. وثمة تنبهات متكررة لهذه القوانين تتصل بهذا الأمر. الأول أن كل جسيم دون ذره ما ينافوه في الأكوام الأخرى وأنه يتداخل فقط مع أولك اللائي ينافوه. إنه لا يتأثر مباشرة مع أي جسيمات أخرى في تلك الأكوام. ولذلك فالتفاعل لا يلاحظ إلا فقط في أحوال تكون فيها ممرات الجسيمات وفالقرب، كما لو أنها تفصل ومن ثم تتجمع (كما لو أن الفوتون المرك ومعثر الظل يكون متوجهين نفس النقطة على الشاشة). حتى التوقيت لا بد أن يكون صحيحة أو أن أحدًا من المرنين يتسبب في تأخير فوتون عن الآخر فإن ذلك يننزق من التداخل أو يمنع حدوثه. والنتيجة الثانية أن استكشاف التداخل بين أكيونتين يتطلب أن يقع تفاعلا بين كل الجسيمات التي يكون موضعها أو صفاتها الأخرى غير متناقضة في الكوانت. من الناحية العملية فإن هذا يعني أن التداخل يكون قويًا بدرجة كافية لاستكشافه فقط بين الأكوام المتماثلة جداً. على سبيل المثال ففي كل التجارب التي وصفتها تختلف الأكوام المتداخلة فقط في وضع فوتون واحد. إذا أثر فوتون على سير عناصر أخرى، وخاصة لو كان ملحوًةًا، فإن هذه العناصر أو الملاحظ نفسه سوف يكون مختلفين أيضًا في الأكوام المختلفة. ولو الأمر كذلك فإنه يستتبع أن التداخل يتضمن أن الفوتون يصبح غير قابل للاستكشاف في الواقع العملي لأن التفاعل الضروري بين كل العناصر المتاثرة سيكون معقدًا جدًا لدرجة لا يسهل معها إدارته. لا بد أن أشير هنا أن الجملة التالية لوصف هذه الحقيقة هي:

"الملاحظة تهدم التداخل عند صياغتها على هذا النحو تعتبر مخادعة لأسباب ثلاثة.

أو أنها تفترض نوعاً من التأثير النفسي التحليلي على الملاحظ البصري عن ظواهر
فيزيائية أساسية بينما لا يوجد مثل هذا التأثير. الثاني أن التداخل لم يعمر أو ينهض.

إنه من الصعب كثيرا ملاحظته لأن هذه الملاحظة تتعلق بالتحكم في السلوك المحدد لعناصر كثيرة أخرى. والثالث أنها ليست مجرد ملاحظة لكن أي تأثير للقوتين على ما يحيط به يعتمد على أى من المسارات سيتركها في ترحالها، وهذا ما يتسبب في هذا التأثير.

لفائدة القارئ الذي ربما قد رأى استخدامات أخرى للكنها الكم، فلا بد أن

أقيم علاقة – وباختصار – بالمناقشة التي عرضتها في هذا الفصل وبين الطريقة التي

يقدم بها الموضوع عادة. ربما لأن التحدي بدأ بين الفيزيائيين النظريين لأن نقطة

البداية في عرض الموضوع هو النظرية الكمية ذاتها. أحدهم وضع النظرية على نحو

حذر بقدر ما استطاع، وأخبرنا قبل ما تقول لنا النظرية عن الحقيقة. ذلك هو

الاقتراب الممكن إذا كان المرء راغبًا في فهم التفاصيل النهائية للظاهرة الكمية.

لكن بالنظر إلى أن الأمر يتعلق بكيفية واحد أو أكوان متعدداته فهو اقتراب غير ضروري

فلا قيمة له. وهو السبب الذي جعلني لا أتبعه في هذا الفصل وحتى أنني لم أبرز

أي من أساسيات أو دعاوى النظرية الكمية. لقد أوضحنت فقط بعض الظواهر

الفيزيائية ووصلت لبعض النتائج التي لا مهرب منها. ولو أن المرء بدأ من النظرية فشلت

أيرون يؤكدا عليهما الظل. الأول أن النظرية الكمية لا منافس لها في قابليتها للتتبؤ

بنتائج التجارب حتى لو استخدم أيهم معاً. وهو مغضض العينين – دون التعويل

كثيراً على ماذا تعني هذه المعادلات. والثاني أن النظرية الكمية تقول لنا شيئًا جديدًا

وغيرًا أو جديًا حول طبيعة الحقيقة. الجدل هو فقط حول ما يعني ذلك. كان الفيزيائي

هيو إيفيريت (Hugh Everett) هو أول من فهم نظريته (في عام 1957 أي بعد حوالي

ثلاثين عاما من صيورة النظرية أساسًا للفيزياء الجزيئية). إن النظرية الكمية تصف

(Hugh Everett) اقترح عام 1957 أنه عند قياس نظام ما، وعندما تكون الموجة وقعت

خلطًا من حالات متعددة، فإن التماثل الكمي في عد حتى من الأكوان غير المتداخلة مع بعضها.

تجعل نتائج القياس تحدث ولكن في كون آخر. (الترجم)

90
تعدا في الأكوان. منذ أن أصبحت المناقشة حول ما إذا كانت النظرية تقبل أي تأويلات أو تفسيرات أخرى (أو إعادة التأويل، أو إعادة التشكيل، أو إصلاحات لتعميلها.. إلخ) حتى يمكن أن تصف كونًا واحدًا ولكن تستمر تنبؤاً بصحبة عن مخارجات التجارب وبكلمات أخرى هل قبولنا بتنبؤات النظرية الكمية يجبرنا على قبول الأكوان المتوازي؟

بيدو لي أن هذا التساؤل وبالتالي كل التحدي الغالب في هذا الأمر هو توجه خاطئ. معترفًا أنه من الصحيح والمناسب للفيزيائيين النظريين - وأنهم - أن يخلصوا في بذل جهد كبير لفهم شكل بناء النظرية الكمية، على أن لا يكون ذلك على حساب فقدها للموضوع الأساسي الذي تنتفع به وهو فهم الحقيقة. حتى لو كانت تنبؤات النظرية الكمية يمكنها - على نحو ما - لا تشير إلا إلى كون واحد، فالفوتونات المنفردة ستظل حاضنة لفوتونات ظل بالطريقة التي وصفتها. ويبدو معرفة أي شيء عن النظرية الكمية فإن المركز يمكنه أن يرى أن هذه الطلائل لا يمكنها أن تكون نتيجة لتاريخ منفرد للفوتون وهو يرجل من البطارية إلى عين الملاحظ. إنها تستعصى على أي تفسير في كلمات من قبل أنتان لا يرى سوى الفوتون فقط. أو أن كونًا واحدًا هو الذي نراه. ولذلك إذا وجدت أحسن نظرية مثالية للفيزياء وكانت لا تشير إلى أكوان متوازي، فمعنى هذا أنها بحاجة إلى نظرية أفضل منها تشير إلى أكوان متوازي حتى تفسر لنا ما نراه.

إذن هل يجبرنا قبول تنبؤات النظرية الكمية على قبول وجود الأكوان المتعددة؟ ليس الأمر كذلك في قول كهذا. يمكننا أن نعيد تفسير أي نظرية على طريقة النزاعين دون حاجة لأن تجبرنا على أي شيء عن الحقيقة. ولكن هذا خارج الموضوع. وكما قلت توا أنتان لسنا بحاجة لتنبؤات متعمقة لتحديدنا بشيء عن وجود الأكوان المتوازي، فظاهرة التداخل لجسيم واحد تخبرنا بذلك. ما نحتاجه هو نظريات عميقة لتفسر لنا ونتنبدأ عن مثل هذه الظاهرة. لتقول لنا على أي شكل تكون عليه هذه الأكوان الأخرى.
وأي قوانين هي التي تطبقها، وكيف يؤثر كل منها على الآخر، وكيف يناسب كل هذا مع الأساس النظرية للموضوعات الأخرى؟ وهذا ما تفعله النظرية الكمية، النظرية الكمية عن الأكوان المتوازية ليست هي المشكلة وإنما هي الحل، إنها ليست مثيرة للمشاكل ولا تفسيرًا محتملاً مثيرًا من بين اعتبارات نظرية ملزمًا. إنها التفسير الوحيد الممكن الدفاع عنه عن حقيقة العناصر المناظرة، والملحوظة.

حتى هذا الحد كنت قد استخدمت مصطلحاً - بصفة مؤقتة - يقترح أن أحداً من الأكوان المتوازية يختلف عن الآخرين بكونه "مُدرّكًا". كان الوقت للفصل بين هذه الطائفة الأخيرة وبين النظرية الكلاسيكية عن مفهوم الكون الواحد من الحقائق. دعنا نعود لضغدتنا. لقد رأينا في قصة هذه الضغدة التي تحلق عن بعد من الباطرية لعدة أيام في المرة الواحدة متطرفة للوضوء الذي يصلها بمعدل مرة في اليوم، ليست هي كل القصة، لأنه لا بد من أن هناك ضغدة ظل في أكوام الظل التي توجد في مقابل الكون المدر، وتنظر أيضًا وصول الفوتوتات. افترض أن ضغدتنا مدرّبة على أن تقفز كلما رأت ومبيًا. في بداية التجربة فإن الضغدة المدركة سيكون لديها مجموعات كبيرة من ضغدات الظل. كلها مبتدئًا متشابهة ولكن بعد ذلك بقليل لن تكون كذلك، إذ إنه من المستبعد أن ترى أي فوتوتًا على الفور. ولكن الحدث النادر في أي كون واحد. يصبح من قبيل الأحداث العادية إذا نظرونا إلى جميع الأكوان، وهكذا في لحظة ما في مكان ما من متعدد الأكوان ثمة أكوان قليلة يكون فيها أحد الفوتوتات بالضغط مصممتًا بعدسة عين ضغدته في هذا الكون. وهذه الضغدة تقفز.

لماذا تقفز الضغدة بالضغط؟ لأن في هذا الكون التي هي فيه تطبيق قوانين الفيزياء كما تفعل الضغدة المدركة، وعندما تبني "الظل" قد استخدم بها أحد الفوتوتات "الظل" الذي تخص هذا الكون. واحد من جزئيات حساسية الضوء "الظل" في شبكة العين "الظل". هذه قد استجب من خلال عضيات كيميائية في هذه العين "الظل" والتي
بناء عليها استجاب العصب البصري فيها. ونقل الرسالة إلى مخ الضفدع "الظل".

وتبناً لذلك تكون الضفدع قد خبرت الإحساس برؤية الظلم.

هل أقول: "الإحساس: "الظل" لرؤية الظلم" بالنسبة، لا. عندما يكون الملاحظون حقيقيين سواء أكناوا ضفادع أو بشرًا فإن إحساسهم لا بد أن يكون حقيقة أيضًا.

وعندما يلاحظون ما قد نسميه أي موضوع "ظل" فإنهم يرون أنه مدرك. أنهم يلاحظون ذلك بنفس الوسائل، بنفس التنوع الذي يصف به ما نرى أنه موجود بالكون المدرك القابلية لأن يكون الشيء مدركًا لها صلة بالمناظر أنفسهم. هذا فإنه من الناحية الموضوعية لا يوجد نوعان من الفوتوانات نوع "مدرك" ونوع "ظل" ولا نوعان من الضفادع ولا نوعان من الأكوان بعضها مدرك والآخران "ظلم". لا شيء من هذا في الوصف الذي أطلقته على تشكيل الظل ولا أى من الظواهر المتصلة به ما يميز بين الأشياء "المدرك" وال"ظلمية" فيما عدا الإصرار على أن واحدة من النسختين هي من قليل "المدرك". عندما قدمت "المدرك" و"الظل" ميزت بوضوح بين القول باختلاف الأول وحلف الثاني. ولكن من تحن؟ بينما أكتب هذا فأن مضيفين من نظائر "الظل" كانوا يكتبون أيضًا. هم ميزوا أيضًا بين المدرك والظل من الفوتوانات بينما التي أسموها "المدرك" هم أولئك الذين أسميتهم "الظل".

ليس من بين النسخ لأي موضوع ما له ميزة في وضعية من مسألة شرح الظل أكثر مما أوضحته توا، أي أكثر من ميزة أوضاعها التي أمتتنا بها رياضيات ميكانيكا الكم. ربما أميل بشكل شخصي إلى التمييز بين النسخ بأن أحدنا مدرك لأن شعور ذاتي مباشرة، لا أحداً الآخرين، ولكنني ببعض الأفكار الحقيقة أن الآخرين يشعرون كذلك بالنسبة لأنفسهم.

كثير من هؤلاء المضيفين "الظل" شخصي يكتبون نفس هذه الكلمات في اللحظة نفسها. بعضهم قد وضعها بصورة أفضل. والبعض الآخر قد ذهب لشرب فنجالًا من الشاي.

93
<table>
<thead>
<tr>
<th>اصطلاحات</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>جسيم الضوء</td>
<td>فوتون</td>
</tr>
<tr>
<td>من أجلشرح في هذا الفصل فقط، أسميت العناصر في هذا الكوك اندركة. أما العناصر في الأكوان الأخرى عناصر ظل.</td>
<td>مدرك/ظل</td>
</tr>
<tr>
<td>عالم الحقيقة الفيزيقية باكمله والذي يحتوي على أكوان متوازية.</td>
<td>متعدد الأكوان</td>
</tr>
<tr>
<td>التوازي يعني أنه في كل منها تتفاعل العناصر مع بعضها كما تفعل في الكون المدرك، إلا أن كل منها يؤثر في الآخر بطريقة ضعيفة من خلال ظاهرة التداخل.</td>
<td>أكوان متوازية</td>
</tr>
<tr>
<td>نظرية فيزياء التعدد الكوني.</td>
<td>نظرية الكم</td>
</tr>
<tr>
<td>هي خاصية امتلاك أعداد متميزة ومتفرقة من القيم ممكنة ولنتمت فصلًا مستقلًا ومتصلة. وقد حصلت النظرية على اسمها من تأكيدها من أن كل الكميات القابلة للقياس هي مكتملة. ولو أن معظم التأثيرات الكمية هي نفسها غير مكتملة ولكنها متداخلة.</td>
<td>التكيف</td>
</tr>
<tr>
<td>تأثير الجسم في أحد الأكوان على نظيره في كون آخر. تداخل الفوتون يمكن أن يسبب في أن الأط 긖 تكون أكثر تعقيدًا عن مجرد كونها مجرد "سيليتم" للعواقب التي يرجع إليها السبب في حدوثه.</td>
<td>الداخل</td>
</tr>
</tbody>
</table>
الخلاصة:

في تجارب التداخل هناك إمكان لمناذاج الظلال أن تصبح مظلمة عندما تفتح فتحات جديدة في الحائل مُطلقة الظل. هذا يبقى صادقًا حتى لو أجريت التجربة بواسطة جسيمات منفردة. سلسلة كاملة من التسبيب تقوم على الحقيقة التي تحكم إمكانية أن الكون الذي نراه حولنا هو منشئ الحقيقة بأكملها. في الواقع كل حقيقة الفيزياء هي متعددة الأدوات الذي يستعمل على أكوان واسعة عدد من الأدوات المتوازية.

فيزياء الكم هي واحدة من الأفرع الأربعة الرئيسية للتفسير. الفرع الثاني هو المعرفة: نظرية المعرفة.
الفصل الثالث

حل المعضلات
لا أدرى أيهما أغرب: هل هو السلوك الذي تتخذه الظل نفسه، أم ما تدفعنا إلى تأملنا في بعض نماذج الضوء والظل من تعميده وتجهيز مفهومنا ونُقف على جذور من بناء الحقيقة، الجدل الذي سبقته وعُبرت عنه في الفصل السابق، وربما أنه خالق ومثير للجدل، هو في حد ذاته مثال نموذجي لجزء من العلم والذي يتعلق بالتعبير العلمي أي ما يجعل أى أمر معقول.

وهذا ما يجعل الأمر يستحق أن ننظر ملياً في طبيعة هذا التعبير الذي هو بطبعه يمثل ظاهرة طبيعية تدهشنا وملائمة بالتراعات والتشبيبات كما هو حال فيزياء الظل.

وإلى هؤلاء الذين يطمحون أو يتعلمون للحقيقة أكثر من بحثهم عن بناء شعري وإنشائي للحقيقة، فقد يبدو الأمر بعيداً عن التناسب والتناغم، وحتى غير عادل، أن يستثني مجرد تواجد هذا الشعاع الرفيع من الضوء هنا بدلاً من هناك مثل هذه الحقيقة الخطيرة والهامة. ولكن هذا هو ما يحدث بالفعل وهي المرة الأولى أيضًا، بكل معنى من المعاني، التي يحدث فيها مثل هذا في تاريخ العلم. وفي ظل هذا المعنى المهيب فإن اكتشاف وجود أركان أخرى هو ما يذكرنا باكتشاف وجود كواكب أخرى في المراحل المبكرة من علوم الفلك، من قبل أرسلنا مسبارات (مسبار) إلى القمر وكواكب أخرى وقد أتت كل معلوماتنا من خلال معاينة من الضوء (أو إشعاعات أخرى) تمت ملاحظتها (تلك البصاع والإشعاعات) في موقع محدد دون الآخر. خذ في اعتبارك كيف كان التعريف الأصلي لحقيقة أن الكواكب ليست نجومًا وكيف تم اكتشافه. مراقبة السماء ليلة تظهر لنا — ولعدة ساعات — أن النجوم تتبعاً نقاط معينة في السماء. إنها تتبعاً بصراحة في مواقع ثابتة بالنسبة لزميلاتها الأخريات، والتفسير التقليدي لذلك كان أن السماء الليلية عبارة عن أفق سماوي (أو إلهي) يتبعاً حول الأرض الثابتة في موقعها وأن هذه النجوم إما ثقب في هذا الأفق أو توجهات للأجزاء.
الشفافية أو البلورية التي تتخلل هذا الأفق. ومع هذا فأن أليف النقاط من الضوء البادية في السماء للعين البشرية المجردة توجد حفنة من الأضواء المتلاصقة التي عبر الأطول من المدى لا تبدو ثابتة تمامًا في الأفق بل تتجول في السماء على شكل حركات معقدة. وقد اكتسبت اسم الكواكب من الكلمة الإغريقية التي تعني: التجول. وهذا التجوال بالذات هو الذي جعل تفسير الأفق السماوي يبدو وكأنه غير مألوف.

التفسير الناجح لحركة الكواكب لعب دورًا هامًا في تاريخ العلم. نظرية مركزية الشمس "الكويكب نيوتون" وضعت الأرض والكواكب في مسار دائري حول الشمس. كما اكتشف كئبر أن هذه المدارات من قبيل "القطع الناقص" أكثر منها دائرة. كما شرح نيوتون هذه القطع الناقصة من خلال قانونه عن "التربيع العكسي" في قوى الجاذبية، واستخدم نظريته تلك فيما بعد في التنبؤ بأن الجاذبية المتبادلة لكواكب قد تسبب بعض الانحرافات الصغيرة في مسارات القطع الناقص ذاك. وملاحظات هذه الانحرافات أدي عام 1846 إلى اكتشاف كوكب جديد، نيوتون، وكان واحدًا من بين اكتشافات عديدة جمعها تزيد على نحو مثير للإعجاب والعجب صحة نظرية نيوتون.

وبذلك أعطت النظريات العامة للنسبية التي وضعها أينشتاين بعد ذلك بعدة عقود مفهومًا أساسيًا مختلفًا عن الجاذبية عبر مصطلحات احتواء الزمان والمكان وبالتالي ظننا قليلًا بمزيد من التحركات مرة ثانية. على سبيل المثال تتبنا هذه النظرية بشكل صحيح بأن الكوكب عطارد ينفع كل سنة بحوالي عشرة آلاف درجة بعيدًا عن الموقع

(6) أشهد نيوتون، Isaac Newton (1642-1727) العالم ورياضياتي إنجليزي هو أشهر على مستوى العالم بعد رحيل جاليليو، وفضلًا عن قانون الجاذبية تركز إنجازاته في الرياضيات وعلوم الفيزياء، وهي الأعمال التي مهدت الطريق للعلم الحديث وفجرت ثورة علمية، تلقى علماء في كلية ترينيتي وجامعة كامبريدج التي عاش فيها من 1661 إلى 1669 وقدم في أثاثها معظم أعماله الرياضية كاكتشف طريقة لحساب الاعدادات الصحيحة وقدم مع ليبرز حسابات التفاصيل كما أوجد صيغة لبحث عن سرعة الضوء، والغاز التي صاحبتها إبلس في بعد. (المترجم)
الذي حدثت لنا نظرية نيوتن. كما تضمنت أيضًا أن أضواء النجوم التي تمر بالقرب من الشمس تتغير بناءً على النجوم المكتشفة. ومع ذلك، ملاحظة عام 1919 تعتبر

Arthur Eddington) (1882 - 1944 فيزيائي وفلكي إنجليزي

هذه الانتقادات بمعرفة أرثر إيدنجتون (2) الوقت الذي يُرجح نهاية نظرة النظريات المحيطة بالعالم كمعتقد عقلًا قابل للدفاع عنه (والسخريات فإن إعادة التسوية لتصحيح تجارب إيدنجتون ذهبت إلى أن هذه التجارب قد تكون أجريت قبل أو أثناء أو مبسطة). التجربة التي تكرر إجراؤها بمزيد من الصحة بما فيها قياس مواقع البقع (صورة النجوم القريبة من الشمس أثناء كسوفها) فوق شريحة معدة لذلك.

مع تواتر صحة النتائج الفلكية توارى الفروض بين تنبؤات النظريات الناجحة عن مظهر السماء في الليل. حتى أنه تم اعتماد تلبس مبادئ أكثر قوة وأدوات قياس أنشئت لرصد تلك الفروض. ومع ذلك لم تتقارب تفسيرات هذه النتائج. وعلى العكس، كما أوضحت، ثمة نجاحات ثورية لبعض التغييرات. تلك الملاحظات التي كان لها تأثير فيزيائي قليل أجبرتنا على إحداث تغييرات في وجهة نظرنا عن العالم. ولذا يبدو أننا نستنتج نتائج مهمة من خلال دلائل هزيلة أو قليلة. ما الذي يحكم على هذه الاستدلالات؟ هل يمكن التأكد أن مجرد أن نجم ما قد تحرك على نحو ميليمتر على الشريحة المصورة لإيدنجتون يعني أن الزمان والمكان يتحينيان؟ أو أن مساعدًا فتوغرافيًا في موقع معين لم يسجل أي إشارة في الضوء الضعيف يعني وجود عوالم متوازية؟

(*) أرثر ستانلي إيدنجتون

(1882 - 1944 فيزيائي وفلكي إنجليزي

حدد في بوذا وكالكون العشرين أن حد السطوع التي يمكن أن تتجاوز عن إشعاع موجة نشيء مدمج لا يمكن أن يتعاظم إلا بعد مدة معينة. وهو الحد الذي سمح شريقيًا بأنه، وهو مشهور أيضًا بعده

المتعلق بالعنصر في مجال الجاذبية. (الترجمة)
بالطبع ما أشرت إليه الآن يوضح مدى هشاشة وعدم مباشرة كل الدلائل الناتجة عن التجربة. لأننا لا يمكن أن ندرك أو نفهم النجوم أو الشمس أو أي موضوع أو أحداث خارجية من خلال الشروط الإيجابية للإيديا. إذا نرى الأشياء عندما تظهر صورها على عدسات عيوننا، فلنفهم هذه الصور إلا عندما توقف نبضات الكهرباء في أصابعنا ونستقبل أنغامتنا هذه الوظائف ونفسرها. وعلى ذلك فإن الدليل الفيزيائي الذي يسيطر علينا، ويتسبب في أن نبتني نظرية ووجهة نظر حول العالم عن أخرى غيرها: هو أقل من ميليمتر: يقاس عبر أجزاء من الألف من الميليمتر (انفصال الأوتار العصبية في العصب البصري) وعبر مئات الفولتات (جمع فولت): (التغير المتوقع في الجهد الكهربائي في أصابعنا الذي يؤدي إلى الفرق بين فهمنا لشيء عن فهمنا لشيء آخر).

ومع ذلك نحن لا نوائم معانية متساوية لكل حساسياتنا العاطفية، في التجارب العلمية نحن نذهب إلى أمال بعيدة لتجربة ما، ونفهمها من خلال النظريات المتوقعة، والتي ندخلها في اعتبارنا. قبل أن نجري أي دراسة لحالة ما، نحن نتبرر بدراية، ونعتنا الفهم، وما الذي ننظر إليه، وعادة ما نستخدم أدوات خاصة معقدة أنشأناها لمثل هذه الأفكار، مثل الفلسفيات، ومفكرين المبكر (أضعاف كثيرة من المرات). ولكن مهما كانت هذه الأدوات مميزة، مهما كانت الأسباب الخارجية الجوية، والمليثة التي تسببت إليها قراءاتها، فإننا نفهم تلك القراءات بشكل حضري عبر أدواتنا للحس. وليس ثمة مهرب من حقيقة أننا بشر ونخلق صغرى، لديها القليل من العوامل غير كاملة وغير الدقيقة التي من خلالها تستقبل كل معلوماتنا عن العالم الخارجي عن أبنائنا. نحن نؤثر أو نفسر هذه المعلومات كدليل على الكون الخارجي الكبير، والمقد (أو الأحكام المتقدمة)، ولكن عندما نن هذ الدلائل تكون حرفيا مجرد مفتريين ومتماثلين للنماذج عبر تيار كهربي ضعيف يمر في أدمغتنا.
ما الذي يُقوم تفسيراته أو تأويلاتها التي تستخرجها من هذه النماذج؟ بالطبع ليس الاستقراء المنطقي، ليست هناك طريقة لإثبات أن الكون الخارجي أو متعدد الأكران موجودين على الإطلاق من خلال ملاحظاتنا لتلك النماذج أو أي ملاحظات أخرى. ولنحذ رضوان التيارات الكهربائية التي تتألفاها أدمغتنا لأن تكون ذات صلة خاصة بهذا الأمر. ربما أن أي شيء نقلقه أو كل شيء هو وهم وحلم، والإلهام والأوهام هي شيء شائع. الآلانية (النظرية التي تقول بأن لا شيء له وجود سوى الأنا) والتي تقرر أنه لا وجود سوى عقل واحد وأن كل ما يبدو لنا وكأنه حقيقة خارجية ليس إلا حلمًا يأخذ طريقه إلى العقل وهو معا ما لا يمكن عدم إثباته منطقيا، والحقيقة لا تشمل إلا شخصًا واحدًا، يفترض أننا، يعلم بتجاربه وخبراته على مدى الحياة، وربما تنتمينا أننا، أو ربما كوكب الأرض ومن يسكنه. وإذا كنا نملي بالدلال - أيه المدللة على وجود الآلاف الآخرين، أو أي كواكب أخرى أو أكران أخرى فإن هذا لا يثبت أي شيء عن عدد هؤلاء الآخرين وكم يكون بالفعل.

ولما كانت نظرية الآلانية عدد غير محدود من النظريات ذات العلاقة، تتشمل رابطة بين المنطق وثقة أي ملاحظة ممكنة عن الدلالات هذا ينتبغي أنه لا يمكن أن تكون ملاحظة. كيف إذا، إن مكننا القول أن ملاحظات سلاوك الأكل تثبَّت نظرية الكون الواحد، أو أن ملاحظاتنا على كسوف الشمس أو خسوف القمر تدمج النظرية النيوترونية العقليانية عن العالم بأنها غير قابلة للدفاع عنها؟ كيف يكون ذلك؟ إذا لم تكن عبارة "تلقى" لا تعني "عدم البرهنة" فلا الذي...
إلا إذا نشرنا أنتان مخبرين على تغيير نظرتنا عن العالم أو أي رأي آخر لنا بناءً على شيء غير قابل للحكم له أو عليه في إطار هذا المعتق؟

هذا النوع من النقد من شأنه أن يحيط العلم بكامله بشعكة عديدة، وكذلك أي عملية تسبب أو تعيق للحقيقة الخارجية التي تزعم باستنتاج أداة من خلال الملاحظة.

وإذا لم يخضع التسبيب العلمي لتوابع الاستقراء المنطقي، لأي شيء سيخصوص إذن؟

لماذا يكون علينا أن نقبل نتائجه؟

هذا هو ما يعرف بـ "مشكلة الاستقراء". وياتى اسمها لما كان سائداً معظم تاريخ العلم عن كيف يعمل العلم، النظرية القائلة بأنه توجد ثمة براهمين رياضية قصيرة، تقويم أقل ولكنه يستحق أخذه في الاعتبار. يسمى "الاستقراء" هذا الاستقراء كان من ناحية متساوية مع التقويم التام المفترض الذي全面建成 به "الاستدلال" أو "الاستنتاج". ومن الناحية الأخرى كان وسيلة ضعيفة فلسفية مفترضة أو كشكل من الحدوس للتسبيب، ومن دون أي دليل ملاحظة يمكن أن تساندها. إن النظرية الاستقرائية للمعرفة العلمية تلعب فيها "الملاحظة" دوراً أولاً في اكتشاف الظواهر العلمية والثاني يتمثل في تقويمها. ويفترض أن اكتشاف هذه النظرية جاء من تتبع الملاحظات أو تعميم نتائجها. إن لم تتطابق أعداد كبيرة من الملاحظات مع النظرية أو من لها تختلف عنها فعلاً أو احتمالاً، فإنه يصبح قابلاً للتصديق والاعتماد عليه. ومخطط هذه الفكرة يوضحه الشكل (١ـ٢).

التحليل الاستقرائي: مناقشتي عن الظلال من المحتمل أن يأخذ الشكل التالي: لقد صنفنا سلسلة من الملاحظات حول الظلال، وأيضاً ظاهرة التداخل (مرحلة أولى).

النتائج تتطابق مع أنه ينتظر أو يتوقع عن ما إذا كانت هناك أكوام متوازية يؤثر كل منها في الآخر. وإن لم يلاحظ أحد ذلك (مرحلة ثانية) وأخيراً فإن هناك من عموم بأن التداخل سوف يكون دائمًا ملموسًا تحت ظروف معينة، وبالتالي يستنتج أن نظرية
الآكوان المتوازية هي المسؤولة عن ذلك ومع مزيد من الملاحظات عن التداخل (مرحلة ثالثة) سنصبح مقتنعين أكثر بالنظرية. بعد عدة تواريخ طويلة لثل هذه الملاحظات، بالإضافة لأن أيًا منها لا يتعارض مع النظرية، ننتهي (مرحلة رابعة) إلى أن النظرية سائدة. وحتى لو كنا غير متاكدين تمامًا فإننا لأسباب عملية سنكون مقتنعين. من الصعب أن نعرف من أين نبدأ تقد مفهوم الاستقراء في العلم - إنه زائف من عدة نواح، ربما أسوأً عيب من وجهة نظر، هو بحث إطلاق أن التعميم في التنبؤ يتساوي مع أي نظرية جديدة. وكأي نظرية علمية لها مثل هذا العمق فإن نظرية وجود أكوام متوازية ليس لها - ببساطة - شكل التعميم من خلال الملاحظات. هل لاحظنا أولاً كونًا وحيدًا ثم لاحظنا بعده كونًا ثانيًا ثم ثالثًا، ومن ثم استنتجنا أن هناك تريليون كون منهم؟ هل التعميم بأن الكواكب ستتجول حول الشمس في نموذج دون الآخر مساو للنظرية القائمة بأن الكواكب هي عالم تتور في مدار حول الشمس، وأن الأرض واحدة منها؟ ليس صحيحًا أن تكرار الملاحظات مرة بعد الأخرى هو الوسيلة التي تجعلنا مقتنعين بالنظريات العلمية. كما قالت النظريات هي تفسيرات وشروح ولن تستطيع فقط تتبؤ. وإذا لم يقبل المرء تفسير ما تقترحه مجموعة الملاحظات فإن تكرار الملاحظات نادرًا ما يكون الوسيلة الشرعية المعتردة للتفسير ودرجة أقل فإنها لا تساعدنا في إنشاء تفسير مرضي حين لا نستطيع التفكير في أي تفسير آخر على الإطلاق.

(شكل 3-1) مخطط عملية الاستقراء
والأكثر من ذلك أن مجرد التنبؤ لا يمكن تقديره من خلال الأدلة التي تسفر عنها الملاحظة. كما أوضح بيرتراند راسل في "الداجبة"(vi) (ولتجنب أي نوع من سوء الفهم فهذه "الداجبة" نوع من الاستعارة المجازية عن طريق تجسّدها في شكل بشري كإنسان يحاول فهم الأمور العادية في الكون). الداجبة لاحظ أن الفلاح يحضر كل يوم لوضع الغذاء لها. الاستقراطيون يعتقدون أن الداجبة قد استفادت من ملاحظتها نظرية وفي كل مرة يقدم لها الغذاء تضيف تأكيدًا جديداً لنظريتها. وبعد ذلك قام الفلاح في أحد الأيام بنبيحها. التجربة الحليقة التي مرت بها داجبة رسل تمت تجربتها أيضاً بمعرفة تريليونات من الدجاج مثلها. التقويم الاستقراطي يعني أن الاستقراء لا يمكن أن يقدم أي نتائج.

ومع ذلك فإن هذا الخط أو النوع من النقد لا يدع الاستقراء بعيداً إلا بدرجة قليلة، إنه فقط يوضح حقيقة أن الملاحظة لا يمكن أن تكون (تحكى على) النظريات. وإن فعل ذلك فإنه بالناتكيد نتفقد الهدف (أو تقبل) مزيد من سوء الفهم الأساسي بأن الاستقرا الاستدلال على الملاحظة من الممكن أن يشكل نظرية. وفي الحقيقة هو أمر غير ممكن الاستدلال عبر الملاحظة ما لم يكن لدى المرء الفعل إطار عام للتفسير. على سبيل المثال لكي تستدل داجبة رسل على تنبؤها الزائف فقيل أن يكون في ذهنها أولاً تفسير زائف عن سلوك الفلاح. ربما تُضحى أن الفلاح يضمر مشاعر طيبة نحو الدجاج، أو أنه كان يحاول تسيمها بغض النزاع فيما بعد وهذا كانت ستصل إلى

(vi) بيرتراند راسل (1872 - 1970) فيلسوف إنجلز ورياضي ورياضي، وتترجمه حياته الفلسفية كلهما على ثلاثة أهداف هي: 1- تأصيل دراية المعرفة البشرية في أساس تبخير عنها. 2- إيجاد علاقة بين العقلية والرياضية باعتبار أن الرياضيات يمكن استنباطها من خلال عدد قليل من المبادئ المنطقية. 3- إمكانية الاستدلال عن أي شيء في الكون من خلال وصفه الصحيح وذلك بتحليل اللغة إلى أقل مطلوباتها وحقائقها الذرية. كما كانت له حياة سياسية عريضة كمصلح وأخلاقي ومناصر للسلام معارضًا للحروب والنزاعات.

المترجم)
الاستدلال بطريقة مختلطة. افترض أن الفلاح بدأ في أحد الأيام بإحضار مزيد من
الطعام للدجاجة أكثر من المتوقع.
كيف للمرء أن يستدل من هذه الملاحظة الجديدة ويتطلبها عبرها عن السولك
المستقبلي له معتدلاً تمامًا على شرح سلوكه الحالي. طبقًا لفكرة أنه يحمل مشاعر
متعاطفة مع الدجاج فربما تكون مشاعره تلك قد ازدادت وبالتالي فليس على الدجاج
أن يقلق أكثر مما مضى: أما بالنسبة لفكرة "التسمين" فدلل هنا يصبح منذرًا
بالسوء أن الدليل على اقتراح عملية الحب.
حقيقة أن دليل الملاحظة نفسه يمكن أن يدلنا على تنبؤ معياريين متناقضين
طبقًا للتفسير الذي نبنياه، ولا يمكننا أن نقوم أي منهما، ليس تحديدا صدفياً لبيئة
المزعة: إن حقائق كل الدلائل المستقلة من الملاحظة وتحت كل الظروف. الملاحظة لا
يمكنها القيام بأي من الأدوار المتوقعة منها في المشروع الاستقرائي، وحتى بخصوص
مجرد التنبؤ، دع عنا النظريات العبرية في التفسير. وأنا أقر أن الاستقراء يقوم على
نظرية الحسم العام في نمو العبرة والتي تعلمها بخبرتنا، وأنه تاريخيًا ساهم في
تحرير العالم من "الأوجما" (الجمود) والاستبداد. ولكننا لو أردنا فهم حقيقة طبيعة
العبرة، ومكانها في نسيج الحقيقة، فلا بد أن نواجه حقيقة زيف الاستقراء جذورًا
وفرعًا. ليس ثمة تسببا علميًا ومن ثم لا تسبب ناجح من أي نوع قد تناشب مع
الوصف الاستقرائي.
ما هو إذن نموذج التسبيب العلمي والاكتشاف لقد رأينا أن الاستقراء وكل ما
يتركز حول التنبؤ من نظريات العبرة يقوم على سوء الفهم. ما نحتاج إليه هو نظرية
معينة تتركز حول التفسير، نظرية كيف يأتي التفسير لكي يصبح موجودًا وكيف نقوم
ب هذا الوجود. نظرية عن كيف ولماذا ومتى نسمح لدركاتنا أن تغيير وجهة نظرنا عن
العالم. وعند امتلاكتنا مثل هذه النظرية لن نحتاج لنظرية منفصلة للتنبؤ. لأن وجود مثل
هذه النظرية بما تحوت من تفسير للظواهر التي نلاحظها لن تدع مجالًا لأي غموض أو

107
سر في الحصول على النتائج. وإذا ما تم تقييم أي تفسير فإن النتيجة الصادرة عن نفس التفسير يكون قد قوّم بدوره هو الآخر وعلى نحو أوثقى. من حسن الحز أن الشكل السائد لنظرية المعرفة العلمية بشكلها الحديث يرجع بدرجة كبيرة إلى الفلسفة (والتي هي واحدة من الأورات الأربعة الرئيسية لتفسير النسيج الحقيقي) وهي التي يمكن النظر إليها كنظرية للذرائع والتفسير في هذا الإطار. إنها ترى العلم كعملية لحل المشكلات. الاستقراء من ناحية يرى قائمة ملاحظاتنا الماضية كنظرية ممثلة للهيكل العظمى أو ما يشبه ذلك، مفترضة أن العلم ليس إلا عملية للإفراغ في النظرية من خلال "التدريب" و"الاستقراء". حل المشكلات يبدأ بالفعل بنظرية قد تكون غير ملائمة ولكن ليس بنظرية أفكار أو انطباعات شخصية تشمل على مجموعة ملاحظاتنا السابقة. إنها تبدأ بأنحن النظريات القائمة. ومنه إذا بدت إحدى هذه النظريات غير ملائمة لنا وأننا نحتاج لنظريات جديدة. هذا هو الذي ينشئ المشكلة. وهو ما يتناقش مع مخطط الاستقراء الموضح بالشكل (3-1) أن الاكتشاف العلمي لا يحتاج البدء بدليل ملاحظة أنه يبدأ دومًا بوجود معضلة ولا أعنى هنا بالعضلة بالضرورة حالة طارئة أو ما يدعو للقلق. وإنما فقط أعني مجموعة من الأفكار تبدو غير مناسبة ولكنه تستحق محاولة تطويرها إلى الأحسن. إن الشرح القائم ربما تبدو عفوية جدًا، أو تبدو كأنها قد أُجهزت للغاية. وقد تبدو ضيقة بغير ضرورة لذلك. أو أن مată خاصتها غير عملية وقد يمنح المرء إمكانية توحيد مع أفكار أخرى. أو قد يجد شروحاً مرضية في مجال واحد كان يبدو عليه التنافض والتضارب.

(1) كارل بوبر Karl Popper (1902 - 1994) فيلسوف في العلم الطبيعي إنجليزى نمساوي مولد رفض الاستقراء في العلم التجريبي باعتبار أن الفرضيات يمكن إثباتها بما أسماه "معيار القابلية للزيغ" وفي غياب دليل التنافس تصبح النظرية مؤكدة. وعلى ذلك اعتبار علومًا مثل الفلك والبيولوجيا والتاريخ الماركسي والتحليل التوفيق النموذجية غير تجريبية لفسرها في مشابهة ذلك العناصر. (الترجمة)
مع حل ينتظر معه في مجال آخر. أو أن هناك ملاحظات مدهشة - مثل تجول الكواكب - التي لم تتبناها النظريات القائمة كما لم تستطع تفسيرها.

هذا النوع الأخير من المشاكل يشبه المرحلة الأولى من مخطط الاستقراء، ولكن فقط بطريقة مخادعة. لأن أي ملاحظة غير متوقعة لا يمكن أن تبدأ اكتشافًا علميًا ما لم تكن النظريات قبل القائمة مضمرة فيها بذور العضلة. على سبيل المثال فإن السحاب تتجول أكثر حتى من تجول الكواكب. هذا التجول غير المتوقع به كان مألوفًا قبل اكتشاف تجول الكواكب بزمن طويل، والأكثر من ذلك: التنبؤ بالجو كان دوامًا ذا قيمة وأهمية للمزارعين والبحارة، والجنود أي أنه كان هناك على الدوام باعتباره لتنظيم كيف تتحرك السحب. ولكن الأرصاد الجوية لم تكن هي التي ألهمت تأليف وانفجار العلم الحديث، إنما هو الفلك الذي كان وراء ذلك. الدليل الملاحظة بشأن الأرصاد الجوية كانت دائمًا جاذبة ومتحدة أكثر من دليل الفلك ولكن أحدًا لم يتبعه إليها، ولا أحد استدل منها على نظريات عن مقدمات البدري أو الأعاصير التي يمكن أن تكون مدمرة.

لم يكن تاريخ العلم مزدحماً بالجدديات، أو الأمور الجامدة (الدوجما) أو الهرطقيات أو التأملات أو النظريات المكيدة عن طبيعة السحب وحركتها لما إذاً تحت ظروف البناء التفسيري للجو كان من المفهوم جيدًا أن حركة السحب مما لا يمكن التنبؤ بها. الحس العام اقترح أن السحب تتحرك بفعل الرياح. وعندما انتقل الاتجاه إلى منحى آخر كان الظن أو الحدس العقول أن الرياح يمكن أن تكون مختلفة باختلاف حركتها الزاوية (من زاوية) وإنها إذن مما لا يمكن التنبؤ به، ومن السهل استنتاج أنه لا حاجة لمزيد من التفسير. بعض الناس بلا شك اتجهوا إلى هذا النهت بالنسبة للكواكب، واقترضوا أنها مجرد أشياء متوهجة في الأفق السمائي، ويتلقى النفع فيها عبر سلوك زائد للرياح، أو ربما تتحركها مادة ما، وليس إذن ثمة مزيد للشرح أيضًا. بينما لم يرض آخرون بذلك وخشموا أنه لا بد من وجود تفسير أعمق وراء تجول الكواكب وطفقوا يبحثون عن هذا التفسير ووجدوه. وفي فترات مختلفة من تاريخ الفلك كانت ثمة
دلائل تمت ملاحظتها دون تفسير، وفي أوقات أخرى كان الضئيل من هذه الأدلة العصبية على الشرح هو الموجود، ربما لم يتوافق أي منها. ولكن الدائم أن الناس لو اختلفوا ما الذي سيظنونه بناء على ما تراكم لديهم من الملاحظات حول ظاهرة معينة لكانوا اختاروا ظاهرة السحب عوضًا عن الكواكب. ولكن اختاروا الأخيرة ولأسباب مختلفة. بعضما من هذه الأسباب اعتمدت على المفهوم السابق لديهم مما يجب أن يكون عليه علم الكلين وعقوله، أو الجدل المتقدم للفلسفة أو العقل الروحية وراء الأرقام وعلومها. بعضها تأسس حول فيزياء اليوم الجاري، أو على الرياضيات أو علم الهندسة. البعض أيضًا تحول إلى أمور لها جدارية موضوعية وبعضها لا تستند عليه هذه الصفحة. أين كل منها له سبب ما، ولكننا بدأنا بالبحث أن التفسيرات القائمة أو الموجودة منها يمكنها ومن الواجب أن يردد عليها التطور والتحسين.

قد يحل المرء مضمنة بالعثور على نظريات متكافئة تشمل على شروط تخلو من العيوب أو النواقص ومحافظة في نفس الوقت على الموضوعية الموجودة في بعض النظريات الموجودة (شكل 2-3). وهكذا عندما تغلق مشكلة عن وجودها (مرحلة أولى) فالمرحلة الثانية دائمًا ما تلتزمن بالحاسد: افتراس نظريات جديدة، التدويل أو إعادة النظر في النظريات القديمة، بمؤهل حل المعضلة (المرحلة الثانية). الحساس هنا يكون محل اختبار، وقد سواء كان النقد عقلانيًا يستلزم اختياره والقارن مع غيره لعرفة أيها الذي يقدم تفسيرا أفضل، طبقًا للمعيار المتضمن أو المورث في المعضلة ذاتها (المرحلة الثالثة).

ومن ثم تفعل نظرية حدسية في مواجهة هذا النقد أي عندما يبدو أن ما تقدمه من شروط أسوأ مما تقوله نظريات أخرى، يتم هجرها. إذا وجدنا أنفسنا مضطرين لهجر واحدة من النظريات الجذرية لصالح واحدة (أو أكثر) جذيرية مقتروحة (المرحلة الرابعة) فإننا نعتبر - أن مغامرة حل المعضلة قد حققت تقدماً ما. وقد ذكرت كلمة مؤقتة لأن المعضلات التي تستتبعها المعضلة الأصلية قد تحتاج تعديلًا أو أن يحل
محلها حتى هذه النظريات المستجدة، والتي يكون واضحًا أنها أكثر ترضيًا، كما أننا أحيانًا ما نعيد بعث "الجثث الهامدة المضمرة" في النظريات غير المرضية.

وهكذا يصبح الحل، مهما كانت جودته، ليس هو نهاية القصة، وإنما بداية للعملية التالية لحل المعضلة (المرحلة الخامسة). وهذا يبرز سوء فهم آخر ناتج عن الاستقراء الأخر في العلم ليس هو تجربة أن تجد نظرية من شنأتها، أو ميالاً، للاعتقاد بأنها صحيحة للأبد، وإنما دائمًا هو العثور على أحسن نظريات متاحة حتى الآن. الجدل العلمي يستهدف حثًا على أن التفسير القائم هو أحسن المتاح.

(شكل 3-2) عمليات حل المعضلة (أو المعضلات)

أنها لا تقول لنا، ولا ينبغي لها، أي شيء من مدى صدقية التفسير المتاحة في المستقبل عندما تظهر أساليب جديدة للتفاؤل أو مقارنته بتفسيرات أخرى لم تبدع بعد. التفسير الجيد قد يصنع تنبؤًا جيدًا عن المستقبل، ولكنه لا يستطيع، ولا تفسير يمكنه - حتى ولو في بداية عملية التنبؤ - أن يعالج ترضية أو جودة منافسيه المستقبليين. الذي وصفته حتى الآن يعني أن عملية حل المعضلات أيقان الموضوع أو الماد أو التقنية الخاصة بالنقد العقلاني المتصلة به: الحل العلمي للمعضا دائمًا ما يحتوي على منهج معين من النقد العقلي يسمى "الاختبار التجريبى" عندما تنافس نظريتان أو أكثر ويظهران تنبؤات متعارضة حول مخرجات تجربة، فإن التجربة هي التي تحدد ومن ثم تفجر النظريات أو النظريات التي أتت بتنبؤات زائفة. البناء الفعلي للحذار العلمي يركز على العثور على الشروط القابلة للاختبار التجريبى وعلى نحو 111
مثالًا، نحن نستهدف الاختبارات التجريبية الحادة تلك التي تكون مخرجاتها، أياً كانت، مشيرة إلى ذيف واحدة أو أكثر من النظريات التي سبق أن حظيت برضانا عنها. هذه العملية يبررها (الشكل 2-3). سواء كانت الملائمة المتضمنة في المعالقات المثيرة (المرحلة الأولى) وسواء كانت أو لم تكن النظريات الموضوعة قد ضمت خصيصًا (في المرحلة الثانية) لتكون قابلة للاختبار تجريبيًا فإنها في هذه المرحلة الحرجة من الاكتشاف العلمي (المرحلة الثالثة) فإن الاختبار العلمي وحده هو الذي سيلعب دوره الحاسم والمميز. هذا الدور هو الذي سيظهر عدم رضاً عن النظريات التي كافحت لإثبات صدقها بكيفية أن تسيراتها قد أدت إلى تنبؤات زائفة.

هذا لا بد أن أشير إلى الامتثال المبهم بين النفي التجريبى والتأكيد التجريبى.

حيث يحتوي التنبؤ غير الصحيح على نحو تلقائي التفسير القائم على تفسير غير مريح، والتنبؤ الصحيح لا يقول شيئًا على الإطلاق عن ذات التفسير. التفسيرات التي هي نوع من "النفيات" والتي تدعى تنبؤات صحيحة لا تساوي شيئًا مثلها مثل الحساس المصاحب لظاهرة الأطباق الطائرة، وعلماء التأثير والعلماء الزائنين بكل تنويعاتهم لا يجب أبدا أن نضعهم في البال.

(شكل 2-3) كيف يتم الاكتشاف العلمي

إذا كانت نظرية ما عن وقائع تمت ملاحظتها غير قابلة للاختبار، أي عندما لا تُحكمها الملائمة المكتبة، فإنها بذاتها لا يمكنها تفسير لماذا وقعت هذه الوقائع بالصورة التي لاحظناها عليها ولا بأي طريقة أخرى. على سبيل المثال فإن نظرية تأثير

112
الملاكية على حركة الكواكب ليست مستقرة لأنه مهما كان شكل حركة هذه الكواكب فسوف ينسب ذلك إلى الملاكية. ولذا فإن نظرية الملاكية لا يمكنها تفسير الحركات المميزة التي نراها، إلا لو أثبتت بها نظرية مستقلة عن كيفية تحرك الملاكية. وذلك لأن هناك قاعدة منهجية في العلم والتي تقول أنه عندما تكون هناك نظرية قابلة للاختبار التجريبى واستطاعت أن تجتاز الاختبارات المناسبة، بينما النظريات المنافسة لها حول ذات الظاهرة تكون أقل منها في هذا الشأن، فإنه يتم باختصار رفض هذه الأخيرة لأن شروجها ستتعتبر في مستوى أدنى من الأولى. هذه القاعدة هي التي تميز العلم عن كل صنوف الإبداعات المعرفية. ولكن إذا اعتبرنا وجهة النظر القائلة أن العلم هو التفسير سوف نجد أن هذه القاعدة هي بالفعل تمثل حالة خاصة تنطوي عليها ويشكل طبيعي كل حلول المشكلات: النظريات القابلة لإعطاء تفسيرات أكثر تفصيلاً هي التي تكون مفضلة تلقائياً. وهي مفضلة لسببين، الأول هو أن النظرية التي تعرض للشرح بأن تكون أكثر تحديداً حول الظاهرة المعينة تتفتح وكذلك منافسيها على دفعهم لزيادة من أشكال الخداع، ومن ثم فقد هناك مزيد من الفرص نحو التقدم إلى الأمام في عملية حل المشكلات، والثاني ببساطة أنه إذا قام عدة نظريات مثل هذه النظرية ما يوجه لها من نقد فإنها تترك مجالات أقل من غير المفسر الذي هو بدوره موضوع “التجربة”.

لقد أشارت تواها حتى في غالبية العلم فإن النقدي لا يتعلق على اختبارات تجريبية ذلك أن معظم النقد العلمي لا يوجه مباشرة إلى ما تتطلب به النظريات وإنما يتوجه مباشرة إلى ما تسفر عنه من تفسيرات. اختبار التنبؤ هو طريقة غير مباشرة ولا أنه بصفة استثنائية من الوسائل القوية عندما يكون متوفراً) لاختبار الشروح ذاتها. أعطيت في الفصل الأول مثل “العلاج بالحشائش - النظرية القائلة بأن التهام كيلو جرام منها سيشفى من مرض البرد المألوف لنا.” هذه النظرية وعدد غير محدود من ذات الفصول جاهزة للاختبار. ولكنها ننتظرها ونرفضها دون تجسيم القيام بآية
تجارب، لأنها وبشكل واضح تقوم على أساس لا يشرح لنا المزيد سوى الكشف عن ما تقدمه لنا النظريات المناقضة معها ولأنها تمدنا بتكتيدات جديدة مشروحة.

مراحل الاكتشاف العلمي تتضمن في الشكل 2 - وهي نادرًا ما تنتهي تتبعاتها لدى أول محاولة. عادة ما يكون هناك مراجعة تعلمية بعد انتهاء كل مرحلة وقبل الانتقال للمرحلة التي تليها أو حتى إتمام حلها، لأن كل مرحلة قد تظهر لنا مشكلة هي بذاتها تحتاج بدورها للمراحل الخمسة من أجل عملية حلها كمشكلة ثانوية. وهذا قد يقع حتى للمرحلة الأولى لإنشاء المشكلة حتى تكون ثابتة وغير قابلة للتغيير. إذا لم نستطيع التفكير في حل مقترح فيما نرجع للمرحلة الأولى للمشكلة الأصلية ونحاول إعادة تشكيل المعضلة أو حتى تخرج معضلة أخرى.

بالطبع فإن وضوح عدم القابلية للحل هو واحد من بين أسباب عديدة مما نجه مربوضًا منها عادة للقيام بإجراء تعديلات على المعضلة التي نحن بصدد حلها. ثم تنوعات المعضلات تكون من المتغير توجب طابعها الإثارة، أو تكون ذات صلة بمعضلات أخرى، وبعضها يكون تم تشكيلها بطريقة أحسن، وبعضها يحتوي على إمكانية إشارة على نحو ثرى أو بشكل أسرع أو أيا ما كان. وفي حالات عديدة يكون المطلوب هو تحديد ما هي المشكلة بالضبط، بما الذي ستساهم به في مجال التفسير الجيد، كليهما يؤديان إلى تلقية المزيد من النقد والحدسات مثل ما تلقى الحلول التجريبية.

ويتشابه مع ذلك، إذا لم تنجح انتقاداتنا خلال المرحلة الثالثة في التفرقة بين النظريات المناقضة، فإننا نعمد إلى محاولة اختراع مناهج جديدة للنقد وإن بدا أن ذلك لا يملأ فعليا أن نعود القهقراً للمرحلة الثانية ونحاول تشذيب الحلول المقترحة (والنظريات القائمة) لاستخراج المزيد من الشرح والتنبؤات ليصبح من السهل أكثر على ما فيها من خطا، أو ربما نتراجع إلى المرحلة الأولى ونحاول إيجاد معيار يتوازي مع التفسير. وهكذا.
ليس هناك فقط مجرد الراجع التعقبية ولكن كثيرا من المشكلات الفرعية تبقى
نشطة في وقت واحد ليبرز الملاميح منها في الوقت المناسب. وربما تظهر فقط في حال
إتمام الاكتشاف جدلاً عادة تستجيبها. الحالة كما في الشكل 2-3. يمكنها أن تبدأ
مع النسخة الأخيرة والأجواء من العضلة وهذا بالتالي يمكن أن نطلعنا كيف لبعض
النظريات المفروضة لا تتمكن من مقاومة النقد، وأيضًا إبراز النظرية الناجحة وتقول لنا
كيف قاومت النقد، يمكنها أن توضح كيف حاد المرء عن النظرية الباطلة وفي النهاية
يمكنها أن تشير إلى بعض المشكلات المستدفة التي ينشئها الاكتشاف نفسه ويسمح
بها.

في أثناء استمرار المعضلة في مرحلة الحل يكون تعاونا مع مجموعة كبيرة من
الأفكار غير المتجانسة ومتخيلة النظريات والمعايير المتكونة جدًا، وهي جميعًا تتداخل في
البقاء، هناك تبدل دائم للنظريات لأنها إما تقبل أو تقبل محلها نظريات جديدة. وعلى
هذا فهي جميعًا تتصور للتغذية وعمليات الانتقاء طبقًا مدى طوعية المعيار المستخدم
للتغذية والانتقاء، العمليات بمسارا تشبه التطور الديموغرافي، المعضلة تشبه أن تكون
نيش (كوة غير نافذة في حائط ما توضع تمثال أو ما أشبه) في وسط بيئة ما، بينما
النظرية أشبه بحبيبة (مترابعة) أو نوع تم اختباره بواسطة ذلك النيش. النظريات
التنوعية مثل التغذية الإجهاضي للجينات، يتم إنشائها باستمرار، أما الأقل نجاحًا في
تنوعها فهي تهدد وتتفرج بينما يحل محلها التنوع الناجح. النجاح هو القابلية
المتكررة للبقاء تحت ظروف الضغوط المختلفة النقد – النجح – وأن يتحملها هذا النيش، كما
أن المعيار هنا (المستخدم في النقد) يعتبر جزيئاً على السمات الفيزيائية وفي جزءه
الآخر على مدى مساهمة الجينات والأنواع الأخرى (أي الأفكار الأخرى) التي تتواجد
هناك. ووجهة النظر عن العالم التي قد تكمن في النظرية القبلية محل المشكلة، والملامح
المميزة للأنواع الجديدة التي تعاود دورها على النيش هي عبارة عن خواص تتنبأ عن
المعضلة أو النيش نفسه. وبكلمات أخرى فإن الحصول على الحلول هو أمر معقد في
ذاته. ليس تماً وسيلة بسيطة لأكتشاف طبيعة الكواكب، فلننقل مثلاً وضع نقد لنظرية الأفق السماعي وبعض الملاحظات الإضافية، يشبه القول بعدم وجود وسيلة بسيطة لعمل تخطيط الـDNA لِلكواكблиّ (حيوان أسترالي من ذوات الجراب)، أو شجر الأيكاليبتوس (شجر تستخدم أوراقه وأزهاره في مجال الطب والتطبيق). التطور أو المحاولة والخطأ التي تركز خصيصًا على التشغيل المعمد للمحاولة والخطأ هي التي تسمى الاكتشاف العلمي وهي ذاتها التي تمثل الوسيلة الوحيدة.

لهذا السبب، قرر بور بر نظريته أن المعرفة لا يمكن أن تنمو إلا عبر الحدس والرفس، على النحو المثل في الشكل (2 - 3) "التطور المعرفي". هي رؤية توحيدة مهمة وسوف تُرى وجود علاقات أخرى بين هذين الفرجين، ولكننا لا أرغب في المبالغة في مشابهة الاكتشاف العلمي والتطور البيولوجي لوجود ثمة فوارق هامة أيضًا. واحد من الفروق أن التنوع البيولوجي (التغيرات المفاجئة) هي بمثابة الشيء النادر والأعمى والذي لا هدف له، بينما في الحل البشري للمعضلات فإن إنشاء حدوس هو في حد ذاته أمر معقد، وعمليات محتملة بالمرفعة المستقاة من نية أو تصميم الأشخاص المعينين. وربما من الفروق المهمة أنه ليس ثمة محاولة متكافئة مع علم البيولوجيا. كل الحدوس لا بد أن تكون قابلة للاختبار التجريبي، وهو السبب في أن التطور البيولوجي يكون أبطأ وأقل كفاءة. ومع ذلك فإن الصلة بين هذين النوعين من العمليات أبعد من مجرد التماثل أو الشابه بينهما، أنهما اثنتان من الأفرع الأربعة الأساسية المهمة لدى تفسير نسبية الحقيقة.

في كلهما سواء في العلم أو البيولوجيا فإن التطور الناجح يعتمد على إنشاء وبناء المعرفة الموضوعية والتي تسمى في البيولوجيا: "التمييز". أي بمعنى أن قابلية نظرية ما أو جين ما للبقاء في "نيش" ليس مجرد وظيفة جيدة بالصداقة أو كيفا اتفق نابعة من بنائها وإنما يعتمد على هل هناك صدق كاف ومعلومات مفيدة عن النيش.
متضمنة فيه أو غير قائمة (أقصد هذه المعلومات) وسوف أذكر المزيد عن هذا في الفصل الثامن.

الآن ممكننا البدء في رؤية ما الذي يحكم على التداخل الذي نستخلصه من الملاحظة. إننا لا نستخلص أبدًا التداخل من الملاحظة وحدها، ولكن الملاحظة قد تصبح ذات معنى في مجرى المناقشة عندما تكشف العوارات في التفسيرات المنافسة. نحن نتخلى النظرية العلمية بسبب المناقشات التي يعتمد القليل منها على الملاحظة، التي ترضيتنا (لحكًأياً) عبر تقديمها لنا تفسيرات تبين لنا أن كل النظريات المنافسة لها أقل صدقًا وأقل اتساعًا وعمقًا.

خَذ وقتًا لمقارن فيه الشكل (٢ - ١) والشكل (٢ - ٢) وانظر الآن على مدى الاختلاف بين مفهومي هاتين العمليتين العلميتين. الاستقراء هو الملاحظة - بينما يكون هناك تنبوء حين يكون هناك معضلة وتفسير، هذا ما يحدث في الواقع. يفترض الاستقراء أن النظريات تستخلص - إلى حد ما - أو يرجى تراكمها عبر الملاحظة أو يرجى تقويمها من خلال الملاحظة، بينما في الواقع تبدأ النظريات كتقويم للدوس في عقل الكائن وهو بالتحديد ما يفوق الملاحظة في الأهمية التي تحكم بين النظريات المنافسة. الاستقراء يريد أن يحكم على التنبوء كما يحس به كشيء يقع في المستقبل. حل المشكلات يقوم على أساس كونه تفسيراً أفضل من ذلك النتائج في الحاضر. الاستقراء أمر خطر يقود الذهن إلى عدة أنواع من الخطر، ويبدو من الظاهر أنه جدير بالمعقولية إلا أنه سطحي وغير صحيح.

ومن أن تكون في حل مشكلة علمية أو غير ذلك فإننا ننتهي بمجموعة من النظريات ولا أنها ليست خالية من المشاكل، ولكننا نجدنا مفاصلاً لدينا عن النظريات التي بدأنا بها. ومن ثم تتوقف مساهمة تلك الجديدة على ما نراه من نواقص أو عيوب في النظريات الأصلية وكيف كانت المشكلة ذاتها. إن العلم يتسم بمشكلاته كما بمنهجه.
والفلسفيون الذين حلوا المشكلة من خلال خرائط البروج دون مغامرة إثبات عدم صحتها من عدمه لم ينشروا لنا ما يمكن أن يستحق تسميته بالعرفة العلمية حتى لو استخدموا مناهج علمية عبقرية (مثل استخدام بحوث السوق) ولو كانوا أنفسهم مستفرين لما توصلوا إليه من نتائج. المعضلة في العلم العبقري هي على الدوام أن نفهم بعض وجه نسيج الحقيقة بالعثور على تفسيرات واسعة وعميقة وصادقة ومحددة ما أمكن ذلك.

وعندما نظن أننا قمنا بحل معضلة فمن الطبيعي أن نتبني النظريات الحديثة كمفضلة لدينا على تلك المجموعة القديمة. وهذا يرجع إلى اعتبارنا العلم وسيلة لاستهداف التفسير وحل المعضلات وليس مبرزاً لمشكلة الاستقراء. ومن ثم ليس في الأمر غموضاً أننا مجبرون مؤقتاً على قبول التفسير على أنه أقصى وأحسن ما يمكن التفكير فيه.

118
<table>
<thead>
<tr>
<th>الاصطلاحات</th>
<th>الانتقاء:</th>
</tr>
</thead>
<tbody>
<tr>
<td>النظرية القائلة بأن ثمة عقل واحد هو الموجود، وما يبدو لنا على أنه حقيقة خارجية هو علم يأخذ مكانه في العقل.</td>
<td>Solipism</td>
</tr>
<tr>
<td>طالما أن النظريات العلمية لا يمكن الحكم عليها أو تقييمها من خلال التجربة، ما الذي سيحكم عليها إذن؟</td>
<td>Problem of Induction</td>
</tr>
<tr>
<td>عملية مخادعة أو وهمية يفترض أن يتحصل عنها النظريات العامة، أو يحكم عليها عبره ومن الملاحظات المترابكة.</td>
<td>Induction</td>
</tr>
<tr>
<td>توجد المشكلة عندما يبدو لنا أن بعض النظريات القائمة لدينا خاصة تلك التي تحوي شروحاً وتفسيرات، وكأنها غير ملائمة وتستحق محاولة إثباتها.</td>
<td>Problem</td>
</tr>
<tr>
<td>النقد العقلي هو الذي يفضل بين النظريات المنافسة بهدف العثور على أيها يقدم لنا تفسيراً أفضل طبقاً للمعيار المتضمن في المشكلة.</td>
<td>Criticism</td>
</tr>
<tr>
<td>هدف العلم يتمثل في فهم الحقيقة من خلال التفسيرات. النهج المميز للنقد في العلم (ولو أنه ليس الوحيد) هو الاختبار التجريبي.</td>
<td>Science</td>
</tr>
<tr>
<td>ما يعني الاختبار التجريبي أن نتائج التجربة تدحض واحدة أو أكثر من النظريات المنافسة.</td>
<td>Experimental Test</td>
</tr>
</tbody>
</table>
الخلاصة:

في بعض المناطق الأساسية في العلم تقدمنا ملاحظة التأثيرات الصغيرة أو تلك الحاسمة والماهرة إلى نتائج مهمة وخطيرة حول طبيعة الحقيقة. إلا أن هذه النتائج لا يمكن أن تستخدم من الملاحظة عبر المنطق الصرفي. إنما ما الذي يجعلنا مجبرين عليها؟

تلك هي مشكلة الاستقراء وطبقًا للاستقراء فإن النظريات العلمية يتم اكتشافها من خلال تقدير النتائج من خلال الملاحظة ويعكم علينا عندما نتُحصل على الملاحظات المؤيدة لهذه النتائج. وفي الحقيقة فإن التقسيب الاستقرائي لا يصلح كما أنه يستسلم معه تقدير نتائج الملاحظة دون أن يكون لدينا إطار عام للتفسير. ولكن رفض الاستقراء والحل الحقيقي لهكذا الاستقراء تعتمد على التمييز بين أن العلم ليس عملية الحصول على تنبؤات من خلال الملاحظة ولكنه عملية العثور على تفسير، نحن نبحث عن التفسير عندما نواجه مشكلة قائمة. حينها نقصد إلى عملية حل المشكلات. النظريات المفسرة الجديدة تبدأ عندما تقوم الحدوس، والتي يتم تقديرها ومقارنتها طبقًا للمعيار المتضمن في المشكلة، والحدوس التي لا تقابل أو تفشل في التصدق لنقد يتم هجها، أما التي تستخدم البقاء تصبح هي النظريات المناقشة الجديدة، والتي يكون من بينها ما يحتوي على مشاكل وبالتالي تقدمنا إلى البحث عن تفسيرات أفضل. والعمليات باكملها تستلزم نمو قريب من النمو البيولوجي.

ومن هنا نكتسب مزيدًا من معرفة الحقيقة عن طريق حل المشكلات والعثور على تفسيرات أفضل. وعندما يكون قلقًا هو أن المشكلات والتفسيرات مركزها العقل البشري الذي يرجع قوة تسببه لها إلى قدرة العقل البشري ومدى عصمه من الخطا، ومدى إمدادنا بالمعرفة تعتمد على الحواس وكأنها بدورة بعيدة عن الخطة. ما الذي يحمل العقل البشري إنما يستخلص النتائج عن شيء والحقيقة الخارجية من خلال الموضوعية الخالية للتجربة والسبب.
الفصل الرابع

معيار للحقيقة
يشهد الفيزيائي العالم جاليليو جاليلي (Galileo Galilei) - وإن كان ذلك محق - بأنه أول فيزيائي بالمعنى الحديث كان قد أجرى عدة اكتشافات ليس فقط في مجال الفيزياء وإنما أيضًا في منهجية العلم. لقد أخبروا من جديد الفكرة القديمة بأن التعبير عن النظريات العامة عن الطبيعة يمكن أن يكون بشكل رياضي، والبرهنة عليها بتطوير التجربة التقليدية الاختباري لها وهو ما يميز العلم كما تعرفه. ووجد أنه من الملائم تسميتهما: أسمت الاختبار "Cimeli" أو اختبار المحن (وسيلة عتيقة Ordeals الملحق真正做到) من خلال طرق كان يعتقد أنها خاضعة لقوى خارقة. كان لاكتشاف المجرات الحقيقية من خلال طرق كان يعتقد أنها خاضعة لقوى خارقة. كان من أوائلنا استخدموا التسلسل لدراسة الأشياء الموجودة في الأفق السماوي، كما جمع الأدلة وقام بتحليلها على نظرية مركزية الشمس وهي النظرية القائلة بأن الكوكب الأرضية تدور حول الشمس في مدار كما تدور حول نفسها (محورها) بشكل مغزلي. وهو معروفًا بـ "ال bibl ية" مفهوم يتألف من تلك النظرية ويصف الشعور الفائق بالكتيبة والذي قاده إلى مصيره الباهز. في عام 1632 حكم على الهرطقة وتم إجباره تحت التهدئة بالإعتذار على الركوع وأي يُقدر عانية وبصوت مرتفع، وعلى نحو مهين، شجبه للأمر بأن يقسم بالتخلي عن اعتقاده بالنظرية باعتبارها نظرية ملؤومة ومكروهة (وتذكر الأسطورة وبشكل ربما لا يكون صحيحًا) بأنه اقترب في إفصاحيه إلى قدميه وتممت بمعاهده "ولكننا تدور - يقصد الأرض بالطبع" وعلي الرغم من تخليه المعلم فقد أدين وحكم عليه بتحديد إقامتته في منزل بقى فيه حتى وفاته، ولو أن هذا العقاب بالمقارنة مع غيره يعد متساهلاً فذ أدى الفرض منه تقريبًا.

Galileo Galilei (1564 - 1642) فيزيائي إيطالي وفلكي ورياضي. ويعتبر أول من استخدم تسلسليًا من صنعه والذي وصل من خلاله إلى أطعمة عن دوران الأرض حول الشمس بما يخالف ما كان سائداً وقتئذ حيث تمت معارضته وإجباره على التخلي عن معتقداته من خلال محاكمته أمام حكماء التفتيش والانتهاكات في منزله للسنين الثلاثين الأخيرة من عمره، وانتشرت النتائج النظريات والأرضية. واعترضت على ما عبر عنها. مقرارته الشهيرة: كتاب الطبيعة مكتوب بشكل رياضي (المترجم)
وكما قال جاكوب برونووسيكي (1908 - 1974، رياضي إنجليزي من أصل بويلندي، حصل على دكتوراه الرياضيات من جامعة كمبردج وتقاعد منصب عداء عنها العمل خبير على في الحرب وبعد مشاهدته رأى العين للدمار الذي سببته القنبلة الذرية على نجازاكي قرر بشكل إنساني الابتعاد عن الحرب، وحاول اعتماده إلى علم الحياة ودراسة الطبيعة البشرية وتقدير الحضارات وقام بالتبشير

بإنسانية جديدة موحدة معتبرًا أن العلم يحتاج لروح شعبية جماعية ليؤتي شاره، المترجم) (0) بقصد رفع اللبس لدى القارئ فإن كلمة ascend ينتمي الصعود والتقدم كما تشير العاجم، وشبة كتاب Descent of Man بعنوان تجريمته في ثلاثة مسلسلات بعنوان عربي: نشأة الإنسان: العدد 999 من المشروع القومي للترجمة تحت إشراف د. جابر عصافور، وكان القائم بالترجمة هو الدكتور مجدى الليجى الأستاذ، يقسم الطب الشرعي بكلية طب جامعة عين شمس (المترجم)

124
تلك القوانين الرياضية من السهل للبشرية الوصول إليها إذا استخدمت منهجها في التشكيل الرياضي للصيغ والاختبارات التجريبية المعتادة. وكما وصفه: كتاب الطبيعة مكتوب عن رموز رياضية. لقد كان الغائب خلف الأمر هو المقارنة بين ذلك وكتاب آخر هو وحده الجدير بالاعتماد عليه!!

لقد فهم جاليليو أن منهجه هو الجدير بالاعتماد عليه فأينما استخدم فإن نتائجه يمكن تصحيحها وإثباتها عن أي نتائج صادرة عن أي منهج آخر. ولذلك أصر على أن التفسير العلمي لا بد أن تكون له الأولوية لا على الحدس أو البديهة ولكن أيضًا على الحس العام أو الفطرة السليمة وأيضًا على التعاليم الدينية والفيزياء القدس. هذه الفكرة بالتالي، وليس نظرية مركزية الشمس تلك، هي التي اعتبرتها السلطات فكرة خطرة (وقد كانوا على حق، لأن هذه الفكرة باذات هي التي كانت وراء الثورة العلمية والتثور، ووراء الأساس غير الديني للحضارة الحديثة). ولم يكن من المسموح به الدفاع عن نظرية مركزية الشمس أو التمساك بها كنتيجة لظهور السماوات الليلية. أما المسموح هو التمسك والدفاع والكتابة عن مركزية الشمس كمنهج لعمل التنبيه. لهذا كان كتاب جاليليو تحوار بين النظامين الرئيسيين للعالم والذي يقارن فيه بين نظريتي مركزية الشمس ومركزية الأرض. قد قام بطبعه وكلاء الكنيسة المفوضين منها. حتى أن البابا نفسه كان قد سمع لجاليليو بكتابة مثل هذا الكتاب (ولو أن وثيقة خداعية قُدِّمت خلال المحاكمة وكانت تعني أنه قد تم منع جاليليو من مناقشة الموضوع من الأساس).

ومن الملاحظات الطريفة أنه في زمن جاليليو لم يكن قد ثبت بعد أن النتائج التي تعطيها نظرية مركزية الشمس أفضل من تلك التي تعطيها نظرية مركزية الأرض، لم تكن تلك الفائضة مما يمكن الجدل حوله. الملاحظات التي كانت متاحة لم تكن على درجة كافية من الدقة. كما أن مقترحات الإصلاح لأي منهما ماتت بصفة نهائية عدم إثبات صحة نظرية مركزية الأرض، وكان من الصعب تقويم القوة التنبيه لأي من
النظريتين المنافستين، والأخير من ذلك أنه عندما نجيء للتفاصيل فقد كانت هناك أكثر من نظرة على مركزية الشمس. لقد اعتقد غاليليو أن الكواكب تتتحرك في دائرة، بينما في الحقيقة فإن مداراتها أقرب ما تكون إلى ما يعرف بـ "القطع الناقص". ولذا فلم تتواجد قيمة ناقصة بمجرد أن نتقاسم الأفكار بمجرد أن نعبidden فهم الكواكب من خلال التفسير، على نحو ما فعله غاليليو بالضبط. وإنما يقول الرياضيون والعلماء أن ما دامت الكنيسة كانت على استعداد لقبول تنبيه جاليليو القاسية على الملاحظة فإن أي اتفاق آخر بينهما كان سيبدو وكأنه على سبيل الحماقة، وأن ما همس به ومع ذلك أن لبودـ فهو مـما لا معنى له، ولكن غاليليو عرف ما هو أكثر وهكذا جاء الاتهام. فبعدما رفضوا اعتماداً المعرفة العلمية فقد كان الذي يدور بخلده هو الجزء التفسيري لهذه المعرفة.

لقد كانت نظرتهم للعالم زائفة، ولكنها لم تكون غير منطقية لقد أقرعوا بالاعتقاد بالوحي وسلطة التقاليد كمصادر للمعرفة التي يعتمد عليها. ولكن كان لديهم سبباً مستقلًا لünk معتقدية المعرفة المتحصلة عن مناهج غاليليو. كان يمكنهم ببساطة الإشارة إلى أنه لا يمكن لأي كم من الملاحظات والنظريات أن يبرهن أن أي من تفجيرات ظاهرة فيزيائية هو الصحيح بينما حاول على خطأ. وعلى نحو ما قالوا به فإن الرب يمكنه أن ينتج التأثيرات المتعلقة بما لا نهاية له من العجز. وبالتالي فإنه من الخيلاء المحضة والغطرسة إدعا أن ثمة طريقة للمعرفة. مجرد الملاحظات الشخصية غير المعصومة والتسبب الشخصي هو أو هي التي تحدد الطريقة التي اختارها الرب.
وإلى حد ما فقد كانوا يتناقشون الأمر وهم يبدون تواضعهم باعتبار التعريف بأن
البشر غير معصومين من الخطأ. وإذا كان جاليليو يدعو بأن نظرية مركزية الشمس
قد تمت الأبرسة عليها إلى حد ما، أو هي قريبة من ذلك، فإنهم بشكل ما كانوا على
درجة من الحق على نحو استثنائي. إذا كان جاليليو يظن أن مناهجه تعطى أو تمنح
سلطة على أي نظرية بالمقارنة مع السلطة التي وفرتها الكنيسة لتعليمهما، فقد كانوا
إذن على حق لانتقاد غلسته وتعاليمه (وكا صوروا هم على أنه من قبيل التجديف
والهرطقة) ولو أنهم - بنفس المعيار - كانوا أكثر غرسة منه.
كيف لنا إذن أن ندافع عن جاليليو إزاء هذا الاتهام؟ ماذا سيكون عليه دفاع
جاليليو في مواجهة الاتهام بأنه قد تجاوز كثيرا عندما أدعى بأن التصورات العلمية
تشمل معمرة معتمدة عن الحقيقة؟ الدفاع البابوي عن العلم كعمليات لحل المشكلات أو
السعي وراء التفسيرات لم يكن كافيا في حد ذاته. وبالنسبة للكنيسة أيضاً، فقد كانت
مهتمة بالتفسيرات وليس التنبؤات، وكانت راغبة في ترك جاليليو يحل المشكلات
باستخدام أي نظرية يختارها. وإنما فقط لا يقبلون الحلول التي يتوصل إليها (والتي
كانوا يسمونها مجرد فرضيات رياضية) والتي تتصل بالحقيقة الخارجة. حل
المشكلات أولاً وأخيراً هي عملية تأخذ مكانها في العقل البشري. وربما يكون جاليليو
قد رأى العالم وكأنه كتاب قد مرّت فيه قوانين الطبيعة من خلال رموز رياضية. ولكن
هذا يعد نوعا من المجاز التام، ليس هناك تفسيرات لدارات الكواكب لديها هي ذاتها.
الواقع أن كل معضلاتنا والحلول التي نتوصل إليها موقعها في داخلنا نحن، وخلقته في
داخلنا. وعندما نصل لحلول المشكلات في العلم فإننا نصل لها من خلال التجادل حول
النظريات التي تبدو تفسيراتها أفضل لنا. هناك ودون أي وسيلة إنكار أنها جيدة
وحقيقية ومفيدة لنا في حل المشكلات، فإن أصحاب نظرية الاتهام والشكاك المحدثون
لهم الحق أن يتساعوا: ما علاقة الحل العلمي للمشاكل بالحقيقة؟ ربما نجدها أحسن
التفسيرات التي توافقنا نفسيًا. ربما نجد فيها وسيلة لصنع تنبؤاتنا. ولكننا بالتأكيد

127
سنجد أساسية في أي منطقة تتعلق بالإبداع التقني، كل هذا يحكم سعيينا الدائم للبحث عنها بهذه الطريقة. لكن ما الذي يعبرنا على اعتبارهم كحقيقة قيامة؟ الاقتراح الذي أجريت سلطة الاتهام جاليليو على المصادقة عليه كان من تأثيره ما يلي: أن الأرض في واقع أمنها ثابتة (أو في حالة سكون) بينما الشمس وسائر الكواكب في حالة حركة حولها، ولكن المسارات التي ترحل فيها هذه الأجسام الفلكية فهي قائمة بطريقة معقدة، حيث حين ترصد من موقع ملامح على الأرض فإنها تبدو أيضًا كما الشمس في حالة سكون بينما الأرض وباقي الكواكب هي التي تتحرك حولها دائمًا. أما ذلك نظرية الاتهام عن النظام الشمسي، وإذا كانت هذه النظرية صحيحة فلا بد أن ننظر متوثمين أن نظرية مركزية الشمس من شأنها أن تعطي تنبؤات صحيحة عن النتائج الناتجة عن أساس ملاحظات فلكية تقوم بها على الأرض، حتى ولو كانت رائعة من حيث الواقع. ولهذا يبدو أن ملاحظات مساذنة لنظرية مركزية الشمس ستستند أيضًا وعلى نحو مساوي "نظرية الاتهام" تلك.

يستطيع المرء أن يمتد بنظرية الاتهام واضعاً في اعتباره الملاحظات التفصيلية التي تساند نظرية مركزية الشمس مثل الملاحظات عن "وجه الزهرة (أبلاتها)" وبعض التحركات الإضافية الصغيرة (المسمى "التحركات الملائمة") لبعض النجوم المتصلة بالأفق السماوي. لفعل ذلك على المرء أن يستنتج مزيد من المنافسات المعقدة في الفضاء تحكمها قوانين فزيائية تختلف عن تلك التي تجري على ما هو مفترض أن تكون في الأرض كمصدر (أو في حالة سكون). ولكن سيكون اختلافًا بطريقة محددة بحيث تحتفظ فيه بقابليتها لأن تلاحظ من الأرض تتحرك، وأن القوانين هناك في الخارج هي نفسها الموجودة هنا. كثير من مثل هذه النظريات ممكنة، بالطبع لو أن اضطرارنا الوحيد هو صنع التنبؤات الصحيحة لكننا قد اختبرنا النظريات التي نقول بما يرضينا عما يجري في الفضاء. على سبيل المثال فإن الملاحظات وحدها لا يمكن أن تحكم نظرية تقول بأن الأرض متضمنة داخل "بلايتاً" عظيم (قبة سماوية تشمل على
نمذج النظام الشمسي) وأن الموجود خارج هذا البلانكيتاريوم أي شيء تريده أو لا شيء على الإطلاق. وأعرف هنا بأنه اعتمادًا أو أخذًا في الاعتبار ملاحظاتنا في هذه الأيام فلا بد أن يشتغل البلانكيتاريوم على انعكاس إراداتنا، ونبضات الليزر، ويمسك بسفننا الفضائية، وبالطعن رواد الفضاء، ويبث لنا رسائل مزيفة منهم ويعيدهم بعينات ملائمة من صخور القمر، وذاكرة معدلة، وهكذا. ربما تكون نظرية سخيفة ولكن النقطة الهامة هنا أنه لا يمكن أن نختبرها تجريبًا. ولا أنها يمكننا أن تكون أي نظرية أخرى

على أساس وجود بداخلها سخيفة: هيئة الاتهام التي واجهت جاليليو وكذا معظم الجنس البشري في ذلك الوقت كانوا يعتقدون أن القبول بأن الأرض تتحرك هو عين السخف.

وعلى كل حال لا تستطيع الشعور بحركاتها، هل نستطيع عندما تحرك، كما في حالة الزلزال فإننا نشعر بذلك بطريقة غير خاطئة. ويقال إن جاليليو قد أُجل لعدة سنوات نشر دعاؤوه عن نظرية مركزية الشمس ليس خوفًا من الاتهام وإنما من أن يصبح محاولا للسخرية.

بالنسبة لنا تبدو النظرية القائلة بها الاتهام ابتداعية ومصنوعية. لماذا يقبل أمرًا معقلاً على هذا النحو مُنشأًا خصيصًا لكي يبرر لنا لماذا تبدو السماء على ما هي عليه، بينما نظرية مركزية الشمس غير المحيدة تؤدي نفس الغرض أو الوظيفة في ظروف أقل ضجيجًا؟ ربما نستطيع هذا؟* موسى أوكام (Ockam's Razor) 설명: Ockam's Razor لـ 1349-1285

* فرنسسيكي وكاتب سياسي ومن أبرز مباحه التي عاشت بعده. ما يعرف باسم "موسى أوكام" (وبจร أديب العلم مؤخراً) على استخدام "صلب بدلاً من "موسي أوكام" (وجيردل) في الكلاسيكيان) لا يجب اقتراحه بدون موجب أو ضرورة. وقد استخدمه مثلاً في المجال العلاقات بين الآسياء، التخلص من بعضها كتلك التي لا تقدم دليلًا على شيء، أو أنها مجرد متناقضات بنفس المنحنى النظري الأصلية، وهو ما بدأ لا يزال جارًا العمل به لدى المفكرين والعلماء في تبسيط القوانين (المترجم).

129
التفسيرات بما يجاوز الضرورة، لأنه لو فعلت ذلك فستبقى التفسيرات المعقدة ذاتها غير مفهومة. ومع ذلك فإن أي تفسير سواء كان أو لم يكن من قبيل "الابتداع" أو "معقداً بغير ضرورة" يعتمد على الأفكار والتفسيرات التي تشكل لدى المعرفة وجهة نظره عن العالم. ربما ناقش الاتهام (الوجه لجاليليو) أن فكرة الأرض التي تتحرك هي من قبيل التوقع غير الضروري. أنها تتعارض مع الحساب العام أو الفيزياء السليمة: كما تتعارض مع الكتاب المقدس، وربما قالوا أن ثمة تفسير جيد وثام دون الحاجة لمثل هذه الفكرة.

ولكن هل هناك فعلاً تفسير بهذا الشكل؟ هل حقاً تمدنا نظرية الاتهام بتفسيرات بديلة دون أن تقدم حدوساً مقابلة لاتخاذ نظام مركزية الشمس؟ دعنا ننظر عن كثب إلى كيف يشرح نظرية الاتهام الأشياء. إنها تفسر اعتبار ما هو ظاهر عن الأرض كمحطة، بالقول بأنها محطة، وأياً ما كان الأمر جيداً أو بعيداً فمن الناحية الظاهرة (أي دون تعمق) فإن ذلك يعد أفضل من تفسير جاليليو لأن عليه أن يعمل بعد وأن يعارض أفكار الحسم السليم عن القوة والقصور الذي كلي يشرح لنا لما إذا لا تشعر بحركة الأرض، ولكن كيف ننظرية الاتهام أن تتلاس بالأهداف الصعب المتمثل في تفسير حركات الكواكب؟

نظرية مركزية الشمس تشرح ذلك بالقول أنها نرى الكواكب تحلق في السماء بشكل معقد، لأنها بالفعل تدور في دوائر بسيطة (أو في شكل القطاع الناقص) عبر الفضاء، ولكن الأرض بدورها تتحرك مثلاً يتحركون. البحث يشرح كيف نراهم يتحركون في قطوع ناقصة معقدة لأنهم في الحقيقة يتحركون كذلك ولكن (وهنا، وطبقاً للنظرية القائل بها الاتهام تظهر روح وجه الشرح) هذه الحركة المعقدة تحكمها مبادئ بسيطة: وعلى نحو حريفي فإنهم يتحركون هكذا عندما ينظر إليهم من على الأرض يبدو وكأنهم ومعهم الأرض يدورون في مدارات بسيطة حول الشمس.

ولكي نفهم الحركات السماوية بمتطلبات هذه النظرية فمن الضروري للمرء أن يفهم هذا المبدأ، لأن التعقيدات التي تضعها النظرية هي الأساس لكل تفسير تفصيلي
يمكن أن يخرج به المرء مما إذا يحدث هذا التزامن السماوي في يوم كذا، أو لماذا تعود الكواكب لداراتها عبر السماء. في مدار له هذا الشكل المحدد من القطع الناقص، فلا بد أن الإجابة ستكون "أنهم يفعلون ذلك طالما كانت نظرية مركزية الشمس صحيحة". هنا حالة كوبية - كوبية الاتهام - التي يمكن فهمها عبر مصطلحات كوبية أخرى، كوبية مركزية الشمس، متناصرة ولكنها صورية على نحو مخلص في صورته.

إذا كان الاتهام قد حاول بجدية أن يفهم العالم من خلال مصطلحات النظرية التي حاولوا إجبار جاليليو عليها، كان عليهم أيضًا أن يدركوا خطماً القائل في أنها فشلت في حل المعضلة التي تظهر بها، إنها لم تفسر الحركات السماوية - دون أن يقدموا عرضاً لتقديم نظام مركزية الشمس. على العكس لم يتجنبوا دمج هذا النظام كجزء من مبدعها في تفسير الحركات السماوية. المرء لا يمكنه فهم العالم الذي قدمه الاتهام دون أن يفهم نظرية مركزية الشمس أولًا.

ولذلك فنحن على حق إذا نظرنا لهذه النظرية (التي جاءت عبر الاتهام) بأنها التفاض محكم أو مدروس حول نظرية مركزية الشمس بدلاً من أن يكون الأمر بالعكس. إننا لم نصل لهذه النتيجة من خلال تقويض نظرية الاتهام في مقابل الكونيكات الحديثة، وإنما من خلال الإصرار على أخذ نظرية الاتهام بجدية، ومن خلال مصطلحاتها، كتفسير للعالم. لقد أشرت مسبقًا لنظرية "العلاج بالحشائش" التي يمكن دحضها بدون حاجة للاختبارات التجريبية لأنها لا تحتوي على أي تفسير. هنا أيضًا لدينا نظرية ينسحب عليها نفس الوضع لأنها تحتوي على تفسير سيء، تفسير - وينفس المصطلحات التي استخدمتها النظرية - أسوأ من أن يكون مختلفًا أو نداً.

كما قلت أن الذين أقاموا الاتهام كانوا من "الواقعين" وكانت نظرتيهم تتوازي مع ما لدى أصحاب نظرية "الأنثانية": كليهما استخلصوا حدودًا تحكمية أدعوا من خلالها أن التسبب البشري ليس محوريًا - أو على الأقل في هذا الشأن فإن حل المعضلات ليس له من سبيل لفهمه. بالنسبة لأصحاب "الأنثانية" فإن هذه الحدود تطوق أدمغتهم.
باكما أو ربما مجرد عقولهم النظرية أو روحهم المعنوية. بالنسبة للاتهام وباحتواته على سائر العالم فإن “الإيداعيين” (أصحاب نظرية الخلق) في يومنا هذا يعتقدون في حدود على نفس الشاكلة ليس فيما يتعلق بالكلان فقط وإنما أيضًا في الزمان لأنهم يعتقدون أن الكون قد أنشئ منذ سنة آلاف سنة فقط وتم عبر أردة زائدة نبت عنها أحداث سابقة. “السلوكيون” لديهم عقيدة لا تقيد معنى تام في تفسير السلوكي البشري من خلال مصطلحات عن عمليات داخليّة. بالنسبة إليهم فإن علم النفس الصحي والشرعي هو دراسة رد الفعل الملاحظ للناس تجاه التغيرات الخارجية. وهكذا فقد استخلصوا حدودًا كتبت التي صنعها أصحاب “الأنا” بفصلهم العقل البشري عن الحقيقة الخارجية، ولكن بينما ينكر هؤلاء الآخرين أن يكون للتبسيب خارج تلك الحدود أي معنى فإن السلوكيين ينكرون أي معنى للتبسيب من خلال الداخل.

ثمًا هناك مدى واسع من النظريات المتصلة ببعضها البعض ولكن يمكن على نحو فائدته أن ننظر إليها كنقطة لنظرية “الأنا”. أنهما تختلف في من أين استنتجت حدود الحقيقة (أو الحدود حول الجزء من الحقيقة الذي يمكن فهمه عبر حل المشكلات)، كما يختلفون في كيف ومن أين يكون سعيهم للمعرفة من خارج تلك الحدود. ولكنهم جميعًا يمكن اعتبارهم من قبل العقلانية العلمية بينما حلول المشكلات في تطبيقات خارج تلك الحدود - مجرد لعبة أو مبادرة. هم ربما يذيعون لأن بعض الألعاب قد تكون مفيدة أو مرضية ومهمة كان فهي فقط ألعاب لا يمكن أن نخرج منها بحلول أو نتائج ذات صلاحية عن الحقيقة كما هي خارجنا.

هم أيضًا متشابهون في موقفهم إزاء حل المشكلات كوسائل لخلق أو ابتداع المعرفة، والتي لا يمكن استقراء نتائجها من أي مصدر مطلق للتقويم، واحتراما لهذه الحدود التي احترامها فإن كل المشايعين لهم (كل هذه النظريات) يتطلعون أو يعتمدون على منهجية حل المشكلات، تلك الثقة التي تسعي لأحسن تفسير متاح ويكسلوب للثور على أصدق نظرية متاحة. ولكن بالنسبة لصدق ما يقبض خارج تلك الحدود، فإنهم
يُنظر في اتجاه آخر، وكلما يسعون إليه هو مصدر للتوقيم المطلق. وبالنسبة لأهل الدين فإن الوجه الإلهي هو الذي يقوم بهذا الدور. وبالنسبة لأصحاب "الأنثانية" فإنهم لا يثقون إلا في الخبرة المباشرة النسبية من أفكارهم، كما عبر عنها رينيه ديكارت (*) في مقولته التقليدية: "أنا أفكر فاتن إذن موجود".

وعلى الرغم من أن ديكارت كان يريد أن يؤمن فلسفة على هذا البدأ فإنه سمح لنفسه فعليًا بافتراضات أخرى عديدة، وهو بالتأكيد لم يكن من أصحاب "الأنثانية" بالطبع. فربما هناك عبر التاريخ بعض العباقرة منهم (إنه وجدوا). "الأنثانية" عادة ما يدافع عنها بتأثيها وسيلة لمواجهة التسبب العلمي أو لأنها نكة لأي من توقعاتهم العديدة. بنفس الطريقة عبر ذات الحدث فإنه يمكن الدفاع عن العلم تجاه العديد المتنوعين من نقاده، وفهم العلاقة الحقيقية بين السبب والحقيقة من خلال الأخذ في الاعتبار الجديدا المضادة لـ "الأنثانية".

ثمّة طرافة فلسفية معروفة حول أستاذ يلقى محاضرة في الدفاع عن "الأنثانية"، وكانت المحاضرة غاية في الإقناع لدرجة أنه بمجرد الانتهاء منها توجه بعض الطلاب المتحمسون ليشدو على يد أستاذهم إعجابًا به، وقال أحدهم بجدية: "هائل، أنا متفق مع كل كلمة. وقال آخر: "أنا كذلك" وعليه قال الأساتذة "ننا ممتن جدًا لذلك، إذ من النادر أن يصادف المرء فرصة الالتقاء بين يعتقدون بـ (الأنثانية).

إن مغزى هذه اللحظة أنها تحوي جدلاً عبقريًا مضادًا للأنثانية وذلك على النحو التالي: ما هي بالضبط النظرية التي وافق عليها الطلبة؟ هل هي نظرية الأستاذ بأنهم

(*) رينيه ديكارت (1596 - 1650) فيلسوف فرنسي وعالم رياضية، ويعرف على أنه أبو الفلسفة الحديثة ومنشئ المنذهب الشكوي المتوجية من أجل إعادة إلهام، ومن مقولاته الأشهر ما يعرف باسم الكبرياء الديكارتي "أنا أفكر فاتن إذن موجود". كما أسس ما يعرف بالدليل الأنظري على وجود الله. (الترجمة)
أنفسهم غير موجودين لأن الأستاذ فقط هو الموجود؟ لتصديق ذلك فقد كان عليه أولاً العثور على طريقة قريبة من كوجيتو ديكارت آنا أفكار نارا إنذ موجود. وإذا ما تمكنا من ذلك فإن يكونوا من أصحاب الآňة لأن الرسالة المركزية في الآňة أن صاحبها موجود، أو أن كل طلب قد اقترب بنظرية تتناقق مع نظرية الأستاذ وهي نظرية أن هذا الطبه بالذات هو الموجود أما الأستاذ وسائر الطلبة فليسوا كذلك؟ هذا بالطبع يجعل منهم أصحاب الآňة لكن أي منهم لن يوافق على النظرية التي دافع عنها الأستاذ. وعلى ذلك فإي من هاتين الإمكانتين لا تُحسب لاقتناعهم بالنظرية التي كان يدافع عنها الأستاذ وهي الآňة أنهم لن يكونوا من المشايعين لها، وإذا أصبحوا كذلك فسيكونون مقتنعين بأن أستاذهم قد أخطأ.

هذه الجدالة تشهد حرفياً بأن الآňة غير قابلة للدفاع عنها، لأنه يقبل مثل هذا الدفاع فسبيض يذكر ذلك الوقوع في التناقش. ولكن أستاذنا كان يمكنه محاولة تجنب ذلك بأن يقول شيئاً من قليل: كان يمكنني الدفاع بإباحم عن الآňة ليس في مواجهة أناس آخرون، لأنه لا وجود للآخرين، ولكن ضد الجداليات التي تعارض الفكرة. هذه الجداليات قد أحدثت انتباه عبر القوم الحاليين الذين يتصورون وكان تفكيرهم يعارض تفكيري عادة. إن محاضرتي وما تحويهما من جداليات لم تكن تهدف إلى إقناع هؤلاء الحاليين، ولكن لتحثي، وتساعدي في تنقية أفكارى.

وبعد ذلك فإن ثمة مصادر للأفكار تسكن وكأنها مستقلة عن نفس المرء فهي إذن مستقلة عن المرء. لأنني لو دافعت عن نفسى كجيوهور واع بأنه لديه الأفكار والمشاعر التي يهم بأنها لديه، فإن هؤلاء الحاليين الذين يبدو أنهم أطفال معهم هم - بالتعريف - شيء آخر غير ما أعرف به نفسى، وبالتالي لا بد أن أُدعى أن شيئاً آخر - سواء له وجود. واعتبار الآخرى، إذا ما كنت من أصحاب الآňة، هو أن ننظر إلى الحاليين كما أنهم من خلق وعي الباطن وبالتالي كجزء من نفسى عبر إحساس فاشل. ولكننا لا بد أن نكون مجبورًا على أن ذاتي لها بناء ثرى معظمه مستقل عن ذاتي الوعائية. وعبر
هذا البناء هناك جواهر - الأناس الحلالون - والذين على الرغم من أنهم مجرد إنشاءات لعقل الذي يفترض أنه تابع للإنسانية، يتصورون وكتابهم من المعترفين مضافين للإنسانية. ولذا فلا يمكنني أن أكون من أصحاب الأناقة كلما لأن تعريف الضيق لذاتي سوف ينحو هذا المنحى. كثير - ومن الواضح أنهم الأغلب - من الآراء في عقلي بصفة عامة سوف يتعارض مع "الإنسان". يمكنني أن أدرس المنطقة الخارجية عن ذاتي وأجد أنها يبدو أنها تطبع أو تنمية لقوائم معينة في نفس القوانين التي يتضمنها الكتاب المبين للحالين والذي يستخدمه ما يسميه هؤلاء بالكون الفيزيائي. وسوف أجد الكثير من العالم الخارجي عن عما في منطقة ذاتي أو مما هو داخلي. دع عنك ما يجريه من مزيد من الأفكار فهو أكثر تعقيدًا واسعًا وتعددًا، وأيضاً لديه العديد من القيم القابلة للقياس والمعايرة، عبر واقع فلكي بالنسبة لما تحويه منطقة داخلي.

والأكبر من ذلك، أن تلك المنطقة الخارجية تعتبر طبعة للدراسة العلمية باستخدام مناهج كالليجلو. ولأنني قد اضطررت لتعريف تلك المنطقة كجزء من نفسى، فإن الإنانة لم يعد لديها ما تتجادل به ضد صلاحية مثل هذه الدراسة، التي يتم تعريفها الآن كشكل من أشكال الاستبان. الأناقة تسمح، وبالطبع تأخذ على عاتقها أن الرجل يحصل على المعرفة من خلال الاستبان. ولا يمكنها أن تعلن بأن الجواهر والعمليات التي تم دراستها ليست حقيقية، طالما أن حقيقة ذات هي المسمة الأساسية.

وهكنا ترى أننا إذا أخذنا الأناقة بالجيد الكافية - إذا اعتبرنا كأنه أمر مفروغ منه أنها صادقة، وأن كل التفسيرات ذات الصلاحية لا بد أن تعمل، دون ترد، وفقاً لها - فإنها بذلك تهم نفسها. كيف يمكن بالضبط أخذ الأناقة بجدية، وأنها تختلف عن منافستها لدى الحس العام: الواقعي؟ الاختلاف يكون في إعادة تسمية النظام، الأناقة تصر على الإشارة على نحو شخصي إلى أشياء مختلفة (مثل الحقيقة الخارجية، وعقيل الباطن، والاستبان، والملاحظة العلمية) بنفس الأسماء. وإزاى ذلك فعليها أن
تعيد تقديم التفريقة بين هذه الأشياء عبر نظريات مثل "الجزء الخارجي عن ذاتي". ولكن ليس هناك مثل هذه التفسيرات الزائدة التي ستكون ضرورية ما لم يكن هناك إقرار على إعادة تسمية النظام بشكل يتغذى تعليمه. يتوجب على الأنانة أيضًا أن تدعي أو تفترض وجود مستوى إضافي من العمليات. العمليات غير المرئية وغير المعطى تلك التي تعطى العقل وهما أو تصورا بأنه يعيش في حقيقة خارجية. أصحاب الأنانة الذين يعتقدون أن لا شيء له وجود غير ما يحوبي العقل، عليهم أن يعتقدوا أيضًا أن هذا العقل يمثل ظاهرة من التعدد أكبر مما يفترض عادة. أنه يحتوي على أشياء أنساس أخرون ك أفكار وأشياء ك وقائع. هذه أفكار حقيقية. إنها تنمو بطريقة معقدة (أو تظهر على أنها كذلك) ولها قدر كاف من الاستقلالية لتشهد، أو تخيب أملنا أو تثيرنا أو تعرض المستوى الآخر من الأناك التي تسمي نفسها "انا". ولذا فإن تفسير الأنانة للعالم هو تفاعل أفكار أكثر منه تفاعل موضوعات. إلا أن هذه الأفكار هي من قبل الحقيقة، وتتفاعل طبقًا لقواعد التي يري الواقعيون أنها تحكم تفاعل الأشياء. ولذا فإن الأنانة فضلا عن كونها وجهة نظر عن العالم تكشف إلى أقصى أساسياتها فهي عمليا واقعية تُستَنَد وتستند أو تقوم بها بواسطة افتراضات غير ضرورية وعادات باقية لا تستحق شيئًا من حيث القيمة، وتم تقديمها فقط ليتم شرحها.

هذه المناقشة تقصد أن نُفِعَ أنفسنا من "الأناك" وكلا ما يحتم بها من نظريات. أنهم جميعًا غير قابلين للدفاع عنهم، وبالصدفة فنحن بالفعل قد رفضنا واحدة من وجهات النظر عن العالم على نفس الأرضية وهي المعروفة ب "الوضعية" (النظرية القائلة بأن العبارات غير المتضمنة للأوصاف أو التبئات التي تسفر عنها الملاحظة هي من قبل العبارات غير ذات المعنى). وكما أشرت في الفصل الأول فإن الوضعية تؤكد خلايا ذاتها من المعنى وفق مبادئها نفسه ولذا فهي مما لا يمكن الدفاع عنها بإحكام.

136
ولذا فإنه يمكننا أن نواصل عدم تأكيديننا من خلال الحس العام، على الواقعية
وتلك الملاحظة للتفسير عبر النماذج العلمية. ولكن في ضوء هذه النتيجة فكلما يمكننا قوله حول الجدل الذي يجعل من الأثنين وكل النظريات المتصلة بها سطحية ومقبولة فقط من الناحية الظاهرة بمعنى أنها لا يمكن إثباتها كما لا يمكن تقويمها من خلال التجربة؟ ما هي إذن حالة هذه الجدلية الآن إذا لم تستطع أن تبرهن على زيفها ولا اختبارها تجريبيًا، ما الذي يمكن أن نفعله؟

ثمة افتراض داخل هذا السؤال. ذاك أن النظريات يمكن أن تشملها طبقية (تتابعية)، الرياضيات، الفعلية، الفلسفية. لكى نقص مقدار التناقض فيها وإبراز جوهر معتمديتها، كثير من الناس يضمنون وجود مثل هذه الهيكلية، رغم حقيقة أن مثل هذه الأحكام الخاصة بمقارنتين المتعمدة تعتمد كلية على المناقشات الفلسفية، المناقشات التي تصنف نفسها بأنها لا يعتمد عليها في الواقع فإن فكرة الموثوقية هذه والتي ناقشتها في الفصل الأول (نظرية أن الظواهر الميكروسكوبية وقوائهما هي الأساسية وليس الظواهر الإنبثائية). نفس الارتيار ينصح على الاستقراء الذي يفترض أنه يمكننا الاستنتاج تماما من نتائج الجدلية الرياضية لأنها استنتاجية، وأن من المقبول التأكد من نتائج الجدلية العلمية لأنها استقرائية ولكننا أبدأ أن نكون متبقنين بالنسبة للجدلية الفلسفية التي تبدو أكثر قليلاً من كونها مسألة ذوق.

ولكن ليس أي من هذه المواقف صحيحة. التفسيرات لا تقوم بواسطة الوسائل التي استقيناها منها، ولكن عبر قابليتها الفائقة للإفتكار من التفسيرات المنافسة لها والتي تستطيع حل المشكلات التي تعلن عنها. ولذا فإن الجدل حول أن النظرية غير قابلة للدفاع عنها يصبح إيجابيًا. التنبؤ وأي تأكيدي آخر الذي لا يمكن الدفاع، قد يبقى صحيحًا، ولكن التفسير الذي لا يمكن الدفاع عنه ليس تفسيرا على الإطلاق. ورفض مجرد التفسير على أرضية أنه لا يمكن تقويمه عبر تفسير مطلق، لا يمكن تجنب أنه
سيدفعنا للوقوع في برأنت بحوث لا طائل وراءها للعثور على مصدر مطلق للتفسير.
ليس ثمة ووجود مثل هذا المصدر.
ليس هناك هذا النوع من الطبقية الاعتمادية من التفسيرات الرياضية إلى العلمية إلى الفلسفية. بعض الجدائل الفلسفية تتضمن جدلية ضد الأنثانية، يكون الإجبار فيها أبعد مما في الجدل العلمي. بالتأكيد فإن كل جدل علمي يفترض زيف الأنثانية، بل وكل النظريات الفلسفية التي تتضمن أي عدد من تنوعات الأنثانية والمتصلا بها والتي يمكن أن تتعارض مع أي أجزاء محددة من الجدليات العلمية. سوف أوضح في الفصل العاشر أنه حتى الجدائل الرياضية البحثية التي تستقي معتمديتها من النظريات الفلسفية والفيزيائية التي تشكل جزءًا أساسياً منها، ولا فائدة بعد كل ذلك لتعزّ معتمديتها المطلقة.

وإذا ما تبينا "الواقعية" سنظل مواجهين باستمرار بقرارات مثل هذ الجواهر المشار إليها في التفسيرات المنافسة في حقيقية أم لا، وبالتأكيد أنها غير حقيقية كما فعلنا في حالة نظرية "الملاكمة" بالنسبة للتحركات السماوية، فإن الأمر يساوي إذن لكي نرفض أي تفسير يتصال بذلك.

ولذلك فإن البحث عن التفسيرات والحكم عليها يحتاج منا أكثر من مجرد رفض الأنثانية. علينا أن نطور أسباباً لقبول أو رفض الكيانات التي قد تظهر لنا عبر النظريات التي تناسبها، وبكلمات أخرى فإننا تحتاج إلى معيار من الحقيقة إن حكمنا على شيء بنه حقيقية أم لا يعتمد دائمًا على مختلف التفسيرات المتاحة لنا والتي أحيانا ما تتغير في رحلة تقدمها. في القرن 19 كانت بعض الأشياء منظر إليها على أنها موثوق بها أكثر من الوثوق الذي تحظى به "الجمادية"، ليس هذا فقط ما تمثل في نظم نيوتن في القوانين والتي لم تتنافس مع بعضها البعض، ولكن كل فرد كان يشعر بها حتى ولو كان مغضبي العينين - أو هكذا ظنا. اليوم نحن نفهم الجمادية عبر نظرية أينشتاين أكثر مما نفهمها من خلال نظرية نيوتن ونعلم أنه لا توجد قوة للجمادية. إننا لا نشعر
بها! إننا نشعر بالمقاومة التي تنغصنا من اختراق الأرض أسفال أقدامنا. لا شيء يدفعنا إلى أسفال. السبب الوحيد الذي يجعلنا نفعق على الأرض إذا لم يوجد ما يصدنا هو أن نسيب الزمان والمكان الذين نتواجد فيه ينحني.

ليست فقط التفسيرات هي التي تتغير وحدها، وإنما أيضًا تتغير معاييرنا وأفكارنا بشكل اعتيادي حول ما الذي يمكن اعتباره تفسيريًا من عدمه. ولذا فإن صنع ما هو مقبول من التفسيرات سيظل دومًا مفتوح النهاية، وبالتالي فإن قائمة المعايير المقبولة حول الحقيقة يجب أن تظل بدورها مفتوحة النهاية. ولكن ماذا عن التفسير الذي يقتعنا بسبب ما والذي يجعلنا نصف بعض الأشياء على أنها حقيقية والبعض الآخر على أنها وهمية أو متخيلة.

Life of (م) جيمس بوزويل في كتابة "حياة جونسون" من James Boswell أن يقيم علاقة بين ما ناقشه هو ود. جونسون عن "الأثاث" عند الأسقف Birkeny (م) بيركلي (م) B
ولو أن أحدًا لا يصدق النظرية فإن أحدًا لا يمكنه رفضها أيضًا. Rück. D. جونسون حجزًا كبيرًا بقلمه وقال، لدى معاودة قدمه ارتضادها بعد ارتضاطها بالحجر: "إذا أرفضها النقطة التي أرتكبها د. جونسون هنا أن إنكار بيركل لوجود الحجر هو مما يصعب احتماله عامًا لو حاولنا البحث عن تفسير ما شعر به هو نفسه من ارتضاد قدمه بعد الارتضاط.

الآثاثان لا تستطيع أن تتبني تفسيرًا عن ماذا هذه التجربة - أو أي تجربة أخرى - يمكن أن تكون لها مخرجات أكثر من أخرى. لشرح التأثير الذي تسبب فيه الحجر كان د. جونسون موجباً لأخذ موقف من طبيعة الأحجار، هل هي جزء مستقل من الحقيقة الخارجية أم أنها شيء مفقود أنتجته أخيلته؟ وفي مرحلة متاخرة كان عليه أن ينتهي إلى أن الخيال نفسه هو عالم واحد ومعقد ومستقل بداية. نفس الخيار المؤلم والحفر جاهز الاستاذ المتنمى للآثاثان عندما تم الضغط عليه للبحث عن تفسير فكان موجباً لأخذ موقف إزاء مشاهديه. ومن الواجب أن يذهب البحث في الأمر إلى منح اتخاذ موقف عن السبب وراء انتظام حركة الكواكب، النظام الذي يمكن قرره فقط عبر نظرية مركزية الشمس. لكل هذا - وينبغي هؤلاء الناس موقفًا جديًا من عملية تفسير العالم - فإنه سيقودهم مباشرة إلى الواقعيّة وإلى عقلانية جاليليو.

ولكن فكرة د. جونسون كانت أكثر من مجرد رفض الآثاثان ولكنها أيضًا عبرت عن معيار الحقيقة المعلوم به في العالم والقائل: "إذا استطاع شيء أن يبرد (المركز) فهو بالتالي موجود." رد الركذ هنا لا يعيني بالضرورة أن الشيء السابق ركه يستطيع رد الركذ ولكن يمكن أن يكون قد تأثر فيزيائيًا بالركل تمامًا في حالة الحجر التي ركه د. جونسون أنه من الكافّين عندما نركز شيئًا فإن هذا الشيء يؤثر فيه بطرق تتطلب تفسيرًا مستقلًا. على سبيل المثال لا يملك جاليليو من الوسائل ما يستطيع به أن يؤثر في الكواكب ولكنه يستطيع أن يؤثر في الضوء القادم منها. يتساوى ركز الحجر مع
انعكاس الضوء عبر عدسات التلسكوب وعينيه. هذا الضوء يستجيب بأن يُركّل شبكية العين، ولهذه الطريقة يستطيع أن ينتج ليس فقط أن الضوء حقيقي بل إن مركزية الشمس بالنسبة للحركات السماوية تتطلب تفسير النموذج الذي يعبر عن أن الطريقة التي وصل بها الضوء هي من قبيل الحقيقة بدورها.

وبالمقابل فإن الدكتور جونسون لم يركّل الحجر حتى كشخص هو عبارة عن عقل وليس جسداً. فإن د. جونسون الذي أجرى التجربة أقامها كعقل، وهذا العقل لم يركّل مباشرة، وإنما بعض الأعضاء التي مررت إشارات للعضلات التي أجرت قدمه على الحركة تجاج الحجر. وبعد قليل من ذلك تلقى د. جونسون ركة مضادة من الحجر ولكن مرة أخرى بطريقة غير مباشرة بعد شكل الضغط الذي تشكّل على حذائه ثم على جلده ثم قاد إلى نبضات كهربية في أعصابه، وهكذا أجرت عقل د. جونسون، مثل جاليليو وأي شخص آخر: "الركّل من خلال الأعضاء والركّل المضادة" عبرها أيضًا ومن ثم استنتاج وجود وخصائص الحقيقة من خلال هذا التفاعل وحده. الذي خُلِل للدكتور جونسون أن يستنتج حول الحقيقة يعتمد على قدرته على تفسير ما حدث به وحده ما يمكنه .. على سبيل المثال: لو أن إحساسه بدأ أنه يعتمد على مدى امتداد ساقه، وليس على عوامل خارجية، فربما انتهى إلى أن الأمر يتعلق بخصائص طول ساقه أو بطريقة عقله فقط. ربما يكون مصابًا بمرض يجعله يعاني من أثر الارتداد عندما يمد ساقه بطريقة معينة. في حقيقة الأمر فإن الارتداد يعتمد على ما فعله الحجر مثل أن يكون الحجر في موضع معين ويتكون بالتالي بتأثيرات أخرى غير تأثير الحجر. واصول د. جونسون مع هذه التأثيرات يجعلها تتمتع بالاستقلال عن ذاتها ومعقده في أن واحد.

ولذلك فإن التفسير الواقعي يكون الحجر أنتج هذا الثر الارتدادي اشتمل على قصة معقدة عن شيء آخر مستقل. ولكن هذا يفعله التفسير الناجم عن الأدلة. في الواقع فإن أي تفسير يقيم وراثة ظاهرة معاداة الارتداد في القدم سوف يكون بالضرورة قصة معقدة عن شيء مستقل مما نسبي إليه. يجب أن يكون الأمر حول التأثير على
الحجر، الألثانة أو اللتمي إليها قد يسميها: الحجر/الحلم، ولكن بعيدًا عن هذه الدعوى فإن قصة الواقعية وقصة اللتمي للألثانة يمكنهما أن يشتركان في ذات السيناريو.

المناقشة التي سقتها في الفصل الثاني حول الظل والأكوان المتوازية أدارت في الرأس أسألة عن الوجود وغير الموجود بما ينضمه من سؤال آخر عن ما الذي نضعه في الاعتبار كدليل على الوجود. وقد استهدفت معيار الدكتور جونسون، معتبرا مرة أخرى النقطة X على الشاشة في الشكل ٢-٧ الذي يوضح أنه عند فتح شرخين فقط في الحال بظلين منيرين بينما فتح شرخين آخرين فإن الأولين يظلمان وقت: إنه لا مهب، من أن نصل لنتيجة أن شيئًا ما لا بد أنه عبر الشرخين الآخرين لمنع الضوء عن الشرخين الأولين وأن يصل للنقطة X ليس من الممكن قول ذلك لأننا إذا لم نكن نبحث عن تفسير فعلاً فقط أن نقول إن الفوتونات التي نراها تتنصرف وكأن شيئًا ما قد مر في الشرخين الآخرين فعمقًا كما أننا بسمرها في الواقع ليس هناك شيء شبيه بهذا، وكان د. جونسون ليقول أن قدمه قد ارتدت كما لو أن الحجر هناك ولكن الواقع يقول بأن شيئًا لم يكن هناك، وسلطة الاتهام قالت أن الكواكب ومن بينها الأرض تدور للرائد وكاتهم في مدار حول الشمس، وإنما هم في الواقع يدركون حول الأرض الثابتة. ولكن لو أن موضوع التمرين هو تفسير حركة الكواكب، أو حركة الفوتونات، فلا بد أن نفعل كما فعل د. جونسون لا بد أن نتبني قاعدة ميثولوجية بأنه إذا تصرف شيء كما لو أنه موجود عن طريق رد الفعل، فيجب أن ننظر إليه كدليل على الوجود. فوتونات الظل تقوم بعملية رد الفعل من خلال التداخل مع الفوتونات التي نراها ومن ثم فإن فوتونات الظل موجودة.

هل يمكننا باستخدام معيار د. جونسون أن ننتهي بالمثل إلى أن الكواكب تتحرك كما لو كانت الملمكة هي التي تدفعها ومن ثم فالملمكة موجودة؟ لا، فقط لأن لدينا تقسيرا أحسن من ذلك. نظرية الملمكة عن حركة النجوم ليست برمتها بلا جدارة، إنها

142
تشرح لماذا تتحرك الكواكب مستقلة عن الأفق السماوي، وانجعل للأدائه شأوا أعلى.
ولكنها لا تشرح أو تفسر ماذا تضطر الملائكة إلى دفع الكواكب في مجموعة مدارات دون مدارات أخرى، أو بالتحديد ماذا تدفعه كما لو أن حركتهم محددة بواسطة
انحناء الزمكان (٦) كما حددته تقسيملا القوانين الكونية في النظرية النسبية العامة، وإذا
لا تستطيع نظرية الملائكة أن تنافس النظريات التي أبدعتها الفيزياء الحديثة.

ويالمثل استنتاج أن الملائكة قد جاءت خلال الشروخ وحرق فوتوتنت عن مسارها .. فهو تفسير أحسن من لا شيء. ولكننا يمكننا أن نفعل ما هو خير من ذلك.
إذا نعرف أن الملائكة يمكنها التجميد في سكينة فوتوتنت وبالتالي يجب أن تتصرف مثلها. وهكذا فإن لدينا خيارين أحدهما تفسير من خلال ممصطلحات ملائكة غير
منظمة تتظاهر بأنها فوتوتنت. والتفسير الآخر يستخدم عبارة من قبل فوتوتنت غير
منظمة. وفي غياب تفسير مستقل عن لما على الملائكة أن تتظاهر بأنها فوتوتنت، سيكون التفسير الأخير هو الأفضل.

نحن لا نشعر بحضور أقراننا في عوالم متوازية ولا كان في مقدور أصحاب
الاتهام الشعور بالأرض وهي تتحرك تحت أقدامهم. مع أننا تتحرك! الآن اعتبار ماذا
كان يمكن أن نشعر به لو كنا نوجد في نسخ متعددة وتفاوت عالل التأثيرات الضئيلة
للتفاعل الكمي، يتساوي هذا مع ما فعله جاليليو عندما حلما ما كان يجب أن شعر به
الأرض حيالنا أو أنهما كانت تدور وفقًا لنظرية مركزية الشمس. فقد اكتشف أن الحركة
ستكون مما لا يمكن إدراكه بالحواس. ولأن عبارة "مذكرة بالحواس" ربما لا تكون
هي العبارة الصحيحة هنا. ليست حركة الأرض ولا حضور الأكوان المتوازية من قبل
ما يمكن فهمه مباشرة، ولا أي شيء آخر (ما عدا ربما ما حملته جدالية ديكارت;

(٦) النظرية النسبية اعتبرت الزمن كما لو أن له نفس الخواص الحركية التي للأبعاد الثلاثة التي تصف المكان
وبالناتج، وتتحز الزمان والمكان في ممت ببعض الأبعاد يعرف بالزمكان. (المراجع)
(وجود المجرد) ولكنها جميعًا بما لا يدرك بالحواس بمعنى ما. رد الفعل لا يدرك بالحواس إزاعًا إلا إذا اختبرته من خلال أدواتنا العلمية. وتستطيع أن نرى بندول "فوكو" (بالفرنسية تترجم داخل طائرة ويبعو لنا، ولكنه يجري تدريجيًا كاسفًا حالة تعاقد الأرض أقرب إلى البوصلة التي تحدد الشمال بالنسبة لسطح الأرض ومسمى باسم مخترعه.) يتعرض داخلاً بالطائرة ويبدو لنا، ولكنه يجري تدريجيًا كاسفًا حالة تعاقد الأرض أسرف الطائرة المرحلية. وتستطيع أن نستكشف الفوتوشات وقد حرفها التداخل من نظرياتها في الأكواد الأخرى معها. إنها فقط واقعة تطور بمعنى أن الحواس التي ولدنا بها لا يمكنها التكيف مع الشعور المباشر بمثل هذه الأشياء.

ليست شدّة رد الفعل لشيء ما هي التي تجعل نظرية وجود هذا الشيء مقدرة علينا، الذي يهم هو الدور الذي يلعبه الشيء والتفسير الذي تمدنا به النظرية. لقد أعطيت أمثلة فيزانية على كيف أن رد فعل ضيف يقودنا إلى نتائج ضخمة حول الحقيقة لأنه لا يوجد لدينا تفسيرات أخرى أفضل من ذلك. وقد يتكسر الأمر: فلو أنه لا توجد نظرية محددة المعالم بين الظروف المتنافسة فسيكون حتى رد الفعل القوى غير قادر على إقناعنا بأن مصدره المفترض له وجود مستقل وعلى سبيل المثال فقد ترى وجوهًا مرعبة تهاجمك في أحد الأيام - وبعدها تستيقظ من نومك. إذا كان التفسير الذي زرعته الوعوض في عقلك يبدو مقبولًا فسيكون من غير العقلاني الاعتقاد بوجود مثل هذه الوعوض. إذا شعرت بآلام مفاجئ في كتفك أثناء سيرك في شارع مزدحم، وتفتت حولك ولم تجد ما يفسر ذلك فربما تتساءل هل تسبب في ذلك جزء من عقلك الباطن، أو جزء من جسدك، أم هو سبب خارجي. ربما كان أحد الظرفاء قد أطلق عليك طلقة من بندقية هواه ثم تأتي إلى نتيجة بانه لا يمكنك تحديد حقيقة مثل هذا الشخص. أما إذا رأيت طلقة بندقية الهواء وهي تتدحرج على الرصيف، ربما تستنتج أنه لا تفسير أفضل من بندقية الهواء. وفي هذه الحالة سوف تضطر إلى تبنيه وتبادلت أخرى فائت تستطيع بشكل تجريبي أو مؤقت أن تستند على وجود شخص
دون أن تراه، وربما لن تراه، بالنظر لدور هذا الرجل في أحسن تفسير متاح لديك. من الواضح أن نظرية وجود هذا الشخص ليس نتيجة منطقية لدليل قمت بملاحظته (الذي لا يحوي - بالصادفة - إلا على ملاحظة واحدة). ولا تحوي هذه النظرية تعميمًا استقرائيًا مثل أن توجد ذات الملاحظة لوقت التجربة مرة ثانية، أو لأن النظرية يمكن اختبارها تجريبيًا: التجربة لا يمكن لها أبدا أن تبرهن على غياب هذا المزاح المختفى. على الرغم من كل ذلك فإن النظرية يمكن أن تتمتع بالقدرة على الإقناع الجماعي ما دامت تمثل التفسير الأفضل.

حيثًا استخدمت معيار د. جونسون للمجادلة حول حقيقة شيء، دائمًا ما يتصال بذلك عنصر مميز يساهم في الأمر، ذلك هو ما يعرف بـ"التقييم". نحن نفضل التفسيرات البسيطة أكثر من تلك التي يشوبها التقييد. وأيضًا نفضل التفسيرات التي تأخذ في اعتبارها التفصيل والتقييد بالمقارنة مع الشروح التي تتنازل عناصر بسيطة من الظاهرة. معيار د. جونسون يقول لنا أن نظر الكينونات المعقدة على أنها حقيقية حيث لو لم نفعل لأدى ذلك إلى تقييم تفسيراتنا. مثل وجوب النظر إلى الكواكب على أنها حقيقية لأننا لو لم نفعل فسوف نضطر إلى تفسيرات معقدة عن الفضاء الكوني السماوي، أو قوانين فيزياء معكوسة أو متغيرة أو الحديث عن الملائكة، أو أيا ما يكون، وتحت وظيفة هذا الافتراض يوجد مثل هذه التفسيرات سوف يتحول وجود الكواكب إلى توهيم بها وهي تدور في الفضاء.

إذن؛ فالتقييم الذي نلاحظه في بناء أو سلوك كينونا ما هو جزء من الدليل على أن هذه الكينونة حقيقية. نحن لا نعتقد من انعكاس صورتنا على الرايا بأنها أشخاص حقيقية. بالطبع فإن الكينونات الوعيمة هي ذاتها عمليات فيزيائية حقيقية. ولكن طبيعة الوعيم تظر لنا أن لا ضرورة لاختبارها حقيقية لأنها تكتمل تعقيدها من مصدر آخر. هي ليست مستقلة التقييد. لما نقبل بنظرية انعكاسات الرايا، ونرفض نظرية مركزية الشمس في الفضاء السماوي. لأن إعطاءنا تفسيرًا بسيطًا عن عمل الرايا سوف
يجعلنا نفهم أنه لا يوجد أي شيء عبقيء وراءها. لن تحتاج إلى مزيد من التفسير لأن الانعكاسات، ولو أنها معقدة، ليست مستحيلة لأنها مجرد استعارت تعقيدها من خارجها. ليس الأمر كذلك بالنسبة للكواكب. النظرية الخاصة بوجود الفضاء السماعي الكوني وأنه لا شيء وراءه من شانها أن تجعل المشكلة أسوأ. لأننا لو قبلنا بها فإنه بدلًا من الاكتفاء بالسؤال عن كيفية عمل النظام الشمسي سوف نبدأ بسؤال كيف يعمل الفضاء السماعي ثم بعدها كيف يقوم النظام الشمسي بإدائه العمل. إنه لا يمكننا تجنب هذا السؤال الأخير وهو ليس أكثر من تكرار للإجابة التي حاولنا السؤال عنها في البداية. والآن يمكننا إعادة صياغة معيار د. جونسون على النحو التالي:

"إذا كانت لآية كيوتوة، وفقًا لأبسط تفسير لها، طبيعة معقدة ومستحيلة، فهي إذن حقيقية."
لها تيسكوباتهم لرؤية الكواكب والنجوم، والذي يعني بقولنا إن مظهر الفضاء السمائي معقد كتعقيد الصورة التي نراها للسماء إلماً ذلك أن كل من عمليتي الحوسية واحدة تصف سماة الليل والأخرى تصف الفضاء السمائي، كليهما متضمن بدرجة كبيرة، وبالتالي نستطيع التعبير مجددًا عن معيار د. جونسون من خلال تعبيرات الحوسية المفترضة. على النحو التالي:

"إذا كان ثم كمية جوهرية وملموسية من الحوسية يتطلبها إمدادنا بوهم أن كينونة معينة هي حقيقية، فهي إذن حقيقية.

أو أن ساق د. جونسون تصاب بردة الفعل تلك على نحو ثابت لا يتغير كلما قام بفترة، إذن لكان مصدر توهيمه (الرب، ماكينية فعلية للحقيقة، أو أي ما يكون) سيتحقق عبر عملية حوسية بسيطة لتحديد متي يأتيه الشعور بردة الفعل (شيء مثل: إذا ساق إمستت إذن شدة رد فعل ..." ولكن لإعادة إنتاج ما خبره د. جونسون في تجربته الفعلية فلا بد أن تأخذ في الحساب أن كان الحجر، وعما إذا كانت قدم د.جونسون ستصيب الحجر أو ستخفق في ذلك، ما مدى ثقل الحجر، مدى صلابة، مدى شدة غرزه في الأرض، وهل سبق لأحد آخر أن ركله وهكذا... عملية حوسية متسعة.

الفيزيائيون المتمسكون بوجهة نظر واحدة إزاء العالم يحاولون أحيانًا تفسير ظاهرة التداخل الكمية كما يلي:

لا توجد فوتوتات ظل، والذي نراه من تأثير للشروع البعيدة على الفوتوتات التي نراها هو من قبل اللاشيء. نوع ما من التأثير عن بعد (كما في قانون نيوتن عن الجاذبية) هو ببساطة الذي يسبب للفوتوتات أن تغير مسارها عند فتح شرع على مسافة بعيدة. إلا إن هناك ما هو بيضايا ما يجعل هنا على بعد. وعلى قانون فيزيائي صحيح أن يقول: إن هناك ما أثر على الفوتوتات وهي أشياء بعيدة تمامًا كما لو أن شيئًا ما يمر عبر الفتحات البعيدة ثم يرتد من مرايا بعيدة بحيث يقابل الفوتون في
المكان والزمان الصحيح: حواسبة كيف يتصرف الفوتون إزاء هذه الأشياء البعيدة لا بد أنه يتطلب نفس الجهد الحوسي للتاريخ لعدد كبير من فوتونات الظل.

سوف تخوض الحواسبية في قصة ما التي تفعله كل واحدة منها كيف تتحرف كيف توقف ولذا وهكذا. ولذلك كما في حالة حجر د. جونسون وكما في حالة كواك جاليليو: فإن مسألة فوتونات الظل لا بد أن تظهر بالضرورة في تفسير التأثيرات الملائحة. وإن باص هذا التعقيد يصبح متعذرا في هذه القصة لأنه من شئ أنه يجعل إنكار أن هذه الموضوعات موجودة متعذرا بدوره.

نظرية تتطابق تنبؤاتها مع تنبؤات

أنشأ الفيزيائي دافيد بوم (David Bohm) نظرية الكمي، وفيها ثمة موجة ما تصاحب كل فوتون وتسرب الحائل بالكامل لتمر عبر الشقوق وترتداخل مع كل فوتون نراه. نظرية بوم عادة ما يتم تقديمها على أنها نوع كوني من تنبؤات نظرية الكم. ولكن طبقاً لمعيار د. جونسون فهذه غلطة. لأن العمل مع موجة بوم غير المنظورة سيتطلب نفس الحواسبية التي يتطلبها العمل مع تريليونات من فوتونات الظل. أجزاء من هذه الموجة تصفنا نحن (الملاحظون، الكاشفون) ومن ثم تقوم برد الفعل إزاء الفوتونات، بينما أجزاء أخرى من الموجة تصف وجهة أخرى لنا وتقوم برد الفعل إزاء الفوتونات لها مواضع أخرى. التسميات التي خلبوها بوم على الأشياء في نظريته وبشكل متواضع - بالإشارة إلى ما يقترب من الحقيقة مثل "الوجهة" - لا يغير من حقيقة أن نظرية تشمل أن الحقيقة تتضمن مجموعات كبيرة من الكيانات التي ندرك من كل منها كيانات أخرى في نفس المجموعة ولكن فقط ندرك بشكل غير مباشر

(6) دافيد بوم (David Bohm) قام بتلخيص وصف للأعمال التي قام بها أينشتاين وأخرين عن ميكانيكا الكم، والتي تركز في تحليل قياس مكان وزن زوجين من النظم المفتوحة، والتي انتهت إلى أن أي نظرية لا تغطي وصفيًا تمامًا لأي حقيقة فيزيائية. (المترجم)
الكينونات في المجموعات الأخرى. هذه المجموعات من الكينونات بكلمات أخرى هي الأكواك المتوازية.

لقد وصفت مفهوم جاليليو الجديد عن علاقتنا بالحقيقة الخارجية كاكتشاف منهجي عظيم. إنها تعظمنا تسببًا جديدًا يمكن الاعتماد عليه متضمنًا الدلائل الممكن ملاحظتها. هذا بلا شك وجوهًا من وجهه اكتشافه: التسبب العلمي المعتمد عليه، ليس بمعنى أن تشهد بأن أي نظرية بالذات ستبقى دائمًا غير قابلة للتغيير حتى ولو للهد الإقرب. ولكن بمعنى أننا نكون في الوقف الصحيح عندما نعتمد عليها. لأننا نكون على صحة عندما نسعى للعثور على حلول للمعضلات أكثر من بحثنا عن تقييمات مطلقة.

الدلائل الملاحظة هي بالطبع أداة، ليس بمعنى أن أي نظرية يمكن استثمرها أو استنباطها أو بشأن طريقية يمكن الوصول بها إليها، ولكن بمعنى أنها يمكن أن تقيم بسبب عمقها المفاضلة بين نظرية وأخرى.

ولكن هناك جانب آخر للكشف جاليليو، والذي يحظى بتقدير أقل من سابقه. أن معتمدية التسبب العلمي ليس مجرد مساهمة في معرفتنا أو علاقتنا بالحقيقة. ولكنه أيضًا حقيقة جديدة عن الحقيقة الفيزيائية نفسها، وهي الحقيقة التي عبر عنها جاليليو في جلته كتاب الطبيعة مكتوب بواسطة رؤية رياضية. كما قلت أنه من المستحيل حريفيًا قراءة أي شريحة صغيرة في أي نظرية عن الطبيعة: وهي الغلطة التي وقع فيها الاستقراء. ولكن الموقف هناك هو أداة وتحديد أكثر الحقيقة المتصلة بالأدلة أو أنها تفاعلنا معها بطرق الصالحة. أو عندما شريحة من نظرية أو حتى شرائح من عدة نظريات متناقضة. فإن الدليل متاح هنا ليجعلنا قادرين على التفرقة بينهم. أي واحد يمكنه البحث عنه والعثور عليه والبرهنة على ما إذا كانت أي من هذه النظريات قد تجسست الخطي، وهو في ذلك لا يحتاج أي سلطة أو إذن أو إلى كتاب مقدس، فقط يحتاج توجيه النظر إلى الوجهة الصحيحة. إن لديه في عقلي مجموعة من المعضلات.
الخصبة المثمرة وعدهة نظريات واعدة، إن ذلك وحده يفتح الباب ليس فقط للدليل بل كل
بحث في آلية المعرفة كمفتاح ساهم في مفهوم جاليليو للمعرفة.
ربما فإن جاليليو أن ذلك هو الدليل الذاتي، ولكن الأمر ليس كذلك، إنه تأكيد عبر
أسماء الأشياء عن كيف تكون عليه الحقيقة. من المنطقي أن الحقيقة لا تحتاج إلى
خاصية هذا العلم الودود (إذا كان التعبير) ولكنها بالفعل تحتاجها ويوفرها عالم
جاليليو مستقر تماما عبر مثل هذه الأدلة. كيبر بيسبوس حشد الأدلة عن نظريته حول
مركز الشمس وهو في بولندا. تيكو براه
والكذاك فعل كبر(3) وهو في ألمانيا. وعندما وُجِّه جاليليو تكسوبه إلى السماء فوق
إيطاليا لن تقبل مجموعة مداخل أكثر لنفس الأدلة. كل جزء من سطح الأرض، في أي ليلة
صافية ولعدها بالغين من السنين تغمره الأدلة الفلكية.

وبالنسبة لعديد من العلوم الأخرى فالدلالة تلعب دورها بنفس الطريقة لنوراها
بطرقية أكثر وضوحًا في الأزمة الحديثة عبر الميكروسكوب وعديد من الآدوات الأخرى،
وإذا كان الدليل ليس بعد مطروحاً فزيائيًا فيمكننا أن نستحضره للوجود من خلال
وسائل خاصة أو حيل معينة مثل الليزر وحوائط مثققة، حيل مفتوحة لأي شخص في
أي وقت لبناها. وستبقى الأدلة هي نفسها بصرف النظر عن كشف عنها. والنظرة
الأكثر أصالة هي تلك القابلة أو متاحة لزيد من الأدلة للبرهنة عليها (الهؤلاء الذين
يعتبرون كيف ينظرون) ليس فقط فوق الأرض بل فوق العديد منها.

(3) جوهان كيبر (1571 - 1630) فلكي ألمان اكتشف أن الأرض والكواكب تدور
 حول الشمس في مدار معينة. وبذلك غير المفهوم السابق عليه عن السماو إلى مفهوم فلكي ديناميكي.
وقد استخدم في ذلك وبدكاء ملاحظات الجيزة التي خلقها له أستاذه تيكو براه
ووستنتج منها بمثابة ثلاثة قوانين كوكبية كانت بمثابة التصدع المثالى لبيتون بعد ذلك لأن يضع نظرية
الهائنة عن القوة الجانبية (الترجم)
تشابه الحقيقة الفيزيائية مع ذاتها على مستويات عدة عبر التعقيد المذهل في الكون والأكوان المتعددة، وبعض النماذج منها يبتكر بلا حدود للتكرار مهما كان الأمر. الأرض وكوكب المشرقي يعتبران كوكبين غير متشابهين بشكل درامي من عدة نواح إلا أنهما يدوران في شكل القطع الناقص، كما أنهما مصنوعان من نفس المجموعة المتضمنة ملايين من ذات العناصر الكيميائية (إن في شكل نسب مختلطة) وهكذا كل نظرائها في الأكوان المتوازية المتوافقة في كواكب أخرى في المجرات البعيدة، والدليل كما يعتبره كذلك في الحظة الحالية الفيزيائية والفلكلور كان أيضاً متوفراً ومتاحاً منذ بلايين السنين، وسيظل كذلك بلبلين أخر من السنين المقبلة. ثم وجود بالغ لنظريات عامة ومفصلة تعني بالقول أن الموضوعات والأحداث المتباعدة أو المتفاوتة تتشابه مع بعضها البعض من عدة نواح، إن الوضوء الذي يصليه من المجارات بعد كل شيء هو مجرد ضوء ولكنه يبدو لنا وكأنه أشبه بالمجارات. وهذا تشتمل الحقيقة ليس الدليل وحده وإنما أيضاً الوسائل (مثل عقولنا وأدواتنا المصنوعة يابيدينا) التي نفهمها بواسطتها. هناك رموز رياضية في الحقيقة الفيزيائية. الحقيقة القائمة بنا نحن الذين وضعناها هناك لا يقل من كونها فيزيائية. عبر هذه الرموز - في فضاءنا السماوي، وفي كوننا، وأفلامنا، وذاكرة الكمبيوترات، وفي أدمغتنا - ثمة صور مكربة للحقيقة الفيزيائية ليس مجرد مظهرها الخارجي إنما فاحواها وبناها. ثمة قوانين وتعامير سواء انتقائية أو استنباطية. ثمة أوصاف وشروخ لانفجار الكبير (الانسحاب الكبير، الانفجار الكبير، الانسحاب الكبير) على رأس النظريات السائدة عن نشأة الكون ومصيره على الأقل من حيث الاعتقاد. والعمل بها - بأن Singularity الكون قد بدأ من بذره (أقل شيء، يمكن أن يوجد) ويطلق عليها اسم صغرها رغم صغرها ذاك فقد احتوى على كل ما في الكون من مادة وطاقة. وقد انفجرت في لحظة ما (يطلق عليها زمن بلاكن) وبعده 14 إلى 1.14 يوماً على يساره 42 صفرًا، ثم فاصلاً) لتشكل الكون عبر بلايين السنين إلى ما هو عليه حالياً من مجرات وكواكب وما إلى ما فيها الخلايا وهم هذه المجارات مستمرة في التوسع (التمدد) عن بعضها البعض وفي جميع الاتجاهات وفي نفس المستوى وإلي أبعد ما يستطيع رؤيتها حالياً.

151
من ذرية؛ وللعمليات: ثمة تجريدات رياضية: وقصص: وفن، ومبادئ أخلاقية، فوتوئات ظل: وأوكوان مستوازية. هذا إلى حد أن تلك الصور والرموز والنظريات صادقة وتنتمي بعضهم الاحترام الأساسي الصارم للأشياء المجردة التي تشير إليها - وجعلها نفسها بمعنى الحقيقة نوعا جديدا من التشابه الذاتي والذي نطلق عليه: "المعرفة".

_= واستنبات الأمر ظهور نظرية تعرف باسم الكون النابض Pulsating Universe وتقول بأن المادة تتعرض متتالية ولكنها سوف تبدأ بالانفصال بчерير الجاذبية المشتركة لتكوينها المختلفة فيما يسمى بالانفصال الكبير إلى أن تصل إلى درجة معينة من التركيز كالتى بدأت، ثم تتفجر من جديد ومن خلال هذه العملية وتكرارها فإن المادة تخلق ولا تزول بل يعاد توزيعها مرة بعد مرة. (الترجمة) _=
<table>
<thead>
<tr>
<th>الأصطلاحات</th>
<th>نظرية مركزية (الشمس)</th>
</tr>
</thead>
<tbody>
<tr>
<td>النظرية القائلة بأن الأرض تدور حول الشمس، وفي نفس الوقت تدور حول نفسها (حول محورها).</td>
<td>Heliocentric theory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>نظرية مركزية (الأرض)</th>
</tr>
</thead>
<tbody>
<tr>
<td>والتي تقول بأن الأرض في حالة سكون (ثبات) والأجسام الفلكية الأخرى هي التي تدور حولها.)</td>
<td>Geocentric theory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>الواقعية:</th>
</tr>
</thead>
<tbody>
<tr>
<td>النظرية أن فيزياء الكون الخارجي تتمتع بالوجود كما أنها تؤثر فيها عبر ما لدينا من حواس.</td>
<td>realism</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>موسي أوكم:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(من خلال صياغتي أنا) لا تعتمد إلى تعقيد الشروط بدون ضرورة تستوجب التعقيد لأنك لو فعلت سوف تظل التعقيدات الزائدة باقية بدون تفسير.</td>
<td>Occam's razor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>معيار د. جونسون:</th>
</tr>
</thead>
<tbody>
<tr>
<td>إذا كان لشيء ما رد فعل (Kick Back) فهو إذن موجود، وعلى نحو تفصيلي أكثر، إذا كان لشيء طبقي لأبسط تفسيراته كائنات متعددة مستقلة إذن فإن هذه الكائنات موجودة (من صياغتي أيضاً).</td>
<td>Dr Johnson's criterion</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>التشابه الذاتي:</th>
</tr>
</thead>
<tbody>
<tr>
<td>بعض أجزاء الحقيقة الفيزيائية (مثل الرموز والصور، أفكار الإنسان) تشتمل على أجزاء أخرى، هذا التضمن أو</td>
<td>Self - similarity</td>
</tr>
</tbody>
</table>
الخلاصة:

على الرغم من أن الآخرين وبعض المعتقدات المتصلة بها تكون متماسكة ذاتيًا من الناحية النطاقية، فهي عند المقارنة يمكن رفضها ببساطة كتفسيرات إذا ما أخذت بالجدية الواجبة. وبالرغم من أن دعاها أنها وجهات نظر مبسطة حول العالم، باعتبار أن أي تحليل يظهرها غير قابلين للدفاع عنها عند دراستها تفصيلًا مع الواقعة، الكائنات الحقيقية تتصرف على نحو مفرد ومستقل، مما يمكن اعتباره مفهومًا للحقيقة إذا كان لشيء رد فعل فهو إذن موجود. التسبيح العلمي الذي يستخدم الملاحظة ليس فقط أساس للتأمل والنظر، وإنما للتفرقة التي تتكافأ في شروحاتها، بما يعطيها معرفة عبقرية بالحقيقة.

الخصائص:

الفرع من علم الكمبيوتر الذي يهتم بالمصادر التي يتطلبها أداء بعض مستويات الحواس (مثل زمن الأداء، وطاقة الجهاز، وسعة ذاكرته).

نظرية التعقيد:

Completeness theory
وبناءً على ذلك فإن العلم وأشكال المعرفة الأخرى قد تشكلت عبر خاصية خاصة من التشابه الذاتي في فضياء العالم. وليس الفيزيائيون هم أول من ميز هذه الميزة ودرسها وإنما الرياضيون وأخصائيو الكمبيوتر وسموها "عالمية الحوسبة". نظرية الحوسبة هي فرعتها الثالث من الفروع الأربعة التي نتبناها.
الفصل الخامس
الحقيقة التقديرية (التخيلية)
تم تدريس نظرية الحوسبة من الناحية التقليدية في المجال التجريدى كموضوع من موضوعات الرياضة البحتة. وهذا قد يفقدنا الهدف منها، الكمبيوتر هو من الناحية الفيزيائية موضوع من الموضوعات، والحوسبة هي عمليات فيزيائية أيضًا، ما تستطيعه الكمبيوترات وما لا تستطيعه، كلاهما تحكمه قوانين الفيزياء وحدها، وليس الرياضة البحتة، وواحدة من أهم مفاهيم الحوسبة هي "العالمية" أو "الشمولية". الكمبيوتر العالمي دائمًا ما يتم تعريفه بأنه ماكينة مجرد تستطيع أن تحاكي الحوسبة الصادرة من ماكينة مجرد أخرى طالما أنها في المستوى المعرفي له جيدًا. ومع ذلك فإن معنى العالمية يكمن في الحقيقة القائلة بأن أي كمبيوتر عالمي، أو على الأقل الآلات القريبة بشكل جيد منه، يمكن أن يتم بناؤه واستعماله ليحسب ليس فقط سلوك كل آلة تجاه الآلات الأخرى، ولكن أيضًا السلوك الذي تتخذه الكينونات الفيزيائية المثيرة والمجردة، وحقيقة أن ذلك ممكن وهو جزء من التشابه الذاتي في الحقيقة الفيزيائية والذي أشار إليه في الفصل السابق.

المُعلن والمعلومات عن العالمية الفيزيائية يمثل منطقة من التقنية كانت دائمًا محل نظر ومناقشة لعدة عقود مضت ولكنه الآن فقط أخذ في التحليل بسمى الحقيقة التقديرية (أو المرتبطة أو الافتراضية). المصطلح يشير إلى أي موقف يُعطي فيه المرء بطريقة اصطناعية خبرة تواجهه في بيئة معينة، على سبيل المثال: مُحاكاة الطيران - وهي ماكينة من شأنها أن تعطي قائد الطائرة خبرة الإقلاع والطيران بطائرة دون أن يكون مختبراً لمغادرة الأرض - وهو طراز من مولدات الحقيقة التقديرية. مثل هذه الماكينة (ولتحديد المسألة أكثر فهو الكمبيوتر الذي يديرها) يمكن برمجتها بخصائص وسمات الطائرة الحقيقة أو التخيلة وكل بيئة الطائرة مثل الجو والأشكال العام للمطارات يمكن أيضًا تحديثها في البرنامج. وأثناء إقلاع قائد الطائرة من مطار إلى آخر يمكن للمحاكى أن يتسبب في ظهور الصور الصحيحة عبر نافذة الطائرة، والطواب الشفهي والإحساس بزيادة السرعة وتقصصها، والقرارات الصحيحة التي تظهر على
الآلات... وهكذا يمكن أن يجسّد المؤثرات مثل الاضطرابات أو الفشل الميكانيكي، ويقترح مواصفات الحول الأمثل لإصلاح حالة الطائرة في مثل هذه المواقف. وهكذا يمكن للمحاكاة أن يعطي قائد الطائرة مستوى عريضًا من خبرة الطيار، ومن بينها بعض الخبرات التي لا يستطيعها الطيار الفعلي، إذ يمكنه أداء بعض ما يمكنه إضفاء الصعوبة والشدة على قوانين الفيزياء ذاتها كطياران عبر الجبال وبأسرع من سرعة الضوء وأيضًا بلا وقود على سبيل المثال.

وطالما نحن نُجِّب بينننا عبر حواسنا، فأي مولَّد للحقيقة التقديرية يجب أن يكون قادرًا على التأثير في هذه الحواس ليتجاوزها ويهمها على وظائفها الفعلية حتى تستطيع أن نمر بخبرة بيئة محددة بدلاً من البيئة الفعلية. لقد يبدو هذا وكأنه يبرز عبر صفحات كتاب "عالم جديد شجاع" له Huxley (†) من Brave New World، ولكن مسألة تقنية التحكم الاصطناعي في حواس الإنسان هي بخير.

كانت تتطور منذ آلاف السنين. كل تقنية الفن التمثيلي، وأبحاث المسافات الطويلة يمكن التفكير فيها على أنها نوع من تجاوز الوظائف الطبيعية للحواس. حتى صور الكهف السابقة في التاريخ العروق تعطي للمشاهد لها بعض من الخبرة في رؤية حيوانات لم تكون موجودة فعلًا هناك. اليوم يمكننا أن نقوم بذلك بشكل أكثر دقة، باستخدام الأفلام والتسجيلات الصوتية. وإن كانت ليست بالدقة الكافية لأن تكون البيئة المُقلدة لا يمكن التفرقة بينها وبين تلك البيئة التي صُممت كتحدياتها.

(†) كاتب إنجليزي وناقد فذ، تيميزت مؤلفاته بالرقي وسطع المفاهيم ونظرية المخاطرة. (كان حفيذاً لبيولوجي مهم، كان واثقًا من كتاب السيرة والرسائل الذين يشار إليهم بال النهائي). ورغم معاناته الطويلة من العم الجزئي الذي تسبّبته مع القراءة، فقد كانت له مؤلفات بارزة مثل "عالم جديد شجاع" 1932 و"السمو الروملي" 1941 و"الأدب والعلم" 1963 وأبيات البصة 1954 وغيرها. (الترجمة).
سوف أستخدم مصطلح "مولد الصور" لأطلقه على أي صورة للفضاء السماوي أو جهاز صوت عالى الجودة أو صورة لإحدى السحابات التي تجوب السماء عاليا. والتي يمكنها أن تولد إحساساً معيناً كمدخلات للمستخدم: صور محددة، أصوات، رموز أو نكهات، وهكذا. وكلها تحسب على أنها في ذات الإطار: "الصور" على سبيل المثال لكي تولد الصور الأصلية (كالروائح) للفنانين والتي نشرها عندما نفتح زجاجة الفانيليا بعد إحضارها من على رف التوابل.

كى نولد صورة (السمع) مثل الكونشيرتو رقم 20 للبيانو من وضع موسيار مالمو ونا نضع الأسطوانة المدمجة. التي تحتويها في جهاز صوت عالى الجودة. أي مولد للصور على هذا النحو هو تطبيق لنوع من مولد الحقيقة التقويمية، ولكن عادة ما يبحث بالصطلح للأحوال التي تشمل على تطبيق تفسير مجاني لحوار المستخدم، وعنصر جوهري للتفاعل (رد الفعل) بين المستخدم والكينونات التي تجري محاولاتها.

وفي هذه الأيام تسمع أشغال "الفيلات" التفاعل بين اللاعب وموضوعات اللعبة، إنما على مستوى صغير أو قليل من مدى حس المستخدم أو اللاعب. "البيئة" المستحضرة أو المنقطة تشمل على صور متاحة على شاشة صغيرة وجزء من الأصوات التي يسمعها المستخدم، ولكن فيديو الحقيقة التقويمية التي تحقق التسمية أكثر منها موجودة بالفعل. وعلى سبيل المثال فإن المستخدم يندفع خواجة تتضمن في مبناها سمعات رأس وشاشهتين تلفزيونيتين واحدة لكل عين، وربما قفازات وملاصق أخرى جميعها متصلة بالكرهية لتصبح مادة لؤلؤ الضغوط. وهناك أيضًا حساسيات تستطيع أن تجس أي حركة في جسم المستخدم خاصة في منطقة الرأس، والمعلومات عن ذلك يتم توفيرها عبر ميكرور من شانه أن يحسب ما الذي يجب أن يراه المستخدم أو يسمعه أو يحس به وكيف سيكون رد فعله على طريق إرسال...
إشارات صحيحة لولد الصور (شكل 5-1). وعندما ينظر المستخدم إلى اليمين أو اليسار فإن الصور في عمق كل من شاشتي التليفزيون، كما هو الشأى في البيئة الفعلية، سوف تعرض للمستخدم ما يمكن أن يراه يمين ويسار البيئة المتخيلة المحاكية لها. المستخدم يستطيع أن يصل إلى شيء محاك ويلتقطه وينحس به كما لو كان فعليًا لأن مؤثرات الفقاعات سوف تولد رد الفعل اللفيسي الصحيح للشيء في أي موضع أو اتجاه كان عليه.

(شكل 5-1)

الحقيقة التقديرية كما يتم إنجازها الآن

وفي الوقت الحالي فإن مبادرات الألعاب والسيارات هي الاستخدام الرئيسي للحقيقة التقديرية ولكن وفرة من التصورات الجديدة لمجالات استخدام أخرى تلوح في المستقبل القريب، فسوف يكون في القريب من العادي جداً أن ينشئ مهندس طرزاً مبديئًا لبناء حيث يستطيع العمل أن يدور حوله ليستطيع اختيار أي إصلاح أو تطويرات

162
يمكن إدخالها عليه قبل تأسيسه وذلك كوسيلة نسبية لتوفير الجهد. سوف يستطيع المسوقون التجول (وبالطبع الطياران) حول وداخل مراكز التسوق، دون أن يغادروا منازلهم، ولا مزايدة المسوقين الآخرين، أو الاستماع لموسيقى لا يرغبون في سماعها، ولا حتى بالضرورة يشعرون بأنهم وحدهم داخل هذه المراكز، لأن عددًا من المستخدمين يمكنهم أن يذهبوا للتسوق عبر الحقيقة التقريبية وكل منهم تكون له الصور ذاتها التي لدى المستخدمين الآخرين كما لو كانوا فعلاً في مراكز التسوق الفعلية، وذلك دون أن يضطر أي منهم للغادرة منزله. الاحتيالات والكونشنتات سوف تعقد بدون استلزمها مسارح أو قاعات استماع تقوم فيها أو عليها، وليس فقط سيوفر ذلك تكاليف المشاهدة وعناية الضيافة والانتقال إلى المكان وإنما أيضًا سيتيح لكل المشاهدين أن يجلسوا في المقاعد المريحة التي يفضلونها في نفس الوقت.

لو أن الأسقف بيركلي وسلطة الاتهام (التي حاكمت جاليليو) كانا يعلمان بالحقيقة التقديرية بما كانا سيسمكان بها كوسيلة ناجعة لإثبات خداع الحواس، ويشتسروا بها جدًا ضد التسبب العلمي. ماذا سيحدث لو أن طيار المحاكي أراد أن يختبر الطائر الذي استخدمه د. جونسون في الواقع الفعلي؟ ولو أن الطائرة المشابهة أو التخليلية وكل ما يحيط بها لا يوجد في الواقع الفعلي إلا أن لهم رد فعل تجاه الطيار كما لو كانوا حقيقيين. إن الطيار يستطيع أن يفتح الخانق (الماش) ويستمع إلى صوت المحرك (الموتور) وهو يزور كرد فعل لحركته، ويرى الطائرة عبر نافذتها وهي تحت فسيرة، ويشاهد تنبض ثبت ذوبان الغاز في الفضاء على الرغم أنه ليس هناك محرك على الإطلاق. ويمكن للطيار أن يمر بخبرة الطيران عبر عاصفة، ويستمع للرعد ويرى قطرات المطر وهي تصطدم بزجاج النوافذ دون أن يوجد أي من هذه الأشياء بالفعل. كل ما هو خارج قمرة الطيار هو فعليًا كمبيوتر، وبعض الروافع الهيدروليكية وشاشات تليفزيونية، وسماعات صوت، فضلاً عن حجرة بمقدة محطة جافة الجو ومجهزة جيدًا.
هل من شأن ذلك أن يقلل من صحة رفض د. جونسون للاناثة؟ لا. نفس المناقشة التي جرت بينه وبين بوزويل كان يمكنها أن تحدث داخل طائرة متخيلة. كان يمكن أن يقول: أنا أرفضها هكذا، بينما هو يفتح الخانق ويشرح كيف فعل تحرك الطائرة المتخيلة في حين ليس هناك محرك. والذي يقوم برذ الفعل على الإطلاق هو الكمبيوتر الذي يدور من خلاله برامج يمكنها أن يسبقه المحرك عند تشغيل خانق حركته. إلا أن هذه الحسابات تعتبر خارجية بالنسبة لعقل د. جونسون والتحكم في مفتاح الخانق برجة من التعقيد والاستقلالية كما في حالة الماكينة الفعلية بالضبط. ولذا فإنهم يتزاورون اختبار الحقيقة بشكل صحيح لأن هذه العمليات هي من قبيل العمليات الفيزيائية للكمبيوتر، والكمبيوتر ذاته ليس إلا شيئًا فيزيائيًا - وليس أقل بالمرة عن أي ماكينة فعلية ووهم. حقيقة أنها ليست ماكينة فعلية، لا علاقة لها بالجدل ضد الأنثاثة. على كل حال فليس سهلاً تعريف كل ما هو فعلي. ربما لم يكن مهماً في واقعة د. جونسون أن ما كان يبدو على أنه حجر هو في حقيقة حيوات ما يرتدي زياً يأخذ سمت الحجر، أو حتى لو كانت المسألة مجرد صور متطابقة أو قزمية لأي حقيقة. طالما أن لها جميعًا رد فعل على نحو ما له تعقيد واستقلاليته. كان د. جونسون سيكون محقًا أو متهي إلى أن السبب هو شيء، فعلي يقع خارجة وعلى ذلك فالحقيقة الفعلية لا تشتمل عليه وحده.

ومع ذلك فإن معاوقة أو مدى ملاءمة الحقيقة التقديرية تبدو غير مريحة لهؤلاء من الذين تستند رؤيتهم للعالم على العلم. فقط فكر فيما هو مولد الحقيقة التقديرية من وجهة نظر الفيزيائي. إنه بالطبع شيء فيزيائي تحكمه نفس القانونية التي تحكم سائر الأشياء. ولكنه يمكن أن يدعي أو يظهر بما هو غير ذلك. يمكنه أن يدعي أنه مختلف تمامًا عن أي شيء آخر، وأنه يخص لقوانين فيزيائية خاصة. والكثير من هذا أنه يمكنه أن يقوم بهذا الادعاء بطريقة معقدة ومستقلة. عندما يركب المستخدم بهدف اختبار فعليًا ما يزعمه وعما إذا كان هذا الشيء حقيقياً أم رافضًا، فإنه يصدر رد فعل كما لو
كان مثل الأشياء الأخرى غير الموجودة، وكما لو أن القوانين الزائفة كانت حقيقية وصادقة. لو أن لدينا مثل هذه الأشياء فقط لنتعلم منها الفيزياء، فإننا إذن لن نتعلم إلا القوانين الخاصة (أم أن ذلك لن يحدث؟ من الدهشة والفاجعة أن الأشياء لا تتحو هذا المنفي في خط مستقيم وسوف أعوذ لهذا السؤال في الفصل التالي، ولكن علينا أولًا أن نأخذ في اعتبارنا الحقيقة التقريبية بالحذر الواجب).

يزكر على وجه الساءة ما يبدو أن الأسس بركل كانت له وجهة نظر صحيحة بأن الحقيقة التقريبية هي من قبيل الحديث غير الملازم أو القاسي بالنظر للفترات البشرية - ذلك أن غير المواسة هذه لا بد أن تحترم من حدود القدرة البشرية المتصلة فيها والتي تضع حدًا على قدرتنا على فهم العالم الفيزيائي. إن طريقة أداء الحقيقة التقريبية تبدو أنها تقع في نفس المساحة أو المدى الفلسفي للهوام أو ريف التتابعات أو الصدف، التي من شأنها جميعها أن تظهر لنا الشيء على أنه حيقي بينما هي في الواقع تقودنا إلى متاهة. لقد رأينا كيف أن النظرية العلمية للعالم يمكنها أن تستضيف - وبالطبع تتوقع - وبدرجة عالية هذا النوع من الظواهر التي تقودنا للتغيير. وبالدرجة الأولى هي النظرية التي تستضيف قابلية البشر للخطأ هم ومصادرهم الخارجية أيضًا. ومع ذلك وبصفة أساسية فليس محرجًا بهذه الظواهر الخاذبة. إلا من قبل قيمة الفضول، أو عندما نتعلم منها لماذا قادتنا إلى التغيير، على أية حال فنحن نحاول تجنبها وأن نمضي قدماً بدونها. ولكن الحقيقة التقريبية ليست على هذا المستوى، أنها لا تشير إلى أن شكل حدود متصلة في البشر لفهم، بل على عكس ذلك فإن المتاح فيما هو لا محدودية تلك القدرة، وليس من الشذوذ اعتبار أنها متطابقة مع خواص أعضاء الجسم فيها، بل هي خاصية أساسية في التعدد على وجه الوجود، وحقيقة أن التعدد له هذه الخاصية - بعيدًا عن كونها عائشة صغيرًا للواقعية والعلم - هي من الأمور الضرورية لكل من الأمرين (القدرة البشرية من ناحية والتعدد من ناحية أخرى)، فهي الخاصية

165
التي تجعل العلم ممكنًا. إنها مما لا يمكن أن نمضي في طريقنا بدونها بل وعلى
العكس وبشكل حرفي لا يمكننا المضي بدونها.

لقد عرفت مولد الحقيقة التقديرية على أنه تلك الماكينات التي تعطي مستخدمها
خبرة البيئة الفعلية أو التخيلية (مثل التواجد داخل طائرة أو قيادتها) التي هي على ما
يبدو أنها بعيدة عن عقله. دعني أستدعى هذه الخبرات الخارجية التي تكتشف
اختلافاتها عند مقارنتها مع الخبرات الداخلية مثل التوتر الذي يصيب قائد الطائرة
حالاً يقوم بأول هبوط له بالطائرة وحده، أو المفاجأة التي تتعثر عند ظهور المفاجئ
لعاصفة رعدية صادرة عن السماء الزرقاء الصافية. مولد الحقيقة التقديرية يجعل
مستخدمه و بطريقة غير مباشرة يعيش التجربة الداخلية مثل معايشته تمامًا للتجربة
الخارجية. ولو أنه لا يمكن برجمته على تجربة داخلية محددة، فعلى سبيل المثال: قادر
الطائرة الذي يقودها مرتين في المكاي بطرقية خشنة، فهو في الناسبتين سيكون
قد تلقى تجربة خشنة، ولكنه على الأقل سيكون أقل مفاجأة أو اندماجًا في المرة الثانية
عندما تظهر له العاصفة الرعدية. بالطبع سيبدو رد فعله مختلفًا في المرة الثانية وهو ما
يقود إلى اختلاف أيضًا في تجربته الداخلية تجاه تلك العاصفة وهو ما يجعل توابع
التجربة الخارجية مختلفة بدورها. وعلى الرغم من أن المرء يمكنه أن يبرمج الآلة على
ظهور العاصفة في الوقت الذي يريد، فهو لا يستطيع أن يمتد بهذه البرمجة إلى
تغطية دفع المستخدم إلى الطرق التي يفكر بها لمواجهة المواقف.

يمكن للمرء أن يفكر أو يدرك أن تقنية الحقيقة التقديرية يمكنها أيضًا أن تقود
إلى تجارب داخلية محددة. القليل منها مثل الحالات المزاجية الناتجة عن بعض الأدوية
المخدرة والتي يمكن تسليطها اصطدمًا، ولا شك مستقبلاً أنه سيمكننا معاودة إنتاج هذا
النوع من الاصطدام. ولكن مولد التجارب الداخلية المحددة يجب - بصفة عامة - أن
يكون قادرًا على تجاوز الوظيفة العادية للعقل وأيضًا وظيفة الحواس. وبكلمات أخرى
فإنه سيجعل شخص آخر محل المستخدم. وهذا ما يضع هذه الماكينات في مستوى آخر

166
بالنسبة لوحدات الحقائق التقديرية، إنها تستلزم تقنية مختلفة وسوف تدفع بقضايا فلسفية مختلفة وهو أيضًا ما دفعني إلى استبعادها من تعريف وحدات الحقائق التقديرية.

ثمة نوع آخر من التجارب لا يمكن بالطبع اصطناع أدائها وهي تلك التي يستحلج حدوثها منطقيًا. لقد ذكرت أن الطيران عبر المحاكي يمكن أن ينشئ خبرة بطييران غير ممكن فيزيائيًا يخترقان الجبال. لكن لا شيء يمكن أن ينشئ تجربة تحليل الرقم 181 إلى عوامله الأولية لأن ذلك يستحلج منطقيًا فالرقم 181 من الأرقام الأولية (الاعتقاد بأن المرء يمكنه تحليل الرقم 181 هو من قبيل التجربة المكتبة منطقيًا، ولو أنها من النوع الداخلي، ولذا فيهي خارج مدى الحقيقة التقييدية). وواحدة أخرى من التجارب المستحيلة منطقيًا هي تجربة فائق الوعي. لأن المرء حين يفقد وعيه فهو بالتعريف نفسه لا يمر بأي خبرة على الإطلاق. عدم الخبرة بأي شيء يختلف تماماً عن خبرة فقد الوعي التام أو عزل الحواس لأن الأخبرين بالطبع هما من البيئات المكتبة فيزيائيًا.

باستبعاد التجارب المستحيلة منطقيًا، وكذا استبعاد التجارب الداخلية، فسنكون في مواجهة اليد الواسع للتجارب الخارجية المكتبة منطقيًا في البيئة الفيزيائية التي ربما تكون ممكنة فيزيائيًا أو ربما لا تكون كذلك (الجدول 5-1). الشيء الممكن فيزيائيًا هو الذي لا تحول دون قوانين الفيزياء. في هذا الكتاب سافترض أن قوانين الفيزياء تتضمن قاعدة غير معروفة لتحديد الحالة المبدئية أو البيانات (المعلومات) الإضافية التي من شأنها، من حيث المبدأ، أن تعطيها وصفًا كاملًا لتحديد الأكوان (وإلا كالفه هذه المعلومات عبارة عن مجموعة من الحقائق الجوهرية المتغيرة تفسيرها). وفي هذه الحالة فإن أي بيئة تكون ممكنة فيزيائيًا إذا وفقط إذا تواجدت في مكان ما خلال متعدد الأكوان (أي في كون آخر أو أكوان أخرى). وأي شيء يتعذر فيزيائيًا حين لا يكون له مكان عبر متعدد الأكوان.
كما عرفت إمكانية استعداد أو تقريبية قيام مولد الحقيقة التقديرية بعد المستخدم
بخبرة تجريبية لبيئة فعلية أو متخيلة بالقدر الذي يمكن برمجة المولد على أدائه. سؤالي
عن الحدود المطلقة للحقيقة التقديرية يمكن وضعه على النحو التالي: ما هي القيود، إذا
كان ثمة قيود، التي يمكن أن تفرضها قوانين الفيزياء على تكرازتي استعداد التجارب
عبر مولدات الحقيقة التقديرية؟

الحقيقة التقديرية دائمًا ما تحتوي على خلق انطباع حسي اصطناعي وتوالد
الصور، لذا دعنا نبدأ من هنا.

التجارب الخارجية الممكنة منطقيًا

<table>
<thead>
<tr>
<th>خبرات غير ممكنة منطقيًا</th>
<th>بيئة ممكنة فيزيائيًا</th>
</tr>
</thead>
<tbody>
<tr>
<td>بيئة غير ممكنة فيزيائيًا</td>
<td>تحليل عدد أولي إلى عوامله الأولية.</td>
</tr>
<tr>
<td>مثال: الطيران بسرع من سرعة الضوء.</td>
<td></td>
</tr>
<tr>
<td>خبرات خارجية</td>
<td>مثال: خبرة إدراك بقدرته على قيادة الطائرة.</td>
</tr>
<tr>
<td>مثال: خبرة إدراك بقدرته على قيادة الطائرة.</td>
<td></td>
</tr>
<tr>
<td>خبرات داخلية</td>
<td>مثال: عدم الوعي.</td>
</tr>
<tr>
<td>مثال: إدراك قدرة الإبصار.</td>
<td></td>
</tr>
</tbody>
</table>

(جدول 5-1) تصنيف الخبرات مع مثال لكل منها. تتمثل الحقيقة التقديرية بتوالي التجارب الخارجية
الممكنة فيزيائيًا (مجال الجدول في قمة اليسار)
ما هي القيود التي تفرضها قوانين الفيزياء على قابلية مولد الصور على خلق صور اصطناعية، يؤديها تفصيلاً ويدفع مداها الظاهر والحسى. ثمة طرق متعددة يمكن من خلالها أن يكون الأداء تفصيلياً في محاكاة لطائرات هذه الأيام يمكن صنعه باستخدام شاشات تسجيل متقدمة عالية المستوى، ولكن هل يمكن لطائرة فعلياً أن تؤدي على المستوى المتطلبات من التفاصيل والمستوى الكبير الذي يمكن أن تستوعبه حواس قائد؟ بالنسبة لحساسية السمع فقد تحقق بالفعل حد مطلق له مع أجهزة الاستشعار Hi-fi، وبالنسبة للرؤية فلا يمكن الوصول إلى حد أقصى أيضًا. ولكن ماذا عن الحواس الأخرى؟ هل من الواضح وجود إمكانية فيزيائية لإنشاء مصنع كيميائي لипوي العام إنتاج تركيبة معينة من الخواص الكيميائية للملايين الروائح يمكن المرء من ملاحظتها في اللحظة الواحدة؟ أو ماكينة عين إدخالها في فم النواة (من يحتف معه تناول الأطعمة ونكماتها المختلفة) يمكنها أن تتحرش تجمع ونسج أي طبق طعام ممكن؟ - أو لا تقول شيئاً عن خلق حالة الجوع أو العطش التي تعقب الوجبة، أو الرضا الفيزيائي (البدني) بعد الوجبة؟ (الجوع والعطش وآداب أخرى مثل توازن أو توتر العضلات من المفهوم على أنها خبرات داخلية، ولكنها خارجية بالنسبة للعقل وبالتالي فمن الممكن أن تكون داخل مدى الحقيقة التقريبية).

صعوبة صنع مثل هذه الآلات ربما تكون مسألة تقنية، ولكن ماذا عن: افترض أن قائد الطائرة في المحاكاة رغب في أن ترتفع طائرته رأسياً بسرعة شديدة ثم تقلق موتورها. الطائرة ستستمر في الصعود ارتفاعاً إلى أن تستبعد كمية الحركة إلى أعلى ثم تبدأ في السقوط بسرعة متزايدة، هذه الحركة بالكامل تسمى "السقوط الحر" سواء في صعودها بعد إغلاق الموتور أو في السقوطها بعد إجهادها لأنها في الحالتين تكون خاضعة في حركتها لسيطرة قوة الجاذبية وحدها. وعندما تكون في حالة السقوط الحر فإن شاغليها يكونون في حالة انعدام للوزن. ويمكنهم أن يسبحوا حول القمرة كما تسبب كائنات الفضاء في مدار، يستعيد الوزن فقط عندما تعود القوة التي تدفع
الطائرة لاحظ إلى العمل سواء أكان سبب هذه القوى الديناميكية الهوائية أو الأرض غير المتسمة (في الواقع تتحقق حالة السقوط الحر عندما تطير الطائرة بقوة محدثة على المسار المنحنى على شكل القطع المكافئ والذي كانت تنبغيه في غياب كل من قوة الموتور ومقاومة الهواء). السقوط الحر لطائرة يستخدم في تمرينات انعدام الوزن لرود الفضاء قبل أن يسافروا إلى الفضاء. الطائرة الفعالة يمكنها أن تكون في حالة سقوط حر لمدة دقيقتين أو أكثر لأن لديها عدة كيلو مترات للارتفاع والانخفاض. ولكن في الطيران المحاكي على الأرض يمكن أن يحدث الحظة لأن ما يستنده يجعله يظهر لأقصى مداه ثم بعد ذلك يسقط. الطيران المحاكي (على الأقل الموجود منه هذه الأيام) لا يمكن استخدامه في تدريبات انعدام الوزن لأن المرء يحتاج فيه لطائرة فعالة.

هل يستطيع المرء علاج هذا العيب في المحاكي الطائر بإعطائه القدرة على محاكاة السقوط الحر على الأرض (في هذه الحالة يمكن استخدامه في محاكاة مركبة فضاء؟ ليس ذلك سهلاً لأن قوانين الطبيعة لا تتيح ذلك، الفيزياء المعروفة لا تمدنا بأي طريقة، حتى من حيث البداية، غير السقوط الحر لإزالة تأثير الوزن. الطرق الوحيدة لوضع الطيران المحاكي في حالة سقوط حر بينما هو مستقر على الأرض، هو بوضع جسم ضخم وثقيل مثل كوكب آخر له نفس كتلة الأرض فوقه ليوقف مفعولاً. حتى ولو كان هذا ممكنًا (لا حظ هذا لنا لسننا مهتمين بإجراء تجربة فعالة، وإنما بتحديد ما تسمح به قوانين الفيزياء أو ما لا تسمح به) فإن طائرة فعالة يمكنها أن تنتج تغييرات معقدة و المملوسة في مقدار واتجاه وزن شاغليها، وذلك من خلال المناورة أو عبر تشغيل إيقاف الموتور. محاكاة هذه التغييرات، فلا بد من تحريك الجسم الثقيل بنفس الشكل، وكما يبدو متوقعًا فإن سرعة الضوء (إذا لم يكن أمر آخر) سوف تضع حدًا مطلقًا على مدى سرعة إمكان حدوث ذلك.

ومع ذلك فلكل تجاكر سقوطًا حرامًا فلا يتوجب على الطائرة المحاكي أن تمدنا بانعدام الوزن فعلي، فقط تجربة انعدام الوزن وبعض التقنيات التي تقرب التجربة من
الوضع الفعلي، مثلًا يتميز رواد الفضاء تحت الماء، وهم يرتدون سترات فضاء بحيث يكون وزن هذه السترات صغيرًا بالنسبة للكابينة الطفولة. وتقنية أخرى تمثل في تزويد رائد الفضاء بأجهزة يحملها معه في الفضاء وهي مضخة كيميائية يسيطر على مشابهة انعدام الوزن، ولكن هذه الوسائل تعتبر بسيطة والإحساس الذي تقدمه من الصعب أن تخطئ الفرق بينه وبين الإحساس الفعلي، هذا إن وُجد فرق بينهما. الرهيب وبطريقته لا يمكن تجنبها مدعوم بقوة على جلده لا يستطيع الإفلاس من الإحساس بها. وبالإضافة إلى ذلك فإن الإحساس النمطي بالسقوط والذي يحدث عبر الحس في عضو الأذن الداخلية لا يمكن للمحاكاة أن تؤديه، المرء قد يتذكر الوظائف أكثر تقدمًا: مثل استخدام سواحل مسائية تكذب المدرب (تُenario المتزامن) متذبذبة الزوجة، أو أدوات تؤدي إلى الشعور بالسقوط، ولكن هل يمكن للشعور المحاكي أن يكون بالثقة الكاملة في طائرة محاكية قابعة على الأرض؟ إذا لم يكن، فإن حُدود الإحساسية على الدقة فيما يتعلق بمئات المحاكاة خبرة الطيران بشكل اصطناعي، وتفسر بين طائرة فعلية وأخرى محاكية على قائد الطائرة أن يجعلها في حالة سقوط حر في مسار منحنى لبراءة لحقن حالة انعدام الوزن من عدمه.

بعد البدء في تحديد المشكلة بشكل عام، لتجاوز الوظيفة العالية لأعضاء الحس لا بد أن نرسل لها صورًا تتضمن تلك التي تتجه عن البيئة التي يتم محاكاتها. لا بد أن نفترض ونتخيل الصور الناجمة عن البيئة الفعلية، ولكن هذه الجيل هو من قبيل العمليات الفيزيائية، ولا يمكن تحقيقها إلا عبر العمليات المتاحة فيزيائيًا. الضوء والصوت يمكن تحليلهما وتفتيحهما ومن ثم يتاح استبدالهما بسهوية بأسواء وأصوات مساوية لها. ولكن، وكما سبق أن قلت، ليس الأمر كذلك بالنسبة للجاذبية لأن قوانين الفيزياء تمنع ذلك. مثال انعدام الوزن في طائرة محاكية ليست فعالية يبدو أنه ينتهي قوانين الفيزياء.
ولكن لا، ليس كذلك انعدام الوزن وسائر الإحساسات الأخرى يمكن تأديتها
اصطناعيًا، ففي نهاية المطاف سيصبح علينا تجاهل كل أعضاء الحس جميعًا ومحاكاة
الأعصاب الموصلة بينها وبين المخ مباشرة.

وهكذا فنحن لن نحتاج إلى مصانع ذات أغراض كيماوية أو إلى ماكينة خاصة
تقدم جاذبية مصنوعة، حين نفهم كيف نخلل الأعضاء بدرجة كافية لتحدث الشفرة
التي ترسل من خلالها الإشارات حين تستكشف الروائح، فإن كمبيوتر موصول بطريقة
مناسبة للعصب المرتبط بهذه العملية يمكن أن يرسل ذات الإشارة للمخ، ليس إذن على
المخ لعبور تجربة الروائح. أن يستعين بآية أدوية أو كان هناك وجود مثل هذه الأدوية.
وبالنسبة لمستطيع المخ أن يعبر تجربة انعدام الوزن الموثق بها حتى في ظروف الجاذبية
العادية، وبالطبع لن تكون ثمة حاجة لتلفظين أو سماعات صوت أيضاً.

وهكذا فإن قوانين الفيزياء لا تضع أي حدود على مدى وصحة مولّد الصور. ليس
هناك شعور ممكن أو حتى مجموعة من المشاعر لدى الإنسان قدرة الإحساس بها لا
يمكن - من حيث المبدأ - أن تتفتّت أو استحضارها اصطناعيًا. وسبياتي اليوم - إزاء
ظاهرة تعميم وعمومية الشرائح السينمائية (الأفلام) الذي سيكون فيه أفلام لكل
الأشخاص كما قال ألودس هوكسلي. سوف يتمكن المرء بالإحساس بقارب تحت قدر، وأي يسمع صوت الأمواج ويشم
رائحة البحر، وأن يرى تقلب ألوان الغروب في الأفق ويسخّر بالربيع وهي تعبث بشعور
رأسه (إذا كان لديه شعر) وذلك كله دون أن يكون موضعاً لمغادرة الأرض الجافة وأن
يغامر بالخروج من منزله. وسبياتي الأحاسيس تلك سوف تسير له استكشف أحاسيس
لم يسبق له تجربتها ولا يتنوق حدوثها مستقبلاً، كما سيستميتها توفير ما يعادل
الموسيقى: تركيب تجريدي من ألحان يستشعرها فتجعل المشاهد والصور أكثر
لطفاً.
هذه الإمكانية للمشاعر الأصطناعية التي يسهل تمامًا أنها تحقق أمرًا محققًا الآن وللأي، أو بناء ماكينة واحدة يمكنها استحضار الأحاسيس وقت طلبها بما يعني أمرًا آخر استثنائيًا وهو العالية. ماكينة المشاعر بهذه الإمكانية سوف تصبح مولود صور عالي.

وهذه الإمكانية (ماكينة المشاعر العالية هذه) هي التي ستجمهرا على تغيير نظرتها إلى السؤال عن الحدود المطلقة لتقنية المشاعر. حاليًا تكمن تطورات هذه التقنية في ابتكار وتصحيح للطرق المتغيرة في مشابهة ومحاكاة أعضاء الحس. ولكن هذا المستوى من المشاكل سوف يختفي في اللاحظة التي تطور فيها "الشفرة" التي يتعامل بها أعضاء الحس، وأن تطور تقنية رقيقة وشديدة لمحاكاة أعصابنا. عندما نولد إشارات عصبية اصطناعية بشكل صحيح يكفي لدعم التفترة بين الإشارات الأصطناعية المرسلة للمخ وبين الإشارات التي قد تبعتها له أعضاء الحس عبر الأعصاب، وليس الأمر بعيدًا عن التتنازل وقريبًا ما سيصبح أمرًا مناسبًا ومالوفًا. عند هذه النقطة وبعد استقرارها لفترة سوف ينحصر التحدي ليس في توليد أو استحضار المشاعر والاحاسيس وإنما أي منها هو الذي سنستحضره ونجذب من صحته. وفي مجال محدود في هذا الشأن يتم ذلك اليوم، كمشكلة كيف نعيد إصدار أعلًا جيدة من الصوت والتي أصبحت غاية ما يكون منحل من خلال الأسواط عالمية والجيل الجديد من أجهزة الصوت المختلفة. قريبًا سوف لا يكون هناك أجهزة ذات جودة عالية تثير الحمس.

التوقيد لإنتاج الصوت لن يكون مهماً بعده تسحيح الإنتاج بقدر ما سيدور الأمر روتينيًا حول تسجيل ما يميزه البشر، وما هي الأصوات الواجب تسجيلها في المقام الأول.

في أثناء دوران ماكينة توليد الصور لعرض مناظر مسجلة من واقع الحياة، ف 😀 صححتها سيكون مُعرفًا من خلال مدى قرب الصور المعرضة للذكر التي يمكن أن يدركها المرء فيما لو كان في الواقع الفعلي الأصلي. وعلى سبيل التعريف أكثر إذا كان
المولد يؤدي اصطلاحياً صوراً مصممة مثل الكارتون (الصور المتحركة)، أو مقطوعة موسيقية مأخوذة من نص تأليف مكتوب، فصحة أي منهما هو قرب الصور المُؤداة لتلك المقصودة في الأصل. إذا كان الأداء مقتراً من حدود عدم تمييز المستخدم بينه وبين الأصل المستهدف، هنا يمكن أن نصفها بأنها صحيحة بدرجة عالية. (وهكذا فإن ما يبدو صحيحاً عند مستخدم ما، قد يكون أقل صحة عند مستخدم آخر لديه حسن أكثر حدّة أو لديه حس إضافي عن غيره).

لا يشمل، بالطبع، المولد العالمي للصور على كل الصور السجلة المكتبة، ما يجعله عالمياً هو إمكانيةه على تسجيل أي صورة ممكنة تستطيع استدعاء أي إحساس لدى المستخدم. مع مولد أحاسيس سمعي عالمي (نظام سمعي عالمي الجودة بلا حدود) فإن التسجيل يمكن أن يأخذ شكل أسطوانات مدمجة. ولكي نؤكد قدرة جهاز السمع ذاك على إبقاء الإحساس لدى المستخدم بأطول مدة، نحتاج إلى قدرة الاسطوانات المدمجة على التخزين فلا بد أن نسمهم بالآية إمكانية تغذية أي عدد من الأسطوانات بشكل متعاقب داخل الماكينة. هذا الشرط لا بد أن يشمل عليه كل مولد صور لأنه - وبصراحة - لا يمكن أن نطلق صفة العالية على أي مولد صور ما لم يحتوي على آلية لعرض ما هو مسجل دون حدود لاستمرارية العرض. والأكثر من ذلك أن الآلة عندما تقوم بالعرض لمدة طويلة فإنها تستحث لصيانة وإلا ستستجيب الصور بالبهتان أو تلتقي إحداهما بالأخرى، هذا الاعتبار وغيره من الاعتبارات المانحة تصل جميعها بحقيقة أن اعتبار أي موضوع فيزيائي منفصلًا عن سائر الكون، هو اعتبار تقريبي أو تقديري. أي مولد صور عالمي الجودة يعد كذلك (عالمياً) إلى حد معين في المفهوم الخارجي الذي يفترض فيه أن نمده بإشياء مثل: مولد معين للطاقة وألية تبريد وصيانة من وقت لآخر. لأن أي آلية تضيف إليها مثل هذه الاحتياجات لا يستبعدها من كونها آلية عالمية منفردة، هذا بالإضافة إلى أن قوائم الفيزياء لا تمنع الاستجابة لهذه الاحتياجات، والاستجابة لها لا تستدعي بالضرورة تغييرًا في تصميم الآلة.
وكما سبق أن ذكرت فإن مولد الصور ليس إلا مكونًا واحدًا من الحقيقة التقديرية: فهناك أيضًا كل عناصر التفاعلات الأم. من الممكن الاعتقاد بأن مولد الحقيقة التقديرية هو مولد صور التي تحدثت صورًا بشكل كامل وإنما تعتبر جزئيًا على ما يختار المستخدم أن يؤديه المولد.

هو لا يشمل تتابع صور محددة من قبل كما هو الحال في السينما أو سينما المشاعر. وإنما يؤلف بين مجموعة من الصور أثناء عرضها بحيث تضمن تيارًا من المعلومات حول ما يفعل المستخدم. مولدات الحقيقة التقديرية في أيامنا هذه، على سبيل المثال، تتبع وضعية رأس المستخدم، وتستخدم حساسات حركة كما يظهر في (الشكل 5-1)، وبصفة مطلقة سوف ينتمون كل ما يفعله المستخدم ويمكنه أن يؤثر على المظهر الموضوعي للبيئة الجارية محاذاتها. جسد المستخدم قد يكون متوسطًا في البيئة، وما أن الجسم يعتبر موضوعًا خارجيًا عن الفعل، فإن تحديد بيئة الحقيقة التقديرية ربما تشمل وعلى نحو صحيح كل ما يطلبه ما يبدو أن المستخدم قد أحله مجدداً محل خاصية أخرى.

العقل البشري يؤثر على الجسد وعلى البيئة الخارجية من خلال الإشارات التي تطلقها الأعصاب. ولذلك فإن مولد الحقيقة التقديرية يستطيع - من حيث المبدأ - أن يحصل على كل المعلومات التي تحتاجها وما يفعله المستخدم وذلك من خلال فهم وإدراك الإشارات المرسلة من أعصاب المستخدم إلى عقله. هذه الإشارات التي كانت ستذهب إلى جسد المستخدم يمكن تقلبها إلى كمبيوتر وحل شفرتها بحيث يحدث بالضبط كيف تتحرك المستخدم. الإشارات المرسلة إلى المخ هي نفسها التي كان جسم المستخدم سيبعثها فيما لو كان في البيئة الفعلية. وإذا استبعدت البيئة المحددة نوعًا ما من الشعور فإن الجسم المحاكي يمكن أن يختلف رد فعله عن رد الفعل الفعلي كتمكنه من التضال للبقاء في بيئة كان يمكن لها أن تسبب في مقتل الجسد أو كمحاكاة قصور أداء الجسد.
من المفضل أن أعرف هنا بأنه من المحتمل أن القول بأن العقل البشري يتفاعل مع العالم الخارجي فقط بإصدار واستقبال نبضات العصب يعتبر قولًا مثالياً إلى درجة كبيرة. ثمة رسائل كيميائية تسير في الاتجاهين معا. افترض أنه من حيث البداية يمكن لهذه الرسائل أن تفهم وأن تصبح قابلة لإعادة بغيرها في نقطة ما بين الدماغ وباقي الجسم. هذا أن يبقى المستخدم بلا حركة، ومتصلا بالكمبيوتر، ولديه خبرة تفاعل التام مع عالم محاكاة متاخرًا به عاشقا فيه. (الشكل 5-2) يوضح مما أنا بصدق تخيله بالصدفة، ولو أن مثل هذه التقنية تظل في إطار المستقبل، إلا أن التفكير فيها أقدم بكثير من وقت ظهور نظرية الحوسبة. في بؤس القرن السابع عشر أخذ ديكارت في الاعتبار بالفعل فلسفة مناورات الحس كمحاد حارس للمرء وهذا بالضرورة نوع من الحقيقة التقديرية الموصحة ب(الشكل 5-2) مع استبدال الكمبيوتر بعقل له طبيعة تفوق العقل المألوف.

من خلال المناقشة الجارية يبدو أن مولد الحقيقة التقديرية يجب أن يشمل على الأقل الثلاث مكونات الرئيسية التالية:

- مجموعة من أجهزة الإحساس (التي يمكنها أن تعمل كمجسّات لنبض الأعصاب) لكي ترصد ما يفعله المستخدم.
- مجموعة مولدات الصور (التي يمكن أن تكون كمحاكائيات أعصاب ولها نفس الحبل والوسائل).
- كمبيوتر يقود العملية.

وكان تركيزى على الأطرتين الأولتين، أجهزة الإحساس ومولدات الصور، وذلك لأنه في حالتهما البدائية الحالية، فإن أبحاث الحقيقة التقديرية لم تزال غير مشغولة مسبقا.
الحقيقة التقديمية. كما يتصور أن يتم إنجازها في المستقبل

بمولدات الصور. ولكن لو وجدنا نظرة إلى الوراء نحو حدود التقنية آنذاك سنرى أن مولد الصور كان مزودًا بمجرد وسيلة وصل (كابل للربط) بين المستخدم ومولد الحقيقة التقديمية الفعلي الذي هو الكمبيوتر. لأن المحتويات المرتبطة لبيئة محددة تتم عبر الكمبيوتر ولا يمكن أن يكون أيضًا حقيقة وعالية، وربط المحتوى الذي يُسمى مصطلحًا "الحقيقة التقديمية". وكابل الربط الذي لا يشترك مع البيئة الملتقطة بمعانة المستخدم بوجبة معينة مُختارة بمعرفة المستخدم، دائماً كما ندرك بشكل طبيعي أن أعضاءنا هي جزء من بيئتنا. مولدات الحقيقة التقديمية في المستقبل سيكون من الأحسن وصفها على أنها تحوي مكونًا رئيسيًا: الكمبيوتر مزودًا ببعض الإمكانات والقدرات العادية.

أنا لا أهدف إلى تبسيط المشاكل العملية المتضمنة في اعتراض طريق إشارات الأعصاب ما بين إصدارها أو استقبالها من العقل البشري، ولا تعقب الشفرات المتصلة بالموضوع. ولكن هذه مجموعة من المشاكل سوف يجري حلها دفعة واحدة فقط. وعندما سوف يكون التركيز في الحقيقة التقديمية مرة واحدة وأخيراً على الكمبيوتر، ومشكلة كيفية برمجته لكي يؤدي ما يحكي البيئات المتكونة. البيئة التي يمكننا محاكاتها، لن يتوقف فيها الأمر على أي حساسات تلزمنا أو أي مولدات

177
صور يمكن بناؤها، ولكن أي البيئة يمكن تحديدها. تحديد بيئة ما سوف يعني إمداد البرنامج الصحيح لكمبيوتر الذي يمثل بالفعل قلب مولد الحقيقة التقديرية.

مفهوم الأداء الصحيح ليس على خط مستقيم مع الحقيقة التقديرية كما هو بالنسبة لمواد الصور بسبب طبيعة التفاعل في الحقيقة التقديرية. وكما قلت فإن آفة مولد الصور هي مقياس لدى قرب الصور المقصودة إلى الصور المقصودة. ولكن بالنسبة للحقيقة التقديرية فليس ثمة صور معينة مقصودة أو مستهدفة. كل المقصود هو بيئة معينة يراد للمستخدم أن يمر بخبرتها. تحديد بيئة الحقيقة التقديرية لا يعني تحديد ما الذي سيجري المستخدم من خبرة، وأكثر تحديداً كيف سيكون رد فعل البيئة إزاء كل حركات المستخدم المكثفة على سبيل المثال في حالة مباراة تنس فانر فاستтив أن يحدد مظهر اللعب والجو، وتصريف المشاهدين، وكيف يلعب الخصم. ولكن المرء لا يستطيع أن يحدث كيف ستجري المباراة: هذا يتوقف على مجرد القرارات التي سيتخذه الباحث أثناء اللعب. كل مجموعة من القرارات سوف تنتهي إلى استجابات مختلفة عن البيئة التي تم تجاهلها وبالتالي إلى مباراة تنس مختلفة.

عدد كبير جداً من مباريات التنس يمكن تأديتها في نفس البيئة الواحدة، ومن خلال برنامج واحد – مثلًا: محاكاة اللعب الرئيسي في كومبيليون – من وجهة نظر اللاعب – وافترض أن اللاعب جد حذر بمعنى أنه في كل ثانية من المباراة ينتقل بالتبادل بين طريقتين لاستقبال الكرة – من ناحية اللاعب – حينئذ سوف يصبح هناك بعد ثانتين ثمة أربعة مباريات ممكنة، وبعد ثلاث ثوان ثمة ثمانية مباريات ممكنة ...

وهكذا. وبعد حوالي أربعة دقائق سيصبح عدد المباريات المختلفة عن بعضها البعض بما يجاوز عدد النرات في الكون، سيستمر العدد في الزيادة بشكل أساسي: والبرنامج الذي يمكنه أن يؤدي ذلك بشكل صحيح من خلال بيئة واحدة لا بد أن يكون قادرًا على الاستجابة في أي واحدة من تلك الآلاف المؤلفة ويمكن إدراكه وربطه مختلفة، معتمداً على كيف سيختاره اللاعب. وإذا استجاب برامجين بنفس الشكل لكل حركة ممكنة
من جانب المستخدم، فإنهم يكونان منتجين لبيئة، أما إذا استجابا بطريقة مختلفة لكل
حركة ممكنة فسوف يكونان مؤدينين لبيئات مختلفة.

وهذا يُبقى الحال حتى ولو لم يصدر المستخدم الحركة التي تظهر الاختلاف.
البيئة التي يؤديها البرنامج لوع مميز من المستخدمين، وعبر كابل ربط معين يمثل
الوجهة النطاقية للبرنامج، التي تعتمد على ما إذا كان البرنامج قد تم تنفيذه. البيئة
المؤداة تكون صحيحة بقدر ما تستجيب به بنفس الطريقة التي تفعل بها البيئة المقصودة
لكل حركة ممكنة ياتى بها المستخدم. ذلك لأن صحته لا تعتمد فقط على ما لا يملأه
المستخدم من خبرات الفعل، بل ما يمكن أن يملأه فيما لو اختار التصرف بطريقة
مختلفة أثناء الأداء. قد يبدو هذا متناقضًا، ولكن هناك سبب أن قلت، إنها نتيجة تابعة
 تقف على خط مستقيم مع حقيقة أن الحقيقة التقديرية تكون متقلبة تماماً بتماثل مثل
الحقيقة ذاتها.

وهذا يبرز فرقًا مهمًا بين مولد الصور وبين مولد الحقيقة التقديرية، صحة الصور
التي يؤديها المولد يمكن - من حيث المبدأ - قياسها وأن يشهد بها بمعرفة المستخدم
أما صحة ما تؤديه الحقيقة التقديرية لا يمكنها أن تكون كذلك. وعلى سبيل التالى، إذا
كانت من محبة الموسيقى وعلى دراية كافية بإحدى القطاعات الموسيقية فإنك تستطيع
سماعها وتؤكد أنها قد تم تأديتها بشكل متقن، من حيث المبدأ، حتى آخر جملة
موسيقية، أما إذا كنت من مشجعى لعبة التنس الذين يعرفون جيدًا مركز ويمبلدون
للعب فإنك لن تستطيع التأكد من أن الأداء المرزوم هو على نفس درجة الصحة، حتى
لو كنت حراً في استكشاف أو تحري صحة المركز المحاكي لأي مدة تختارها، أو بأي
طريقة لاختباره حسبًا (كان تركه مثلًا)، ومهمة كان لديك من محاور للمقارنة مع المركز
رياضي الفعلي، لن يمكنك أبداً أن تشهد بأن البرنامج قد حاكي بالفعل البيئة أو
الموقع الأصلي. لأنك لن تعرف أبداً ما الذي سيفتح لم أنك أطلت مدة الاستكشاف أو
نظرت من فوق كنتفيك في اللحظة المناسبة. ربما لو جلست في كرسي “الحكم”
وصرخت: "خطأ، ربما في هذه اللحظة تم فوق الحشائش غراصة أو لم ينسف لوحه النتائج المباراة.

من الناحية الأخرى، فإنك إن وجدت حتى اختلافًا واحدًا بين البيئة المقصودة وذلك المحاكاة فيمكن أن تحكم على الموشان بأن المحاكاة غير صحيحة. ما لم تكون البيئة المحاكاة لأي تحليلات لم تكن التنبؤ بها وعلى نحو عمدي، فجعلة الرواية مثلًا مصممة لكي تكون مما لا ينبغي أن يكون. إذا صنعنا فيلمًا كيف تدور العجلة في كازينو أو أحد أنواع القمار فإنه يمكن القول بأن هذا الفيلم دقيق أو صحيح إذا ما كانت الأرقام التي تظهر على الشاشة في الفيلم هي نفس الأرقام التي كانت قائمة وقت تصوير الفيلم. ولفيلم في كل مرة يدور سوف يظهر لنا نفس الأرقام: فهو إذن مثناً به بالكامل. وهذا فإن فلم صورية صحيحه لبيئة لا يمكن التنبؤ بها لا بد أن تكون مما يمكن التنبؤ بها. ولكن كيف تكون صورية في حالة الحقيقة التقديرية لجعلة رواية؟ كما سبق فإن المستخدم لا بد أن لا يجدها مختلفة من الناحية الإدراكية عن الأصلية. ولكن هذا يتضمن أن الشيء المحاكي ينبغي أن يتصرف كما الأصلي: إذا فعل، سواء استخدم الأصل في التنبؤ بتصريفات الآخرين أو كان مما لا يمكن التنبؤ به، أو يجب أن يتصرف بنفس الطريقة في كل مرة يجرى فيها تدويرها. عجلة الرواية المحاكية لكي تكون المحاكاة صحيحة فلا بد لها أن تكون مستخدمة للقمار كما هي الأصلية. وبالتالي ستكون مثلها مما لا يمكن التنبؤ بها كما يجب أن تكون عادلة بمعنى أن تجاه الأرقام فيها بطريقة عشوائية ومن خلال فرص متساوية.

كيف نميز البيئة غير القابلة للتنبؤ بها. وكيف نؤكد أن الأرقام العشوائية المزعومة قد تم توزيعها بطريقة عادلة؟ علينا مراجعة أن العجلة المحاكية تتطابق مع مواصفاتها بنفس الطريقة التي تراجع بها عجلة الرواية الأصلية من خلال دفعها وتجربة دورانها لنرى هل تستجيب كما هو معلن عنها. كما نجري عدة ملاحظات مشابهة (بأي عدد
كبيرة كانت هذه الملاحظات) كما نجري اختبارات إحصائية على مخرجاتها. ومرة ثانية
فإنها لا يمكننا أن نشهد بأن العجلة المحاكية صحيحة أو حتى مجرد احتمال صحتها
مهما كان عدد الاختبارات التي أجريناها. لأنها مهما كانت عشوائية بروز الأرقام فربما
مع ذلك تقع هذه الأرقام في نموذج سري يمكنه أن يسمح للمستخدم أن يعرف كيف
ينتبأ به. أو ربما لو استطعنا نصوت عالم عن تاريخ موقعة ووترلو
الذين سيظهران بعد ذلك وبطريقة ثابتة وغير متفرقة هما 18, 16.

وعلى الناحية الأخرى فإن النتيجة التي سنظهر في المرحلة التالية إذا جاء غير
عادلة فلن نستطيع أن نتأكد أنها كذلك، ولكننا قد نكون أكثر قابلية للقول بأن المحاكاة
ربما لم تكون صحيحة. فعلى سبيل المثال لو أن الرقم صفر ظهر في عشر دورات
متساوية لجعة الريولات المحاكية، لا بد أن نستخلص أنه ربما لا تكون لدينا محاكاة
جديدة لجعة روليت عادلة.

عندما ناقشنا مولدات الصور قلت أن صحة الصورة المحاكية تعتمد على حدة
حواس المستخدم ومسامعته الأخرى ولن مع الحقيقة التقديمية ستكون هذه أقل وأخر
مشكلاتنا. مولد للحقيقة التقديمية الذي سيحاكى بيئة معينة بشكل صحيح والمنشأ من
أجل البشر لن يفعل ذلك من أجل الأسماك أو لكيلاس من خارج الأرض. لكي تحاكي
بيئة معينة لسنستخدم مزود بعدة أنواع من أعضاء الحس، فإن مولد الحقيقة التقديمية
لا بد أن يكون متوازيا مع أعضاء الحس هذه، ولا بد أن يبرقع الكمبيوتر الخاص به
على أساس سمات تلك الأعضاء. ولو أن الإصلاحيات التي يجب أن تجري لكي
تستضيف نوع بشرى من المستخدمين قد أصبحت نهائية ولم يبق سوى تشغيلها في
إحدى المرات. إنها تهم بما أسميتها: إنشاء كابل ربط جديد. وكما نأخذ في الاعتبار
البيانات التي تتميز بدرجة عالية من التعقيد، فإن هدف محاكاة تلك البيانات لنوع معين
من المستخدمين سوف يكون محكماً بكتابة البرامج لحوسية ما الذي ستقطع تلك
البيانات، تحدد النوع البشري المستهدف بالغرض، درجة التعقيد المحددة، كل ذلك

181
سيكون جديداً بالإحساس عند المقارنة. هذه المناقشة هي عن الحدود القصوى للحقيقية التقديرية، لقد نحن نأخذ في اعتبارنا درجة الصحة التحكمية وطول وتعقيد المحاكاة، وهو ما يعني معياني للقول: بمحاكاة بيئة معينة دون تحديد من الذي سيتم المحاكاة لصالحه.

وقد رأينا أن هناك فكرة مُعرفة جيدًا عن صحة المحاكاة في الحقيقة التقديرية: وهي دقة في التقارب ومدى الإدراك بين البيئة المقصودة وقريبتها المحاكية لها. ولكن هذاقرب لا بد أن يكون كذلك لكل طريقة يمكن أن يترصده بها المستخدم، ولهذا فلا يهم مدى قوة ملاحظة المارس لخبرة بيئة محاكية، لأن لمنكم الحكم بأنها صحيحة أو حتى ربما صحيحة. ولكن الخبرة ذاتها يمكنها أحياناً أن تظهر المحاكاة كأنها غير صحيحة أو غير دقيقة أو أنها ربما كذلك.

هذه المناقشة عن الصحة أو دقة المحاكاة في الحقيقة التقديرية تعكس العلاقة بين النظرية وبين التجربة في العلم. هنا أيضًا من الممكن أن تؤكد تجريبيًا أن نظرية ما هي من الزيف يمكن ولكن ليس من الممكن الحكم النهائى بأنها صادقة. وهنا أيضًا فإنه من قبائل النظرية القليلة التبصر للعلم أن كل ما فيه هو التنبؤ بانخفاضات حواسنا، النظرية الصحية تتحصل في أن بينما تلعب انطباعات حساسًا دورًا، فإن العلم هو فهم الحقيقة الكلية عبر تجربة أصغر جزء من هذه الحقيقة.

البرنامج في مولد الحقيقة التقديرية لا بد أن يشمل على نظرية عامة للتنبؤ بسلوك البيئة التي سيتم محاكاتها، أما المكونات الأخرى فهي تتعلق ببعض أفعال المستخدم، بطريقة تشفير وحلل هذه الشفرة التي تتضمن قائمة الاحساسات والتي هي كما قلت وظائف عادية. هذا إذا ما كانت البيئة ممكنة فنيًا، فبالمحاكاة بالضرورة تكون مكافئة لقواعد التنبؤ بمخرجات كل تجربة يمكن ممارستها في هذه البيئة. وبسبب الطريقة التي بَنت بها المعرفة العلمية فإنه يمكن اكتشاف المزيد من
قواعد التنبؤ الصحيحة عبر نظريات تفسير أجود. وعلى هذا تكون محاكاة بيئة ممكنة فيزيائيًا معتمدة على فهم فيزيائاتها.

الحديث أيضًا صحيح حين نقول: أن اكتشاف فيزياء بيئة ما يعتمد على إقامة حقيقة تقديرية محاكاة لها. المرء عادة ما يتحدث عن نظريات علمية تصف فقط وتبني موضوعات الفيزياء. وعملياتها، ولكن لا تحاكيهم، على سبيل المثال فإن كسوف الشمس (أو خسوف القمر) يمكن أن يطيح تفسيره في كتاب الكومبيوتر يمكن برمجته بفائدة وقوانين الفيزياء للتنبؤ بهذا الكسوف ويمكن أيضًا طبع وصف له من خلاله. ولكن تذكير ذلك ومحاكاته يتطلب مزيد من البرمجة ومزيد من الهدار وير. ومع ذلك فالامر كله حاضر في أنفسنا: الكلمات والأرقام التي تطبعها الكومبيوتر في مجال وصف الكسوف لم تتم إلا لأن البعض يفهم ويعرف تلك الرموز. ذلك أن هذه الرموز تبرز في ذهن القارئ ما يشبه التنبؤ بتأثير الكسوف عند مواجهته، وربما عكس ما يمكن أن يظهر عليه اختبار هذا التأثير، والأكثر من ذلك: التشابه الذي يبرز التفاعل مع الظاهرة، المرء يمكن أن يلاحظ الكسوف بطرق متعددة: بالعين المجردة، أو بالتصوير بالفوتوغرافية أو باستخدام آلات علمية متنوعة، ومن بعض المواضع على الأرض سوف يرى المرء كسوفًا كليًا للشمس، ومن مواضع أخرى سيرى كسوفًا جزئيًا، وفوق بعض أخر لن يرى أي كسوف على الإطلاق. وفي أي منها جميعًا سيرى الملاحظ صورًا تختلف عن الأخرى، التي يمكن التنبؤ بها عبر النظرية، الذي يؤدي الكومبيوتر إلى إبرازه في ذهن القارئ ليس مجرد صورة واحدة أو صورة تابعة لها، ولكن منهج كامل لإنشاء عدة صور مختلفة تتواصل جميعًا مع الطرق المتعددة التي يسلكها القاري أو المشاهد في تأملاته لتكوين ملاحظاته. وكذلك أخيرًا فإنها الحقيقة التقديرية التي تتأكي الواقع. وهذا بالمعنى الواسع الذي يأخذ في اعتباره العمليات التي تجري وتؤخذ مكانها داخل عقل العالم، العلم. والحقيقة التقديرية التي تحاكي بيئة فيزيائية ممكنة يعتبران مصطلحين يشيران إلى مثل تلك الأنشطة.

إذا افترضنا أن أي مولد للحقيقة التقديرية يمكن إقامتها من حيث المبدأ، يمكن أيضًا من حيث المبدأ إعادة بئانه، ويستتبع ذلك أن أي منها حين يجري إعادة لأي برنامج فإنه يشمل محاكاة بعض بيئات مكّنة فيزيائيًا. وبما يحاكي أشياء أخرى أيضًا من بينهما البيئات غير المكّنة فيزيائيًا، ولكن بصفة خاصة هناك دومًا محاكاة لبيئات مكّنة فيزيائيًا.

(٣) طبقًا للنظرية النسبية الخاصة فإن الأجسام المادية لا تستطيع التحرك بسرعة تفوق سرعة الضوء.
ربما نختار محاكاة بيئة كما تنبأت بها قوانين الفيزياء الحقيقية. ربما نختار ذلك كنوع من التجربة، أو المتعة، أو للتقريب لأن الواقع الحاكي قد يكون صعبًا أو مكلفًا. إذا كانت القوانين التي نستخدمها قد استمتعنا أن نجعلها قريبة من الواقع كإعطاء معلومات عن القياس أو الكواليس التي تعمل في ظلها فإنه يمكن أن تسمى هذه المحاكاة: الرياضيات التطبيقية أو "حموية". أما إذا كانت الموضوعات التي تتم محاكاتها مختلفة جدًا عن تلك الحقيقة يمكن أن نسمى الأمر: الرياضيات بحثًا. كل هذه من قبل التفسيرات. ربما تكون مفيدة، أو حتى ضرورية لشرح دوافعنا لتنفيذ أو تركيب محاكاة معينة. ولكن مهمة وصلت إلى الحاكة، فشلنا دائمًا تفسيرات بديلة والتي تعني حرفيًا المجسمات أو المكتشفات التحقيقية لأي بيئة ممكنة فيزيائيًا.

ليس من المألوف النظرة إلى الرياضيات كشكل للحقيقة التقديرية. بل عادة ما ننظر إليها على أنها تدور حول الجوهر أو الكينونات المجردة مثل الأرقام والمجموعات التي لا تؤثر على الحواس، وربما بالتأني ليست هناك حاجة لاصطدام محاكاة تثيرها علينا. ومع ذلك ولو أنها لا تؤثر على الحواس، فإن تجربة الرياضيات هي من قبل التجارب الخارجية منها في ذلك مثل التجارب الفيزياء. نحن نضع علامات على قطة من الورق، وننظر إليها، أو نختبر فيها نظر إليها - بالطبع، نحن لا نستطيع القيام بأي عمليات رياضية دون تخيل كينونات رياضية معينة. ولكن هذا يعني تخيل بيئة تكوّن فيها الفيزياء، حيث التعقيد والاستقلالية الخاصان بهذه الكينونات. على سبيل المثال عندما نتخيل المفهوم المجرد لخط منفصل ليست له تخانة، ربما نتخيل خطًا مرنًا ولكن ضئيل العرض إلى حد بعيد. وهذا يمكن تدبيره أو قريبا منه فيزيائيًا. ولكن رياضيًا فلا بد للخط أن يبقى بلا تخانة عندما ننظر إليه تحت ظل قوة معتن لا يمكن الفكاك منه. هذه ليست خاصية لأي خط فيزيائي ولكن يمكن تحقيقها بسهولة عبر الحقيقة التقديرية في أذهاننا.
المخيلة هي على شكل الخط المستقيم في الحقيقة التقديرية. ما لا يمكن أن يكون واضحًا جدًا في خبرتنا المباشرة بالعالم عبر حواسنا هو أيضًا حقيقة تقديرية. لأن تجاربنا الخارجية ليست أبداً مباشرة، ولا حتى خبرتنا الإشارات التي تصدرها أعضائنا فهي ليست مباشرة بدورها حيث أننا لن نعرف ما الذي يؤدي إلى الفروقات الكهربائية في التيار الذي تحمله الأعصاب. ما نخبره مباشرة هو الحقيقة التقديرية ومحاكماتها والتي أنتجتها لنا بشكل ملازم عقولنا غير الوعيية عبر مصطلحات الإحساس بما يمكن فيها من تعقيد وما تطلبه من نظريات (مثل البرامج) حول كيف نفسرها.

نحن نميز ما اعتبرناه أن الحقيقة موجودة هناك، موضوعيًا وفيزيائيًا ومستقلة عما نعتقده حولها، ولكننا لا نخبر هذه الحقيقة بشكل مباشر أبدًا. أي فتات من معلوماتنا عن خبرتنا هو من قبل الحقيقة التقديرية بما تضمنه معلوماتنا عن العوالم غير المكنية فيزيائيًا: المنطق والرياضيات والفلسفة والفلسفة، والقصص. والفن إلى سائر نشرات الخيال، جميعها مشفرة في شكل برامج لمحاكاة عوازمها في مولدات الحقيقة التقديرية بقولنا.

إذن ليس مجرد العلم - تسبب العالم الفيزيائي وعقلته - هو وحدة الذي يتعلق بالحقيقة التقديرية. كل التسبب والتعقيل، كل التفكير، كل التجارب الخارجية في أشكال للحقيقة التقديرية. هذه الأمور هي عمليات فيزيائية لوحظت حتى الآن فقط في مكان واحد من الكون: فصلك أو نبذه أسميناها كوكب الأرض. سوف نرى في الفصل الثامن أن كل العمليات الحية تتضمن الحقيقة التقديرية أيضًا. إلا أن الكائن البشري هو الذي له علاقة خاصة بها. وإذا تحديثنا بلغة البيولوجيا نقول إن محاكاة الحقيقة التقديرية لبيئاتها هو سمة للوسائل التي من خلالها يستطيع الكائن البشري المقاومة من أجل البقاء. وكمثلات أخرى فهي السبب وراء وجود الكائن البشري. الكوّة.
الإيكولوجية التي يشغلها الإنسان تعتمد على الحقيقة التقديرية مباشرة كما هو الأمر
وبصفة مطلقة كالكوة الإيكولوجية التي يحتلها دب الكوالا معتمدًا على أوراق شجر
الأوكاليبيتوس.

اصطلاحات:

<table>
<thead>
<tr>
<th>مودل الصور:</th>
<th>Image generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>مودل الصور العالم:</td>
<td>Universal Image generator</td>
</tr>
<tr>
<td>تجربة خارجية:</td>
<td>External experience</td>
</tr>
<tr>
<td>تجربة داخلية:</td>
<td>Internal experience</td>
</tr>
<tr>
<td>ممكنًا فيزيائيًا.</td>
<td>Physically possible</td>
</tr>
</tbody>
</table>

وسيلة يمكنها توليد أجـهـيسـس معينة لدى المستخدم.

مودل صور يمكن برجمه لتوليد أي إحساس يمكن للمستخدم أن يخبره.
<table>
<thead>
<tr>
<th>المقياس الذاتي</th>
<th>Logically Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>الحقيقة التقديرية</td>
<td>Virtual reality</td>
</tr>
<tr>
<td>إعادة خط السير</td>
<td>Repertoir</td>
</tr>
<tr>
<td>صورة أو انطباع</td>
<td>Image</td>
</tr>
<tr>
<td>الصحة أو الدقة</td>
<td>Accuracy</td>
</tr>
<tr>
<td>تصحيح تام</td>
<td>Perfect accuracy</td>
</tr>
</tbody>
</table>

(بالفرض شروط الحالة الإبتدائية وكل القوائم الثانوية لتعدد الأكوان والتي تحدد قوانين فيزياء لم تتم معرفتها حتى الآن.)
الخلاصة:

الحقيقة التقديرية ليست مجرد تقنية يتم فيها للكمبيوتر أن يحاكي سلوك البيئات الفيزيائية. حقيقة أنها ممكنة هي في حد ذاتها حقيقة هامة بالنسبة لنسخة الحقيقة. إنها أساس ليست فقط لعملية الحوسبة ولكن أيضًا لخيال الإنسان والتجارب الخارجية والعلم والرياضيات والفن والقص.

ما هي الحدود القصوى - المدى الكامل - للحقيقة التقديرية (ومن ثم الحوسبة والعالم والmixology. الخ.)؟ في الفصل التالي سنرى أنها بلا حدود من ناحية، ومن ناحية أخرى هناك من يرى أن يحيطها بعنف بخط أو دائرة تحدها.
الفصل السادس

العالمية وحدود الخوضبة
يعتبر الكمبيوتر هو قلب مولد الحقيقة التقديرية والسؤال عن أي بيئة سيقوم بمحاكاتها، يستتبع السؤال عن أي حواسيب سيمكناه أداها. حتى في أيامنا الحالية فإن عادة المربع في مولد الحقيقة التقديرية تعتبر محدودة مثلها كما في مولد الصور أو الانتباهات. حينما سيكون هناك كمبيوتر أحدث وأسرع وبذكاء أوعز وهارد وير أحسن في معالجته للصور ووصله بمولد الحقيقة التقديرية سوف تتضخم عملية إعادة عرض الصور. ولكن هل سيكون الأمر دائمًا هكذا، أم أننا سنكون أخيرًا في مواجهة مع العالم الكاملاً. وكما سيتضح فاننا في حالة مولد الصور أو الانتباهات لا بد أن نتوقع ذلك؟ وكيلمات أخرى هل هناك مولد واحد للحقيقة التقديرية قابل لأن يبقى مرة واحدة ولأبد بحيث يتم برمجته لمحاولة أي بيئة يمكن للعقل البشري أن يُخبرها.

كما هو الحال مع مولدات الصور أو الانتباهات، فإننا لا نعني بهذا أن مولد الحقيقة التقديرية الواحد يمكن أن يحتوي ذاته مواصفات كل البيئات الممكنة منطقياً. وإنما نعني أن من الممكن برمجة المولد بحيث يحاكي أية بيئة ممكنة منطقياً. يمكن تخيل أنه يمكننا تشفير البرامج عبر الأسطوانات المغناطيسية مثلًا. وكلما تعقدت البيئة أكثر كلما احتاجنا للمزيد من الأسطوانات لتخزين البرامج عليها. وهكذا فلكل نحاكي بيئة تتصف بال🞂ًع، فلا بد أن تحتوي الالآت على آلة، كما نبعد أن تكون، تستطيع أن تقرأ عددًا غير محدود من الأسطوانات بالنسبة لمولد الصور العالمي. وليس الأمر كذلك بالنسبة لمواد الحقيقة التقديرية. فهذا يحتاج لكمية متنامية من "الذاكرة العامة" لتخزين النتائج الوسيطة الناجمة عن الحسابات المتعلقة بالأمر. ربما نتخيل ذلك في شكل إمداد الآلة ببضع أسطوانات فارغة. مرة أخرى فإن حقيقة أن الالآت تحتاج لإمدادها بطاقة وأسطوانات فارغة وقدر من الصيانة، كل هذا لا يمنعنا من اعتبارها "الامة" منفردة واحدة، بالإضافة إلى أن هذه العمليات لا تساوي تغير تصميم الآلة، كما أن قوانين الفيزياء لا تمنعها.
وبهذا المعنى، ومن حيث المبدأ، لا غرابة في تخيل كمبيوتر ذا كفاءة أكبر وإمكانية ذاك غير محدودة. ولكن الكمبيوتر الذي له سرعة حوسية غير محدودة لا يوجد فالكمبيوتر لسرعة قصوى توقف على تصميم هذا الكمبيوتر ولا يمكن زيادة إلا بتغيير هذا التصميم. وعلى ذلك فإن أي مولد حقيقة تقديرية معين لن يمكنه أن يؤدي كميات غير محدودة من الحواسيب في كل وحدة زمن. أين يجد ذلك من قدرته على إعادة العرض؟ إذا كانت بيئة ما معقدة للغاية؛ وإذا حسب أن حوسية ما يمكن أن يراه المستخدم في مدى ثانية من الآن، يستغرق أكثر من الثانية لإتمام الحوسبة، فكيف يمكن لهذه الآلة محاكاة هذه البيئة بشكل صحيح؟ لكي تحقق العالية نحن بحاجة لزيادة من الاحيل التقنية.

لكي نتمد بعملية إعادة العرض إلى أقصى حد تسمح به الفيزياء، فإن مولد الحقيقة التقديرية عليه أن يهيم على بقدر أكثر على بعض صفات النظام الحسي لدى المستخدم والتي يمكن تسميته: سرعة العالية في عقل المستخدم، ولو أن عقل الإنسان مثل كمبيوتر إلكتروني سيكون الأمر ببساطة مسألة تغيير السرعة التي يبحث بها "المئوية" (الساعة) الخاص بالنسبات التزامنة. لا شك أن "منبه" العقل لا يمكن السيطرة عليه بهذه السهولة، ولكن مرة أخرى هذا لا يمثل من حيث المبدأ أي مشكلة. العقل هو موضوع فيزيائي نهائي وكل وظائفه هي من قبل العمليات الفيزيائية التي يمكن من حيث المبدأ إبطاء سرعتها أو إيقافها. مولد الحقيقة التقديرية المطلقة عليه أن يكون قادرًا على الإتيان بمثل ذلك.

لكي تتحقق محاكاة تامة لبيئة تستدعي كميات كبيرة من الحوسبة فعل مولد الحقيقة التقديرية أن يقوم بما يشبه عمل الجهاز. شيء ما يلي: إن كل عصب حسي قادر فيزيائيًا على نقل الإشارات على مراحل بمستوى حد أقصى، لأن أي خليه عصبية قد أشعلت، لا يمكنها أن تعاود الاشتعال مرة ثانية قبل ملل؛ ثانية أخرى تقريبًا. ولذلك على الكمبيوتر فور اشتعال إحدى العصبات أن يقرر في جزء من الألف
من الثانية متي، وهل سيعاود الاشتغال مرة أخرى، فإذا استطاع أن يتخذ هذا القرار مثلاً في نصف مثلي/ثانية، بدون أي محاولة تأثير من العقل وسرعته حيث لا حاجة لنا بها، فإن الكمبيوتر سيشغل العصب في الوقت الصحيح.

هذا وإن سيستجيب الكمبيوتر في إبطاء العقل (أو إيقافه إذا كان الأمر يستدعى ذلك) حتى تتم حوضسة ما يجب أن يحدث بعد تمامها، هنا هو تعيد تخزين سرعة العقل. ماذا يمكن أن يشبه هذا الشعور لدى المستخدم من خلال التعريف لا يشبه أي شيء. المستخدم سوف يخبر فقط البيئة المحددة في البرنامج، بدون أي إبطاء، أو توقف، أو البدء من جديد. من حسن الحظ أنه ليس ضرورياً أبداً مولود الحقيقة التقديرية أن يجعل العقل يعمل بكثير من السرعة العادية، وهذا في النهاية سوف يبرز مشاكل خاصة بالпадايد لأنه، ومن بين موضوعات كثيرة، لا تستطيع أية إشارة أن ترتحل بما هو أسرع من سرعة الضوء.

هذا النهج يسمح لنا لأن نحدد مقدماً بيئة معقدة بدرجة ما تتطلب محاولاتها قدرًا محدودًا من الحوضسة، لكي نخير هذه البيئة بسرعة معقولة ومستوى تقسيم تستطيع عقولنا أن تستوعبه وحتى إذا كانت الحسابات المطلوبة أطول من أن يستطيع الكمبيوتر أن يقوم بها خلال زمن معقول، فإن التجربة تندرج وذلك إلا أن المستخدم سيدفع ثمنًا لهذا التعقيد في شكل وقت خارجي منقضث. ربما يخرج المستخدم من مولد الحقيقة التقديرية بما يبدو له شخصيًا كأنه خمس دقائق من الخيبة ليدع أن سنوات قد مرت في الواقع الفيزيائي.

المستخدم الذي توقف عقله، أياً كانت المدة التي توقفها، ثم أعيد تشغيله مرة أخرى سوف يحظى بخبرة غير متناقضة لبعض البيئات. أما المستخدم الذي توقف عقله نهائياً فلن يحظى بئية خبرة على الإطلاق منذ لحظة التوقف. وهذا معناه أن البرنامج الذي يوقف عقل المستخدم في نقطة ما ثم لا يجعله يستأنف عمله ثانيًا أبداً فإنه لن يقدم للمستخدم أية بيئة ليخبرها وعلى هذا فإنه لن يعتبر مولدًا جيدًا للحقيقة التقديرية.
ولكن في النهاية البرنامج دائمًا ما يعيد عقل المستخدم للعمل مرة أخرى مسببًًا للمولد أني يحاكي بعض البيانات حتى البرنامج الذي لا يطلق أي إشارات عصبية على الإطلاق.

يحاكي ظلام وصمم بيئة معزولة عن الإحساس.

في بحثنا عن الحقيقة التقديرية المطلقة انتقلنا إلى مراحل عبر طريق طويل مما هو مألوف في عصرنا الحالي حتى يمكن أن نقترب من أفق التقنية، وهنا دعني أشدد مرة أخرى على أنه بالنسبة لغرضنا الحالي فإن العقبات التقنية لا صلة لها بالأمر. إننا لم نتخيل أية أنواع من مولدات الحقيقة التقديرية يمكن بناؤه، أو تلك الأنواع التي سيمكن بناؤها بمعارفة المهندسين البشريين. فقد أطلقنا خيالنا فيما يمكن أن تفعله قوانين الفيزياء أو لا تفعله في طريق الحقيقة التقديرية. والسبب في أهمية ذلك لا علاقة له بهدف صنع مولدات حقيقية تقديرية أكثر جودة إذا العلاقة بين الحقيقة التقديرية والحقيقة العادية هي جزء من البناة الجوفي الباطني أو الداخلي- غير المتوقع للعالم، وهو ما يدور حوله هذا الكتاب.

من خلال الأخذ في الاعتبار بعض الاحيل المتعددة - مثل حث العصب أو التوقف للعقل ثم معاودة العمل من جديد - إلى آخر ما يشبه ذلك - فقد أعدنا العدة لتخيل مولد حقيقة تقديرية ممكنًا فيزيائيًا والذي يمكن لمعاودة العرض فيه أن يغطي كل المدى العصبي، وفي تفاعل كامل، بدون قيد عليه من قدرات المذاكرة وسرعة الكمبيوتر المتصل به. هل هناك ما هو خارج عملية معاودة العرض في مثل هذا المولد؟ هل ستكون معاودة العرض فيه مشتملة على كل البيانات الممكنة فيزيائيًا ومنطقيًا؟ لن يكون الأمر كذلك. ألا إعادة العرض المستقبلية هذه سوف تكون واقعة بعض في دائرة حقيقة أنها موضوع فيزيائي هي نفسها. إنهما لن ترتقي حتى لستوى خذش سطحي لما هو ممكن منطقيًا، كما سأبين ذلك حالًا.

الفكرة الجذرية في هذا البرهان - والمفردة باسم "الجدل الانترافري" - تسبي فكره الحقيقة التقديرية. وأول استخدام لها كان بمعرفة رياضي القرن التاسع.
عندما أثبت أن هناك كميات لا نهائيّة أكبر من لا نهائيّة الأعداد العادية (١، ٢، ٣، ...) هذا الشكل من البرهان هو في قلب نظرية الحوسبة التي أيدها بها آلان تورنر، وأخرون في ثلاثينيات القرن ١٩. واستخدامه أيضًا كهثت جودل، لإناث نظريته المحتملة بها نظرية عدم الامتثال التي سنبذل الكثير عنها في الفصل المتبقي.

كل بيئة يعاد عرضها من خلال الآلة يتم توليدها عبر برامج في الكمبيوتر الموصول بها. تخليل كل مجموعة البرامج الصالحة لهذا الكمبيوتر. كل برنامج منها يحدد مجموعة قيم متتميزة لمتغيرات فيزيائيّة، على الأسطوانات المدمجة أو أي وسيلة اتصالية أخرى، والتي تقدم البرنامج. وتظهر الكم تعلم أن كل تلك المتغيرات مكتملة. ولذا لا يمكن كيف يعمل الكمبيوتر، ولكن أن مجموعة البرامج الممكنة ستكون منفصلة عن بعضها البعض، ولذا هناك فك واحد منها يمكن التعبير عنه كمحتوى محدود من رمز في شفرة منفصلة أو في لغة الكمبيوتر. هناك عدد لا نهائي من مثل هذه البرامج، ولكن كم منها يستعمل فقط على عدد نهائي من الرموز وهذا لأن الرموز هي موضوعات

(٨) جورج كانتور (١٨٤٥ - ١٩١٨) رياضي إنجليزي لحذى نظرية في الفئات الرياضية مثل الأرقام النهائية، ولا نهائيّة الأعداد العادية، ١: ١٠، كما أدت أعماله إلى حفز تطوير التفكيك الرياضي والمحتوى المتتاليّ بالأساس النظري للرياضي.

(٩) آلان تورنر (١٩١٢ - ١٩٥٤) رياضي وطبيّة إنجليزي يبحث بحوثه في مجال الأعراض المحددة من الأدلة الاصطناعية. كما يعد بحثه في هذا المجال أساسًا للبحث في موضوع التأكيد الاجتماعي. ومن المعتقد أنه اتخذ بسبب إحباط من العلاج العلوي الذي تعودت إلى الشفاء من المثلية الجنسية (من بين ما يرد فيه عن طلب تجربة بحثة بواسطة السينابيد ثم أكمله.) (الترجم)

(١٠) كهثت جودل (١٨٨٠ - ١٩٦٨) رياضي وطبيّة إنجليزي يبحث بحوثه في مجال الأعراض المحددة من الأدلة الاصطناعية. كما يعد بحثه في هذا المجال أساسًا للبحث في موضوع التأكيد الاجتماعي. ومن المعتقد أنه اتخذ بسبب إحباط من العلاج العلوي الذي تعودت إلى الشفاء من المثلية الجنسية (من بين ما يرد فيه عن طلب تجربة بحثة بواسطة السينابيد ثم أكمله.) (الترجم)

١٩٧
فيزيائية مصنوعة من مادة لها شكل معروف ولا يمكن أن نصنع عدد لا نهائي منها.

وكما سأشرح في الفصل العاشر هذه الكائنات الواضحة للمتطلبات الفيزيائية - أن البرامج لا بد لها أن تكون مكتملة (من الكم)، وأن كل منها يجب أن يحتوي على عدد محدود من الرموز ويمكن تحقيقه في خطوات متابعة - كل هذه الكائنات جوهرية بكثر مما يبدو عليها. هي التوابع الوحيدية لقوانين الفيزياء المطلبة كبدائل للبرهان، ولكنها كافية وحدها لتضع قيودا قاسية على إعادة العرض في أي ماكينة مكثفة فيزيائيا. وثمة قوانين فيزياء أخرى قد تضع المزيد من القيود ولكنها لن تؤثر على ما سيستخلصه هذا الفصل.

الآن دعنا نتخيل أن هذه المجموعة اللانهائية للبرامج المكتملة قد تم عرضها في قائمة لا نهائيّة الطول تحمل الأرقام: برنامج ۱، برنامج ۲، وهكذا. ويبدو للحظة أنه يمكن ترتيبها ترتيبًا أبجيًا بالنسبة للرموز التي تعتبر عنها. ولأن كل برنامج يولد بيئة ما، فهذه القائمة يمكن اعتبارها أيضًا كقائمة لكل البيئات التي يمكن للالة إعادة عرضها: فنمكن تسميتها البيئة ۱، البيئة ۲ وهكذا. فمن الممكن أن تتكبر بعض هذه البيئات في القائمة لأن برنامجين مختلفين منها قد يتطلبان نفس الحسابات ليحققما أحسن أثر، ولكن هذا لن يؤثر على ما نتبادل حوله. ولكن المهم أن تظهر كل بيئة في إعادة العرض مرة واحدة في القائمة.

أي مُشابه لأي بيئة يمكن أن يكون محدودًا أو غير محدود في مظهره الفيزيائي وانسيابيته الظاهرة. المنظور الذي يصنعه الهندس لبيت ما مثلاً يمكن أن يجري في وقت محدد ولكنه سيغرق فقط جزءًا محدودًا من البيت. أي لعبة فيديو تسمح للمستخدم بوقت محدد قبل أن تنتهي اللعبة، أي تحاكي لعبة كونية بحجم أو مقاس غير محدد وتقدم للمستخدم كمية لا محدودة من المكثفات ولا تنتهي إلا إذا أنها مستخدمة عمداً. ولكن نجعل البرهان أكثر سهولة دعنا نأخذ في اعتبارنا فقط برنامجًا
يستمر عرضه للأبد. وليس هذا قيدًا كبيرًا لأنه لو توقف البرنامج فيمكننا دومًا اختيار اعتبار نقص استجابته تلك كما لو أنها استجابة لبيئة إحساس معزول.

دعتي أعرف لك مستوى البيئات الممكنة منطقياً والتي تساعنيها بيئات الكانتجوتو مستخدمًا المقطع الأول من اسم كل من كانتور وجوبر وترنجر، وجزئيًا بسبب سلوكه بعد قليل. إنها تُعرف كالتالي: لأول وحدها من الزوايا الشخصية، بيئات الكانتجوتو ستستكسل بسلوكًا يختلف عن البيئة ١ (التي ولهما البرنامج ١ في مولدنا) لا يهم السلك الذي يستخدمه طالما مما كانت هي عليه في بعض الاستخدام على اختلافها عن البيئة ١. وخلال اللحظة التالية سنتسلك باختلاف عن البيئة ٢ (ولو أنها الآن مشروعة لأن تتشابه مع البيئة ١ مرة أخرى) وخلال الدقيقة الثالثة سوف تختلف كلية عن البيئة ٢. وهكذا، أي بيئات تتطابق مع هذه القواعد هي ما سأسميها بيئات الكانتجوتو.

والآن طالما أن الكانتجوتو لم تتسك بالضبط مثل سلوك البيئة ١، فهي ليست البيئة ١ أيضًا لم تسكن بالضبط مثل البيئة ٢، فهي أيضًا ليست البيئة ٢، ربما أنه من المضمون أنها ستختلف عاجلاً أو لاحقًا على البيئة ٣ أو البيئة ٤ وأي بيئات أخرى موجودة على القائمة. فلن تكون أيهم أيضًا، ولكن هذه القائمة تحتوي على كل البيئات التي يمكن البرنامج الخاص بهذه الآلة أن يولد ويستتبع ذلك أن بيئات الكانتجوتو ليست ضمن عملية إعادة الأثر في الآلة. الكانتجوتو هي بيئات لا يمكن أن نستخدمها في مولد الحقيقة التقديرية.

من الواضح أن هناك كمًا هائلًا من بيئات الكانتجوتو لأن تعريفها يدعنا حرية هائلة في اختيار الطريقة التي تنتصر بها. والقيّد الوحيد في ذلك هو الدقيقة التي لن تنتصر بها بطريقة واحدة مميزة. ولا يمكن إثبات أن في كل إعادة عرض لبيئة ما من خلال مولد حقيقة تقديرية، أن نتمع عديد ولا نهائين من بيئات كانتجوتو لا يمكن محاكاتها. ولأنه شاهد على اعتماد إعادة العرض باستخدام عدد من مولدات الحقيقة التقديرية. افترض جدًا أن لدينا مائة من المولدات كل منها لديه إعادة عرض مختلفة.
حينئذ ستكون كل المجموعة مع نظام أجهزة التحكم البرمجية، التي تستحدل أي منها سيعطينا عند استخدامه البرنامج المعين، في مجموعته عبارة عن مولد حقيقة تقديرية ولكن أكبر المولد الذي أعطيت به المثل من أجل المناقشة، سيكون له مقابل كل بيئة يستطيع أن يحاكيها عدد لا نهائي من البيانات التي لن يستطيع أن يحاكيها والاكثر من ذلك أن افترض أن أي مولد آخر ستكون لديه إعادة عرض مختلف هو نوع من التفاويل. وكما سئرنا بعد لحظة أن كل مولدات الحقيقة التقديرية الصغيرة أو التي تروى لذوي الثقافة الرفيعة سيكون لديها أساسا نفس النوع من إعادة العرض.

وهكذا فإن مشروعنا لبناء مولد حقيقة مطلق، والذي يجري على قدم وساق، سيصبح بحائط مثير، ومهما بلغ هذا المشروع من تقدم على المدى المنظور فإن تقنية إعادة العرض للحقيقة التقديرية كلها لن تنمو بأكثر من القدرة على محاكاة مجموعة محددة من البيانات. ومع الاعتراف بأن هذه المجموعة ستكون كبرى ولا نهاية، ومتنوعة بالمقارنة مع سابع ما خبرة الإنسان في مجال تقنية الحقيقة التقديرية، فستكون في مجموعها مجرد فرع متناهي الصغر من مجموعة كل البيانات الممكنة مناطقية.

ما الذي يمكن أن تكون عليه بيئة الكانتجونو؟ برغم أن قوانين الفيزياء لا تسمح لنا بأن تكون في واحدة منها، فإنها تبقى ممكنة منطقياً، وهكذا فإنه من الصحيح التساؤل كيف تكون؟ بالطبع هي لن تعطينا إحساس من نوع جديد لأن مولد الصور العالمي يمكن أن يفترض أن جزء من مولد الحقيقة التقديرية على التقنية. وهكذا ستكون بيئة الكانتجونو غامضة بالنسبة لنا بعد تجربتها وما نراه من تأثير لها على النتائج. إنها يمكن أن تجري على هذا النحو: أفرض أنك عقل مولد حقيقة تقديرية في المستقبل القادم من التقنية العالمية، وأنك قد أصبحت منهجاً حتى يبدو لك أنك قد حاولت كل ما هو مثير ومرغوب. وفي أحد الأيام ظهر لك جيني واعدي أنه قادر على
أن ينقل لك بيئة الكانتيجوت. وكانت متṣشًا ولكنك وافقت أن تضع دعوته ذلك محل الاختبار. وفي لحظة انتقل بك إليها وبعد عدة تجارب استمعت تغيير أنها هي، وكانت استجوابها كانت التي تجيه إيلك من أحب بيئتك إيلك والتي لها برنامج رقم X في نظام الحقيقة التقديرية في مزاك. ومع ذلك ظل في خوضك للتجربة وأخيرًا في أثناء جريان البرنامج الذي افترضت تشبيهه مع البرنامج X جاء الاستجابات مختلفة بشكل ملحوظ مما يمكن أن يقهر البرنامج X وليس من أن تعتبره بأنه البيئة X.

وربما تلاحظ وقفت أن كل ما حدث حتى الآن متماسك في ذاته ومتفق مع بيئة أخرى قابلة لأن تحاكي ولكن هي البيئة Y ولكن في اللحظة الذاتية للبيئة Z سوف تتراكم من أنكم مختطى مرة أخرى. سمات بيئة الكانتانجوت ببساطة هي: لا يمكن أن تكون معتاد على تجنبه، ولا يمكن مَدَّ تعقيد برنامج الذي تراه وتنامعه معتقدًا أنه يحاكي بيئة ما لأنه دائمًا ما سيبره على أنك على خطأ. واقع الأمر أنه لا يوجد برنامج سيحاكيها.

على مولد الحقيقة التقديرية الخاص بك أو على أي مولد آخر غيره.

أجاب أو عاجلاً سوف تتهى الاختبار عند هذه اللحظة. ربما تقرر الإذعان لدعاة "الجنى". وليس هذا معناه مثل القول بأنك لم تستطعل أبدًا البرهنة على أنك كنت في محاكاة بيئة الكانتنجوت. لأنه يبقى دائمًا مزيج من البرامج المعقدة سيجريها "الجنى" التي قد تتلازم أو تناسب خبراتك حتى الآن. هذا مجرد الملمع العام للحقيقة التقديرية التي ناقشتها بالفعل. أعني هذه التجربة لا تثبت أن المرء في بيئة محددة. كالوجود في الصالة المركزية لومبلدون أو في بيئة من طراز كانتنجوت.

وعلى أي حال، فليس ثمة وجود للذنابي "الجنى"، ولا وجود لكل هذه البيئات. إذا انتهى إلى أن الفيزياء لا تسمح بإعادة العرض في مولد حقيقة تقديرية لأن تكون قريبة للحجم الذي يسمع بها المنطق وحده. إلى أي مدى يمكن أن يكون إعادة العرض كبيرًا؟
طالما لا يمكننا الأمل في محاكاة كل البيئات الممكنة منطقياً، دعنا نعتبرها نوعاً أضعف من العالياً وإن كان بصورة مطلقة أكثر إثارة. دعنا نعرف مولد الحقيقة التقديمية العالم الذي يحوي إعادة العرض فيه على ما يعرضه كل مولد فيزيائي آخر للحقيقة التقديمية. هل توجد مثل هذه الماكينةّ؟ نعم ممكن التفكير في الحيل المستقبلية البنية على التحكم الكمبيوترى لثيرات الأعصاب، بما يجعل الأمر واضحًا بـ شديد الوضوح في واقع الأمر. مثل هذه الماكينة يمكن برمجتها لتكون لها سمات أي ماكينة أخرى مزاحمة أو منافسة لها. إنها تستطيع حساب كيف لها أن تستجيب، في ظل برنامج معين، لأي تصرف قد ينتمي به المستخدم ومن ثم يمكن أن تحاكي مثل هذه الاستجابات بدرجة جيدة من الصحة (من وجهة نظر مستخدم معين). لقد قلت "بل شديد الوضوح تقريباً" لأنها تشمل على افتراض هام بشأن الحيلة المفترضة، وبطريقة أكثر تحديدًا شكلها الكمبيوترى، يعني أنه يمكن برمجتها لتفعل ذلك، في حالة وجود برنامج مناسب، وقت كاف ووسيلة تخزين. يمكن أن تحسب مخرجات الحوسبة التي يجريها أي كمبيوتر آخر بما فيهم الموجود في مولد الحقيقة التقديمية المنافس ومكتباً فإن معقولية وسلامة مولد حقيقة تقديرية عالمي تعتمد على وجود كمبيوتر عالمي، آلية واحدة يمكنها حساب أي شيء يُمكن حسابه.

وكلما قلت فقد تم بحث ودراسة هذا النوع من العالياً في البدء بمعارفة الرياضيين وليس الفيزيائيين. لقد كانوا يحاولون صنع جوهر فكرة "الحوسبة" (أو الحساب أو البرهنة) لشيء ما في الرياضة. لم يضعوا في اعتبارهم أن الحسابات الرياضية في عمليات فيزيائية (وبالتحديد كما أسألت شرحًا) إنها حقيقة تقديرية تُحاكي العمليات، لذا لا يمكن تحديد من خلال التسبب الرياضي ما الذي يمكن أولاً حسابه رياضيًا. هذا يعتمد بالكامل على قوانين الفيزياء. ولكن بدلاً من استنتاج نتائجهم عن طريق قوانين الفيزياء راح الرياضيون ينشئون رموزًا مجردة للحوسبة وعرفوا "الحساب" و"البرهنة" من خلال مصطلحات تلك الرموز.
(سناش١ هذا الخطأ الطريف في الفصل العاشر). هذا ما جعل ثلاثة رياضيين
Emil Post وألنزو تشيرش (وأولهم آلان تورنر) ينتقدون بشكل مستقل أول تصميم تجريدي للكمبيوترات العالمية. كل منهم خمن أن الموديل الخاص به للحوسبة هو الذي بالطبع قد شكل على نحو صحيح التصميم التقليدي لجهاز فكرة
"الحوسبة الرياضية" واستنتج ذلك أن كل منهم خمن أن موديله مكافئ (لهذا نفس
"إعادة العرض"") لأي تشكيل معقول لنفس الفكرة. هذا معروف الآن بتخمين تشيرش وTORNER.

موديل تورنر للحوسبة، ومفهومه عن طبيعة المشكلة التي كان عليها، كان هو
الأقرب للتجسيد. كمبيوتره التجريدي "ماكينية تورنر" تشكل من شريط ورقي مقسم
إلى مربعات فوق كل منها عدد محدد من الرموز المميزة. والحوسبة تم عملها عبر
اختبار لكل مربع على حدة في كل مرة، وتحرير الشريط للأمام أو الخلف، ثم كتابة أو
حذف واحد من الرموز طبقًا لقواعد بسيطة وغير ملتبسة. وأثبت تورنر أن كمبيوتر
واحد من هذا الطرز "ماكينية تورنر" العالمية تحتوي على نفس "إعادة العرض" الموجودة في أي "ماكينية تورنر" أخرى. لقد خمن أن "إعادة العرض" هذه تشمل
تحديدا على كل وظيفة يمكن اعتبارها بشكل طبيعي قابلة للحساب. كان بذلك يعني
قابلة للحساب رياضيا.

(٢) الرياضي الأمريكي قام عام ١٩٣٦ (مع أخرين، وإن كان بشكل منفرد، هما ستيفن كلين وويليام سوث) في علوم الكمبيوتر وموازاتها، وهم من الفلكاء في "ماكينية تورنر"، وهم من حيث إن كل
الميزات قابلة للحوسبة على نفس مستوى وظائفها، فقد تم نفهمها على نطاق واسع باعتبارها مشاكل قابلة
للحل وهو ما أعطي مصداقية للبحث المعروف باسم "تشارش"، والذي يقرر أن حدود كل النماذج في الموديل
تقرر حدود الحوسبة الأوتوماتيكية. (المترجم)

٢٠٣
ولكن الرياضيين ليسوا نماذج مثالية للموضوعات الفيزيائية. لماذا علينا افتراض أن محاكاة عملية فنان الحواسيب هي الحق الأقصى في الأهداف الحوسبة؟ لا يبدو أن الأمر كذلك. وكما سأشرح في الفصل التاسع "الكمبيوترات الكمية" يمكن أن تقوم بحوسية لا يستطيع أي رياضي بشرى ولو حتى من حيث المبدأ أن يقوم بها أبدًا. لقد كان متضمنًا في عبارة تورنجز التي وقعت فيها "التي يمكن النظر إليها بشكل طبيعي على أنها قابلة للحوسبة أيضًا، على الأقل من حيث المبدأ، الذي يمكن حوسوبته في الطبيعة. هذا التوقع يشابه وجه فيزيائي أقوى من تخمين تشيرش وتورنجز. حين اقترح الرياضي روجر بنروز (.Roger Penrose) مبدأ تورنجز.

مبدأ تورنجز:

الكمبيوترات المجردة التي تحاكي الموضوعات الفيزيائية تعني أنه يوجد كمبيوتر مجرد وعالمي تشتمل إعادة العرض فيه على أية حواسوة يمكن أن يقوم بها موضوع فيزيائي ممكن.

اعتقد تورنجز أن الكمبيوتر العالمي الذي نحن بصدد هو ماكينة تورنجز العالمية.

وإذا أخذنا في الاعتبار إعادة العرض الواسعة للكمبيوتر الكمي، فقد وضعت المبدأ في شكل لا يوجد أي كمبيوتر مجرد هو الذي سيقوم بالعمل.

(4) روجر بنروز (Roger Penrose) (1931 - ...) رياضي إنجليزي، مشاهد كبير للنسبية كما أثبت مع هوكس في ستينيات القرن 20 أن البقع السوداء تتألف من مستوى "التفرد" عند نقطة هندسية من الكون تنضج عند الكثافة إلى مصدر لا نهائية إلى قيمة صفر، فضلاً عن تطوره طريقة لرسم خراطي الزمكان المحيط بالبقع السوداء يستطيع المرء فيها أن يتخيل تأثير الجاذبية على أي مقترب من هذه البقع. (الترجمة)
البرهان الذي سبقت له إثبات أن بيئة الكانتجوتو ترجع إلى تورنج أساسيًا وكمامة قلت
لم يكن يفكر بوحيوت بالنسبة للحقيقة التقريبية أو بؤات المصطلحات الخاصة بها، ولكن
في بيئة يمكن محاكاتها تتطابق مع مستوى من أسئلة رياضية تكون إجاباتها قابلة
لحساب. هذه الأسئلة قابلة للحساب أما باقي الأسئلة التي لا سبيل إلى حوسياًها
تسمي غير المحوسية. إذا كان مسألة سؤال من هذا النوع الأخير لا يعني أنه ليست له
إجابة أو أن إجابته يأتي معنى غير قابلة للتعريف أو غامضة. بل على العكس فإنه
بالتحديد له إجابة. إنه فقط لا يمكن بأن تأتي طريقة الحصول عليه فيزيائيًا حتى من حيث
البدا (وتتطلب أكثر فإنه طالما يمكن للمرء دومًا أن يصنع تخمينًا صحيحًا أو ربما غير
قابل للإثبات فهو لا يمكنه إثبات أنه يمثل الإجابة). على سبيل المثال:
الزوج الأول هو رقمان أوليان يختلفان عن بعضهما بفارق 2 مثل (7, 9) أو
(13, 15) حاول الرياضيون دون جدوى الإجابة على السؤال: هل هناك عدد غير
محدود من هذه الأزواج أم أن عددهم محدود؟ ولا يعرف هل استكمل هذا السؤال,
دعنا نفترض أنه لم يستكمل. وهذا معناه أن أولى أى كمبيوتر يمكنه على الإطلاق
أن ينتج برمجانًا على نهائية عدد مثل هذه الأزواج أو نهائيتهم. وحتى مع ذلك فإن
السؤال إجابة: المن لم يستطيع القول بأنه من المؤكد أنه يوجد عدد كبير منها أو أنها لا
نهائية العدد إذ لا توجد إمكانية ثالثة لهذين الاحتمالين. يبقى السؤال جيد التعريف
حتى لو أننا لن نعرف إجابتة أبدًا.
ليس ثمة إمكانية فيزيائية لأي مولد حقيقية تقديرية أن يحاكي بيئة تكون الإجابات
فيها عن أسئلة غير قابلة للحوسبة يطلبها المستخدم (وذلك باستخدام مصطلحات
الحقيقة التقريبية). مثل هذه البيئات هي من طراز الكانتجوتو. وعلى سبيل الحديث
فإن كل بيئة كانتجوتو تتطابق مع مستوى من الأسئلة الرياضية (ما الذي سيحدث
بعد ذلك في بيئة يمكن تعريفها بطريقة مثل كذا، وكذا؟) يستحيل الإجابة عليها
فيزيائيًا.
ولو أن الأسئلة غير القابلة للكمبيوتر عندها لا نهائية بدرجة أكبر من تلك القابلة
للحوسبة، إلا أنها تميل للغموض والسرية بدرجة أكبر. وليس ذلك صدفة. ذلك لأن
الأجزاء من الرياضة التي تميل لأخذها في الاعتبار على أنها أقل غموضًا وسرية هي
تلك التي نراها معروضة على سلوك الموضوعات الفيزيائية في أوضاعها المألوفة. في
مثل هذه الحالات نحن نستخدم هذه الموضوعات الفيزيائية في الإجابة على الأسئلة
التي تتطلب مع العلاقات الرياضية. مثل أننا نستطيع الاعتماد على الأصابع لأن
فيزياء الأصابع تتشابه طبيعياً مع حساب كل الأرقام من صفر إلى عشرة.

ثلاثة أنواع للكمبيوترات المجردة المختلفة التي تم تعريفها بواسطة تورنج،
سرعان ما ثبت أنها متماثلة مع التي عرفتها كل من تشيرش وبوست وهكذا أيضًا.
كل إعداد عرض فيها يتماشى مع كل إعادة العرض في الموديلات المجردة
للحوسبة الرياضية منذ بدء اقتراحها. ويعتقد أن هذا قد تم بمعاونة تخمين
تشيرش وثورنج والعالية التي مثلها ماكينة تورنج العالمية. ومع ذلك فإن قوة الحوسبة
في الماكينات المجردة لا تركز على ما يمكن حسابته في الحقيقة، مدى الحقيقة
القديرية وأفها، وتطبيقاتها الواسعة في مجال فهم الطبيعة وكل أوجه نسب الحقيقة،
يعتمد على ما إذا كانت الكمبيوترات وثيقة الصلة ممكنة لتحقيق فيزيائيًا.
وبالتحديد يجب أن يكون الكمبيوتر عالمي في ذاته قابلاً للتحقيق. وهذا يقود إلى
ترجمة أقوى لبدا تورنج.

بإمكان تورنج للكمبيوترات فيزيائية تحاكي بعضها البعض:

من الممكن بناء مولد حقيقة تقديرية تشمل إعادة العرض فيه تلك التي في كل
مولد حقيقة تقديرية آخر مكن فيزيائيًا، والإفراد يبنى محاكاته بواسطة مولد
حقيقة تقديرية من نوع ما (مثلًا يستطع المرء دائما أن ينظر نسخة من هذه البيئة
كما لو أنها مولد حقيقة تقديرية له إعادة عرض صغيرة). وعليه فإنه يستتبع هذا الوجه

206
من مبدأ تورنج أن أي بيئة ممكنة فيزيائيًا يمكن أن تُحاكي بواسطة مولد عالمي للحقيقة التقديرية. وبما أنه للتعبير عن قوة التشابه الذاتي الكائن في بناء الحقيقة التي تضم ليس فقط الحوسبة وإنما كل العمليات الفيزيائية، فإنه يمكن وضع مبدأ تورنج في الشكل التالي:

مبدأ تورنج (لمولدات حقيقة تقديرية تستخلص بعضها البعض)

من الممكن بناء مولد حقيقة تقديرية تشمل إعادة العرض فيه كل بيئة ممكنة فيزيائيًا.

هذا الشكل هو أقوى أشكال مبدأ تورنج. إنه لا يقول لنا فقط إن الأجزاء المختلفة من الحقيقة تشبه بعضها الآخر. إنما يقول لنا أيضًا أن أي موضوع فيزيائي واحد يمكن بناؤه مرة واحدة وإلى الأبد (ب بعيدًا عن الصيانة وإمداده باي ذاكرة إضافية إذا كانت شأ حاجة لذلك)، ويمكنه أن يؤدي بدرجة لا متناهية من الصحة أهداف وصف أو مشابهة أي جزء آخر من التعدد أو الكثرة. مجموعة كل السلوكيات والاستجابات الصادرة عن هذا الموضوع الفيزيائي الواحد تعكس ضابطات تمام كل السلوكيات والاستجابات لكل الموضوعات والعمليات الأخرى الممكنة فيزيائيًا.

هذا بالتحديد هو نوع التشابه الذاتي الضروري إذا، وطبقًا للأمل الذي عبرت عنه في الفصل الأول، ما أريد بإخلاص توحيد نسيج الحقيقة وجعلها مفهومة ودقيقة. إذا كانت قواعد الفيزياء التي تستخدمها موضوعات وعمليات الفيزياء تستوجب فهمها وإدراكها فموجب الواجب أن تكون متضمنة أيضًا في موضوعات الفيزياء الأخرى - المعروف منها. ومن الضروري أيضًا أن تكون تلك العمليات القادرة على إنشاء مثل هذه المعرفة ممكنة فيزيائيًا. هذه العمليات هي التي تسمى "العلم". والعلم يعتمد على الاختبارات التجريبية، وهو ما يعني محاكاة فيزيائية لتنبؤات القوانين ومقارنتها مع
محاكاة القوانين. ويعتمد أيضاً على التفسير وهو ما يتطلب القوانين المجردة ذاتها، ليس فقط محتواها التنبؤ لتصبح قابلة لمحاكاتها في الحقيقة التطبيقية. إنه أمر طويل، ولكن ثمة تقابل بين الأمور التي يعنى بين ذلك وبين قوانين الفيزياء، وبواسطة العمل وفقاً مبدأ تورنجر فإن قوانين الفيزياء تجعل من الممكن فيزيائيًّا لنفس القوانين أن تكون معروفة للموضوعات الفيزيائية.

طالما أن بناء مولد حقيقة تقديرية عالى ممكن فيزيائيًّا، فلا بد أنه قد ينشأ في بعض العوالم. ثمة توضيح ضروري هنا. كما شرحنا في الفصل الثالث، يمكننا بشكل طبيعي أن نُعرف عملية ممكنة فيزيائيًّا بأنها تلك التي تحدث بشكل طبيعي في متعدد العوالم. ولكن على نحو قاطع فإن مولد الحقيقة التقديرية وهو حالة محدودة يتطلب عدة مصادر تحكمية لكي يعمل، وهكذا فالذي يعنى بالقول أن "ممكن فيزيائيًّا" هو أن مولدات الحقيقة التقديرية لها إعادة عرض تتشابه مع مجموعة كل البيئات الممكنة فيزيائيًّا الموجودة في متعدد العوالم، أن يتم محاكاتها في مكان ما. ويشبه ذلك أن قوانين الفيزياء طالما كانت قابلة لأن تحلكي فإنها يتم محاكاتها في مكان ما. وعلى ذلك فإنه يتبع مبدأ تورنجر (في أقوى تشكيل له والذي ناقشه توا) أن قوانين الفيزياء ليس مجرد أنها تفوض قابلية للفهم والإدراك ببعض معنى تجريدي يُفهم بواسطة علماء تجريديين. إنها ببساطة تتضمن الوجود الفيزيائي، في مكان ما من متعدد الأكون، اللعينات التي تفهمها على نحو اعتباطي أو تحكيمي. سوف أناقش تلك التطبيقات أكثر في الفصول اللاحقة.

الآن سأعود للسؤال الذي وضعته في الفصل السابق أذاً كان لدينا فقط حقيقة تقديرية لمحاكاة قائمة على القوانين الفيزيائية الخاطئة لكي نتعلم منها، إذن نتوقع أننا سنتعلم القوانين الخاطئة. أول ما نركز عليه أنه لدينا فقط حقيقة تقديرية قائمة على قوانين خاطئة لنتعلم منها! وكما قلت كل تجاربنا الخارجية هي حقيقة تقديرية ولدتها أدمغتنا. وطالما أن كل نظرياتنا وفاهيمنا (سواء المادة أو المتعلم)
ليس أننا نستطيع أن نستثمر في سؤال. نصوص أن شخصًا ما مسجوبًا في جزء صغير وغير مهم من الحقيقة التي تختصنا - مثل دخل مولد حقيقة تقديرية عالية سبق برمجه طبقًا لقوانين فيزيائية خاطئة. ما الذي يمكن لهذا الشخص أن يتعلم من القوانين الخاطئة تلك عن حقيقيتها الخارجية؟ الوعية الأولى يبدو أنه...
يستطيع أن يكتشف أي شيء عنها، كما يبدو أن أكثر ما سيتمكنه اكتشافه هي قوانين الأداء أعلى البرنامج، التي يقوم الكمبيوتر بمحاكاة سجين هذا الشخص.

ولكن الأمر ليس كذلك! لا بد أن يكون في ذهننا أنه أو كان السجناء من العلماء فإنهم سيجدون في البحث عن التفسيرات والتدبّبات، وبكلمات أخرى فإنهم لن يكونوا راضين عن مجرد معرفتهم للبرنامج الذي يتحكم في سجنهم: سوف يرغبون في تفسير أصل ومساهمة العوامل الأخرى، التي يلاحظونها في البيئة التي يسكنها بما في ذلك نواتهم أنفسهم. ولكن في معظم بيئات الحقيقة التقديرية لا توجد مثل هذه التفسيرات، لأن الموضوعات التي تم المحاكات لاتتجلّى هنا ولكنها مصممة في الحقيقة الخارجية. افترض أنك تلعب بواحدة من ألعاب الفيديو في الحقيقة التقديرية. ومن أجل التبسيط افترض أن اللعبة هي مجرد "الشطرنج"، أو منظور شخصي ربما، الذي يتبنى فيه شخصية الملك، سوف تستخدم السبل العلمية المتاحة والانطباعات التالية لسوف تتعلم أن "موت الملك" أو "إحراجه" (وضعه في مأزق) هي من الأحداث الممكنة فيزيائيًا (ممكنة لدى أحسن فهم وإدراك لك عن كيف تعمل البيئة) ولكن وضع تسعه بيداء بجليّة الشأن ليس ممكناً فيزيائيًا. ويمجرد فهمك للقوانين بدرجة كافية، سوف تلاحظ أن رقعة الشطرنج موضوع بسيط جداً لكي تكون لديه أفكار مثلاً، وبالتالي فإن عمليةئك أنت الفكرية لا يمكن أن تسيطر عليها قواعد اللعبة وحدها، وبمثابة يمكن أن يكون ذلك خلال أي عدد من مباريات الشطرنج: القطع لا يمكنها أبدًا أن تستخرج أو تستنبط إعادة إنتاج ترتيبها أو هؤلها. إذا لم تتمكن الحياة من التشكيل على رقعة الشطرنج فاقلًا من ذلك أن يشكّل الذكاء أو العقل. ولهذا يمكن أن تستنتج أيضًا أن عمليات الفكر لا يمكن أن تنجز أو تنازل في الكون الذي تجد نفسك فيه، وهكذا إذا لم تكن عشتك في بيئة محاكية طوال حياتك، ولم تكن لديك ذكرياتك عن العالم الخارجي لاتخاذها في الاعتبار أيضًا، فلن تكون معرفتك وليدة هذه البيئة أو في حالة المخاض بالنسبة إليها. سوف تعرف أنه ول أن الكون له منظور عام ويخضع
لبعض القوانين فلا بد أن تكون هناك أكون أعرض خارجة، تخصف لقائنين فيزياء مختلفة. وربما أيضًا يمكنك تخمين بعض السبل لأن هذه القوانين الأعرض لا بد لها أن تختلف عن قواعد رقعة الشطرينج وقوائنينها.

أبلغ أثر سي. كلارك(*) أنه من الممكن أن تكون هذه القواعد قبلياً. إنه موضوع لم يتكلم عنه في الحقيقة السابقة عن التفكير العلمي والتي تمثل طريقة خاطئة. الحقيقة هي أنه بالنسبة لأي أسرة يفهم جيداً ما هي الحقيقة التقريبية فإنه حتى بالنسبة لسرقة غبر شرف سوف يتجاوز عن التقنية، لأنه لم يكن للسحر في الحقيقة المدركة. على سبيل المثال، فهو مجرد حيلة لتثبيت صورة لتقوم تقصي أو قانون جديد في الفيزياء.

التسبيب من خلال مقدمة عن وجود المرء ذاته يسمى التسبب الأنثروبولوجي ومع ما له من قابلية التطبيق في المجال الكوني، فهو عادة ما تكون له كمية من فروض جوهرية عن طبيعة "المرء نفسه" قبل أن يستخدم في تعريف النتائج. ولكن التسبب الأنثروبولوجي ليس هو الطريقة الوحيد التي يمكن أن تشارك سجن الحقيقة التقريبية المفترض في إمكانية اكتساب المعرفة من العالم الخارجي. أي من التفسيرات المستخرجة منه تصل بالكاد للحقيقة الخارجية. على سبيل المثال فإنها توجد في قواعد الشطرينج أن اللاعب صاحب الفكر يستطيع أن يميز أن "الدليل القديم" البالي من هذه القواعد له تاريخ تطور: هناك حركات استثنائية مثل التثبيت وقت جندي في نصف

(*) أثر سي. كلارك (مواليد 1917) فلكي إنجلزي (ينتمي حالياً من خلال كرسی متهرك) له اختبارات في المجالات الفلكية كما كتب في الخيال العلمي كما كان مستقلًا عن الدار في الحرب العالمية الثانية. ومنذ عام 1954 ربط الفلك بالبحر، وفي عام 1956 انتقل للحياة في كولومبو بسري لانكا ليصبح رائدًا للاستكشافات على شاطئها. (الترجمة)
خطوة مما تتوزع بها التعقيدات ولكن تجود اللعبة. في تفسير التعقيد يمكن للمرء أن يحكم بأن قواعد اللعبة لم تكن على ما هي عليه الآن.

وفقًا للمخطط البوبيري (نسبة إلى بوير للأشياء)، فإن التفسيرات عادة ما تكون ودماً إلى معضلات تستوجب التفسير في الأخرى. إذا فشل السجناء بعد فترة في تجريد تفسيراتهم القائمة، ربما يستسلمون، أو ربما ويشكل زائف ينتبهون إلى أنه ليس فيه مزيد من التفسيرات المتاحة ولكن قد لا يستسلمون ويستمرون في التفكير حول تلك الأوجه من بنيتهم التي ينقصها التفسير. وهكذا لو أن السجناء ذوي التقنية العالية أرادوا أن يكونوا واثقين أن بنيتهم المحاكية سوف تظل دائماً خادعة للسجناء في التفكير بأنه لا يوجد عالم خارجي، فربما يقومون بوقف العمل بالنسبة لهؤلاء السجناء. كلما أرادوا أن يستمر الوعي لمدة أطول كلما زادوا في عقيرية البرنامج، ليس كافيًا منع المشارك في السجن من ملاحظة الخارج. البيئة المحاكية لا بد أن تكون غير محتاجة لأي تفسير عما هو بالداخل يكون متصلاً بالخارج أو متطلباً له التأمل فيما هو في الخارج، وبكلمات أخرى فإن البيئة لا بد لها أن تكون مستكفيّة بتفسيراتها.

وباختصار أنا أشك أن أي جزء من الحقيقة لهذه الخاصة.
اصطلاحات:

<table>
<thead>
<tr>
<th>مولد عالمي للحقيقة التقديرية:</th>
<th>Universal virtual - practically generator</th>
</tr>
</thead>
<tbody>
<tr>
<td>البيئات الممكنة منطقيًا التي لا يمكن محاكاتها بـ مولد حقيقة تقديرية ممكن فزيائيًا:</td>
<td>Cantgotu environments</td>
</tr>
<tr>
<td>شكل البرهان الذي يتخيل فيه المرء عمل قائمة لمجموعة جواهر أو كينونات ومن خلال استخدام ذات القائمة يبني أو ينشئ: كينونات ذات صلة ولكن لا يمكن أن تكون على ذات القائمة.</td>
<td>الجدل الانحرافي (المائل): Diagonal argument</td>
</tr>
<tr>
<td>واحدة من أوائل الموديلات المجردة للحوسبة.</td>
<td>ماكينة تورننج: Turing Machine</td>
</tr>
<tr>
<td>(في شكل الأقوى) أنه من الممكن فزيائيًا بناء مولد حقيقة تقديرية عالمي. وطبقًا للافتراض الذي سقته فليس ثمة قيد على مولدات الحقيقة التقديرية التصغرين بالعالمية التي يمكن أن تبني هنا أو هناك عبر التعدد والكرة (متعدد العوالم).</td>
<td>ماكينة تورننج العالمية: Universal turing machine</td>
</tr>
</tbody>
</table>
الخلاصة:

الجدل الانحرافي يظهر لنا أن الأغلبية الهائلة من البيئات الممكَّنة منها لا يمكن محاكاتها في الحقيقة التقديرية. وقد أسميتها بيئات الكانتنجوتو. وعلى الرغم من ذلك لا يوجد تشابة ذاتي مفهوم أو مدرك في الحقيقة الفيزيائية وهو المعبر عنه في "مبدأ تورنچ". يمكن بناء مولد حقيقة تقديرية تحتوي إعادة العرض فيه على كل البيئات الممكَّنة فيزيائيًّا. وعلى هذا فإن بناء أي شيء فيزيائي قابل للبناء يمكن أن يشبه كل سلوك والاستجابات لدى أي موضوع ممكَّن فيزيائيًّا أو عملية ممكَّنة فيزيائيًّا. هذا هو الذي يجعل الحقيقة مفهومة أو مدركة.

إنه أيضًا يجعل التطور العضوي (للكائن الحي) في الحياة ممكنًا. ومع ذلك وقبل أن نناقش التطور الذي اعتبره الفرع الرابع لنسبية الحقيقة سوف أقوم برحلة قصيرة في مجال المعرفة.
الفصل السابع
حديث حول "التبرير"
(أو دافيد والاستقراء الخفيف)
اعتقد أنني قمت بحل خطرة فلسفية كبيرة: ألا وهي مشكلة الاستقراء

كارل بوير

Karl Popper

لقد شرحت في مقدمة هذا الكتاب أنه ليس بمثابة وجود دفاعًا عن النظريات التأسيسية للأربعة أفرع الرئيسية التي استنبطتها نسبيًا للحقيقة، أنه بحث عن ما تقوله هذه النظريات، وأي نوع من القضايا تقوم بوصفها لنا، وإذا فهم أو أوجه هدفه لأي مستوى من العمليات في النظريات المدفوعة معها. ومع ذلك، فشلت نظرية من هذا النوع الأخير تسمى "الحس العام" والتي يتطلب القيم أو التفسير من ذهنها كلما بديعتها تتفق في مواجهة ما عيّنها تأكيدها، ومنذ قمت في الفصل الثاني بـ "رفضها جذرًا وأفرعًا من حيث قولها بأنه لا يوجد سوى كون واحد.

وفي الفصل الحادي عشر سوف أقوم بنفس الشيء (الرفض) لفكرتك القائلة بأن الزمن "يتدفق" أو أن وعينا يتحرك عبر الزمن. وفي الفصل الثالث انتقدت "الاستقراء" وفكرة "الحس العام" الخاصة بـ "أشكل النظريات حول العالم الفيزيائي من خلال تعميم نتائج الملاحظة"، وقامتا نقوم أو نحكم على تلك النظريات عبر إعادة "الملاحظة".

لقد شرحت كيف أن الاستقراء من خلال الملاحظة يستحيل أمره وأن التقويم الاستقرازي غير صالح. وكيف يقوم الاستقراء على فكرة خاطئة لتحصل في أن العلم ليس إلا البحث عن التنبؤات على أساس الملاحظة أكثر منه شروط وتفسيرات كاستجابية للملاحظات. وشرح أيضاً (بعد بوير بالطبع) أن العلم يصنع التقدم من خلال تقديم تفسيرات جديدة و اختيار أحسنها بناء على إضعافاتها للتجربة. كل هذا يحظى بقبول واسع لدى الكثير من العلماء والفلاسفة. أما غير المقبول لدى معظم الفلاسفة هو أن تلك العلمية بالذات قد قُوِّمت أو انتهى الأمر فيها إلى حكم. دعني أشرح لك:
يسعى العلم إلى التفسير الأحسن. التفسير العلمي يعني اعتبارًا للاحظارنا عبر المطالبة أو الإدعاء كيف تبدو الحقيقة وكيف تعمل. نحن نعتبر أن التفسير الأحسن عندما يدع نهاتيات مفتوحة أقل (مثل الجوانب التي تظل بعد خواصها غير مفروضة). وأنه يتطلب وضع شروط أبسط، وأنه أكثر عمومية، وأنه ذو صلة بمعايير أفضل وأسهل في مجالات أخرى، وهكذا .. ولكن لما يكون التفسير أفضل عندما نفترض دائمًا أنه كذلك في الواقع العملي. أعني الحديث عن نظرية صادقة؟ ولذا ما من أجل ذلك تكون رأياً بأن نظرية أخرى هي خطأ صرف (مثل واحدة ليس لها أي من الخواص السالفة) وإنها بالضرورة زائدة؟ بالطبع ليست هناك علاقة منطقية ضرورية بين الصدق وقوة التفسير. التفسير السيئ (مثل نظرية الآلانة) ربما يكون صادقًا. حتى أفضل التفسيرات المتاحة وأصدقها ربما تفسر عن تنبؤ زائف في حالات معينة، وقد تكون هذه الحالات بينها هي أكثر ما تعتمد على النظرية فيه. ليس ثمة شكل صالح للتسبيب يمكنه منطقًا أن يحكم مثل هذه الإمكانات أو حتى تبنته أيضًا. ولكن في هذه الحالة ما الذي يقوم اعتقادًا على أفضل التفسيرات كمؤشرات تقود إلى صنع القرار العلمي؟ وبصفة أكثر عمومية، أي كان المعيار الذي نستخدمه في الحكم على النظريات العلمية كيف يمكن لحقيقة أن النظرية التي تلتقي مع هذا المعيار اليوم سوف تفسر عن أي شيء يمكنه أن يحدث لو أننا اعتمدنا على ذات النظرية وحدها غذًا؟

هذا هو الشكل الأحدث لمشكلة الاستقراء، معظم الفلاسفة راضون الآن كالرضا الذي كان عند بيرق عندما ذكر أن النظريات الجديدة لم تستنتج إلا شيئًا من مجرد فرضيات ظنية، وأيضًا يقبلون أن التقدم يتم عبر الحدوس والرفض (كما وصفنا في الفصل الثالث) وأن النظريات تصبح مقبولة حينما يتم رفض كل النظريات المتنافسة معها، وليس من خلال قيمة تعدد الوقائع المثبتة لها. إنهم يقبلون بأن المعرفة يُحصل على عنها عندما تكون هذا المنحى وبناءً يمكن الاعتماد عليها. المشكلة أنهم لا يعرفون لماذا تكون على هذا النحو. الاستقراءيون التقليديين حاولوا تشكيل مبدأ للاستقراء الذي يقول بأن الوقائع المثبتة تجعل من النظرية أكثر قبولاً، أو القول بأن المستقبل سوف
يشبه الماضي، أو أي من قبل هذه العبارات. حاولوا إنشاء منهج علمي استقرائي ضاربين عرض الحالات ما هو ممكن استنتاجه بشكل صحيح وصالح من "البيانات" (النتائج العملية). جميعهم فشلا للسبب الذي شرحته، وحتى لو كانوا نجحوا بمعنى إنشاء مخطط علمي يمكن اتباعه بنجاح في خلق معرفة علمية، فلم يكن هذا ليحل مشكلة الاستقراء، على نحو ما هي مفهومه في أيمنا الحالية. لأنه في هذه الحالة سيكون الاستقراء واحدًا من الطرق الممكنة للاختيار بين النظريات، وستبقى المشكلة: لماذا يعتمد على هذه النظريات كأساس لتصوراته. وبكلمات أخرى فإن الفلاسفة الذين ي يعتبرهم الفقه بشأن مشكلة الاستقراء ليسوا استقرائيين بالمعنى التقليدي. لا يحاولون التحول أو تقويم أي نظرية بأسلوب استقرائي. إنهم لا يتوقعون أن السماء ستندفع على الأرض، ولكنهم لا يعرفون كيف يحكمون أو يقومون بهذا التوقع.

تتوق فلسفة اليوم إلى مثل هذا التقويم المتفقد ولم يعودوا يصدقون أن الاستقراء هو الذي سيستدنا به، ومع ذلك تظل لديهم في مخططهم للأشياء ما يشبه الاستقرائية، مثلا يوجد لدى أهل التدين عندما يفقدون إيمانهم فإنهم يعانون في مخططهم للأشياء ثغرة في كيف يكون الرجاء، ولكن في رأيي يكن شبه فارق صغير بين أن تكون في مخطط للأشياء ثغرة ما بشكل X مثلًا وبين الإيمان ب X. وطالما أريد أن أحدد مفهومًا مميزًا يرضي عنه ذوي الفهم السديد لمشكلة الاستقراء، فإني أود أن أعيد تعريف المصطلح بحيث يعني ذلك الذي يعتقد أن عدم صلاحية التقويم الاستقرائي كان يمثل معضلة للآباء من مؤسسات العلم. وبكلمات أخرى فإن الاستقراء يعتقد أن هناك ثغرة يجب ملؤها، إذا لم يكن من خلال مبدأ الاستقراء فلا بد من إيجاد شيء آخر لمثلى هذه الثغرة. بعض الاستقرائيين لا يفهمون أن يُستقروا هكذا، ولكن بعضهم يفهم الأمر، وإذا سُلطت عليهم تسمية "الاستقرائيين الملغزون" أو "الفاضلون".
معظم الفلاسفة المعاصرين يقرون في الشريحة الأخيرة، والذي يجعل الأشياء أسوأ أنهم على نحو كبير (مثل كثير من العلماء) يبغيون دور التفسير في العمليات العلمية. هكذا يفعل معظم البوبريين (المشاكيين لبوبير) المضادين للاستقراء والذين يقودهم ذلك إلى إقارر وجود شيء اسمه التقويم أو التبرير (حتى التبجرير التجريبي أو المؤقت). هذا من شأنه أن يفتح ثغرة تفسير جديدة في مخططهم للأشياء. الفيلسوف جون وورال، استطاع أن يضع الأمر في شكل درامي على النحو الذي يراه حينما عرضه في شكل حوار تختيلي بين بوبير ومجموعة فلسفية أخرى تحت عنوان "الذات فشل بوبير" ووافق Watkins ووانكتب Popper.

الصورة أنهم يقرون على قمة برج إيفيل (في باريس) وقرر أحد المشاركين - والذي يجد الساحة - قرر أن ينزل عن طريق القفز من القمة بدلاً من استخدام المصدع على النحو المألوف. حاول الآخرون إقناعهم بأن القفز يعني الموت المحتمل. استخدما أفضل المتاح لديهم من الحجج الفلسفية والعلمية ولكن السبحة المفيدة أو الحانق لا يزال يوقع أنه سيعوم في الهواء طاحبًا بأمان وظل مشيرًا إلى أنه لا يوجد توقع متناقض يمكنه منطقياً إثبات أنه التوقع الأفضل بناء على الخبرة السابقة.

أنا أعتقد أننا نستطيع أن نبرر توقعنا بضرورة "السّبحة". التبرير (هو تجريبي ومؤقت بالطبع وبصفة دائمة) يأتي عبر التفسيرات التي تقدمها النظريات ذات الصلة. إلى أي مدى تكون فيه هذه التفسيرات جيدة، والحكم عليها بأنه يمكن الاعتماد عليها بالنسبة للنظريات ذات الصلة. وهكذا ففي الهد على وورال سأقدم هنا والآن محادثة من تخيلنا وننفس الطريقة (بيني وبين واحد ممن أسميتهم بالاستقرائيين الملغيين أو الغواصين).

دافيدي (المؤلف): نعم سوف أعتبر أن هذه النظرية قد قُومت لدرجة إمكان الاعتماد عليها. طبقًا لمنهج البوبيري فإن المرء عليه في مثل هذه الحالات أن يعتمد على النظرية
الأكثر تثبتًا وتاليًا وتعزيزًا، أي تلك التي كانت موضوعًا لأكثر الاختبارات صرامة واستطاعت البقاء أمامها بينما تم رفض النظريات الأخرى.

الملغز: (إ) أنت تقول إن على المرء أن يعتمد على النظرية الأكثر تثبتًا وتاليًا وتعزيزًا. ولكن لماذا بالضبط، أفترض أنه طبقًا لـ بوير فإن عمليات الإثبات وأدلة التأييد والتعزيز هي التي فَزت النظرية بمعنى أن تحبُّها أقرب لأن تكون صادقة عن تنبؤات النظريات الأخرى.

دافيد: حسنًا ليست أقرب للصدق من كل النظريات الأخرى، لأنه ما لا شك فيه أنه في يوم ما سوف تحظى بنظريات أفضل في مجال الجاذبية.

الملغز: أنظر الآن، من فضلك حاول توافق على أنه لا يُخطئ كل منا الآخر من خلال انتقادات لا تتطابق مع صلب أو جوهر ما نناقشه. بالطبع سوف تكون ثمة نظرية أفضل عن الجاذبية في يوم ما، ولكن عليك أن تختار أن تُقفز أم لا. الآن، وأن تعطينا الدليل المفتاح على أنك تخيّرت أي نظرية للتصرف طبقًا لها. وأنت اختبرتها طبقًا للمعيار البوير. لأنك تعتقد أن تلك المعايير هي أكثرها قربًا لاختيار النظرية الأصح تنبؤًا.

دافيد: نعم.

الملغز: من أجل التلخيص، أنت تعتقد أن الدليل السائد المتاح هو الذي يُقّوم أو يحكم على تنبؤاتك ستُقل إذا ما فَزت عبر السور.

دافيد: لا، إنه لا يفعل ذلك.

الملغز: اللنة، إنك تُقاوِّس نفسك، لقد قلت حالً إن التنبؤ قد تم تقويمه.
دافيد: تم تقويمه، ولكن لم يتم تقويمه عبر الدليل، إذا كنت تتعلق بالدليل كل التجارب التي جاءت مخرجاتها أو نتائجها متطابقة مع النظريات الصحيح في الماضي.
وكما نعلم جميعًا فإن الدليل يتناغم ويتناوب مع عدد لا نهائي من النظريات بما فيها النظريات التي تتبناها بكل نتيجة ممكّنة منطقية لعملية قفز من فوق السور.
الملفز: إذن في ضوء هذه النظرة أكبر: المشكلة كلها تتمثل في العثور على ما يمكنه تقويم التنبؤ، تلك هي مشكلة الاستقراء.
دافيد: حسنًا تلك هي المشكلة التي حلها بوير.
الملفز: هذا خبر بالنسبة لي، لقد قمت بدراسة بوير بشكل شامل. وعلى أية حال،
ما هو الحل؟ إنّي تواقي لسماعه، والذي يُقوم التنبؤ، إذا لم يكن هو الدليل؟
دافيد: الحجة أو البرهان.
الملفز: الحجة أو البرهان؟
دافيد: نعم الحجة أو البرهان هي التي من شأنها دائمًا أن تُقوم أي شيء تجريبيًا بالطبع. كل النظرية هو موضوع للخطأ وما شاكل ذلك، ولكن تبقى الحجة يمكنها أحيانًا أن تُقوم النظريات. هذا هو ما ألجه كانت الحجة.
الملفز: هذه واحدة أخرى من انتقاداتك لا يمكن أن تعلّي أن النظرية يمكن تقويمها بالحجة الصرفة أو البرهان القمح، مثل النظرية الرياضيّة. فالمؤكّد أن الدليل يلعب دورًا ما.

(*) في الواقع إن التنظير الرياضي لم يبرم عليه بالحجة المضيفة (المستقلة عن الفيزياء) هو الآخر، كما ساختر في الفصل العاشر (المؤلف).
دافيد: بالطبع. هذه نظرية تجريبية، وهكذا فإنه طبقًا للمنهج العلمي
البويرى، فإن التجارب الحاسمة والعصبية تلعب دورًا محرورًا لحساس الأمر بين
النظرية والنظريات المنافسة لها فهي تستطيع التضمن للبقاء بينما يتم رفض
الأخرى.
المفرد: وذلك يستتبع أي تبعًا للبقاء والرفض، فإن كل ما حدث في الماضي،
والاستخدام العملي للنظرية في التنبؤ بالمستقبل، كل هذا قد تم تقويمه.
دافيد: أنا افترض ذلك. ولو أنه يبدو دائمًا قولاً مراوغًا وفقًا لذلك لم نكن نتحدث
عن الاستقراء المنطقي.
المفرد: تلك هي النقطة أو الموضوع برمته. ما صنف هذه التواريخ? دعني أحاول أن
أخذ نقطة عليك هنا. لقد اعتبرت أن الحجة وما بخرج عن التجربة لما اللسان يقومان
النظرية إذا جاءت نتائج التجربة بشكل مختلف، فإن الحجة سوف تقوم تجربة أخرى.
فهل تقبل بهذا المعنى أن تذهب مع الحجة وتقبلها، نعم، أنا لا أريد أن أكرر هذا
الشرط - إن نتائج التجربة في الماضي هي التي تقوم التنبؤ؟
دافيد: نعم أقبل.
المفرد: إذا ماذا بالضبط عن هذه المخارج الحالية يفترق عن مخارج التجربة في
الماضى التي قوّمت التنبؤ، أنا افترض أن المخارج القديمة المكثة هي التي يمكن أن
تقوم بتقويم التنبؤ المعاكس أو المناقض.
دافيد: إنها المخارج الحالية التي بها رفضت النظريات المنافسة، وسانت
النظريات التي كشف لنا الحقيقة حاليًا أو التي انتصرت على غيرها.
المفرد: حسنًا، الآن نصبت جيدًا، لذلك قلت توا شيئًا ليس فقط يمكن البرهنة على
كنبه، بل أنت نفسك قد أثبتت على عدم صدقها منذ لحظة مضت. لقد قلت إن المخارج
التي أتت بها التجربة هي التي تسببت في رفض النظريات المنافسة ولكنك تعلم جيدًا
أنه ليست أي مجموعة من مخارج التجربة يمكنها أن ترفض كل النظريات الممكنة المتناقضة لنظريات عامة. لقد قلت بنفسك أن أي مجموعة من المخارج القديمة (أنا أستشهد) تكون متفقة مع عدد لا نهائي من النظريات بما فيهم تلك التي تنتبأ بها توافر ممكنة متناقضة لقفرى فوق السور وهذا يستتبع بشكل صارم أن التنبؤ الذي فضله قد قومته نتائج التجربة، لأن هناك عددًا غير محدود من النظريات المتناقضة لنظريتك، وليس مرفوضة بعد، والتي يمكن أن تصنع تنبؤات معارضة.

دافيدي: أنا بالفعل سعيد، لقد استمعت إليك بإنصات جيد كما طلبت مني، والآن أرى أن جزءًا من الاختلاف بيننا يرجع إلى عدم فهم المصطلحات التي استخدمناها.

عندما تحدث بور عن النظريات المتناقضة لنظريات معينة لم يكن يعني مجموعه كل ما يمكن أن يت 공간 متناقضة، إنما كان يعني كل النظريات المتناقضة الحالية، تلك المقترحة في مجرى الخلاف العقلي (التي تشمل النظريات التي يقترحها فرد واحد بشكل عقلي صرف في النزاع العقلي) في رأسه هو.

اللغز: فهمت، سأقبل بمصطلحاتك ولكن بشكل عارض أو ثانوي (لا أعتقد أن هذا يهم بالنسبة لموضوعنا الحالي، ولكنني فضولي)، إنه تأكد غريب تنسبه إلى بور أن الثقة في أي نظرية تعتمد على الصدفة التي اقترح فيها آخرون في الماضي نظريات قد تكون زائفة، باكثر من الرضا عن النظرية محل السؤال أو على الدليل التجريبي.

دافيدي: ليس بالضبط. أنت الاستكرائيون حين تتحدثون عن ...

اللغز: أنا ليست استكرائيًا.

دافيدي: بل أنت كذلك.

اللغز: أ烦 مرة أخرى، سوف أقبل بمصطلحك إذا أصررت على ذلك، ولكن ربما ترى في حيوانًا شائعا من تلك الحيوانات المنقرضة. إنه من الضراوة بمكان أن تلقب
شخصًا بأنه استقرائي إذا كانت كل أطروحته تتمثل في عدم صلاحية التسبب الاستقرائي إذا قدم لنا مشكلة فلسفية غير محلولة.

دأب على ذلك بل أعتقد أن تلك الأطروحة هي التي عرفت ودائماً ما يتم بها تعريف الاستقرائي. ولكنني أرى أن بوير قد حقق شيئًا واحدًا: إن الاستقراء قد أصبح نوعًا من الإهانة أو السباب. وعلى أي حال، كنت أشرح أنه ليس غريباً أن مصداقيته أي نظرية لا بد أن تعتمد على النظريات الزائفة التي اقترحها الناس في الماضي، حتى الاستقرائيين يتحدثون عن مصداقية نظرية عن عدمه إذا احتجوا على دليل معين. حسنًا، ربما يتحدث البويريون عن أن النظرية لها مصداقية إذا كانت تمثل أفضل النتائج لدينا عمليًا إذا ما كانت تحتوي على ما يمكن أن نسميه "موقفًا إزاء مضللة". ومن أكثر سمات مثل هذا الموقف: ما هي النظريات أو التفسيرات محل الرضا، ما هي المحجتي حدث لها تقدمًا، وما هي النظريات التي تم رفضها، التأييد ليس هو فقط إثبات النظرية الرابحة. إنه يتطلب الرفض التجريبي للنظريات المنافسة. الأمثلة المثبتة ليس لها معنى في حد ذاتها.

اللغز: مثير حقًا. الآن فهمت الدور الذي يلعبه رفض النظريات المنافسة في تقديم تنبؤاتها. في ظل الاستقراء من المفترض أن الملاحظة هي مساحة أولية. في ظل الاستقراء: المرء يتخيل مجموعة كبيرة من الملاحظات القديمة التي يفترض أن النظرية تستند بها على الأشياء، واللاحظة أيضًا هي التي تنشئ الدليل الذي يقوم النظرية إلى حد ما. وفي الصورة التي يقدمها البويريون للتقدم العلمي فليست هي الملاحظة التي يعول عليها وإنما الملاحظات، الخلافات، النظريات والانتقادات التي لها جميعها الأولوية. والتجارب يتم تصميمها وأداءها فقط لحل الخلافات. وبالتالي فإن نتائج التجارب هي ودحاها بالفعل التي تتبين في رفض النظرية، وليس مجرد أن النظرية التي لا بد لها من مناضل عند في الخلاف العقلي، هي التي تنشئ التكيد أو الإثبات.

وهكذا فإن تلك التجارب هي التي تمدنا بالدليل على مصداقية النظرية المنصرمة.

225
لا داعي: هذا صحيح، وحتى حينئذ فإن الصدقية التي يمنحها الإثبات ليست مطلقة وإنما لها صلة بالنظريات المناضلة. أي أننا نتوقف استراتيجية الاعتماد على النظريات المشتبه لتنقق أحسنها من بين النظريات المقترحة. هذا الأساس المقنع للتصريف. فنحن نستن في حاجة (ولا يمكن أن نحصل عليه بشكل صحيح) إلى أن تؤكد لدينا جودة حتى أحسن مجرى للتصريف سيكون عليه الأمر. والأكثر من ذلك أنت قد تكون دومًا على خطأ، ولكن ماذا بعد؟ إنا لا نستطيع استخدام النظريات التي لم تُقترح بعد ولا تصحيح الأخطاء التي لم نرها حتى الآن.

الملغز: إذن هذا الوضع. أنا سعيد لتعليمي شيئًا حول المناهج العلمية. ولكن الآن - وامل ألا تظن أي الفلسفة - لا بد أن ألتقي الانتهاء ول مرة أخرى إلى السؤال الذي طالما سألته. افترض أن نظرية قد استطاعت كل هذه العملات، وفي مرة من المرات كان لها نظريات منافسة وتتم أداء التجارب وتتم رفض تلك المنافسة. ولكن هي نفسها لم ترفض ومذكذا تأكد. ماذا بعد تأكيدها ذلك يُفهم اعتقادنا عليها في المستقبل؟

لا داعي: طالما أن كل النظريات المنافسة تم رفضها، فهي إذن لم تعد قابلة للدفاع عنها عقلًا. النظرية المُؤكدة أو المُثبتة هي التي يمكن الدفاع عنها عقليًا وهي وحدها التي تبقى.

الملغز: ولكن هذا فقط ينقل تسلسل الضوء على المستقبل المُصدر لنا عبر توكيدات الماضي، للمستقبل المُصدر لنا عبر ما رفضناه في الماضي، تبقى نفس المشكلة. لماذا بالضبط تصبح نظرية مرفوضة تجريبيًا مما لا يمكن الدفاع عنها عقليًا؟ هل لأن لها مجرد واحدة من بين النتائج docsًا لا يمكنها أن تكون صحيحة؟

لا داعي: نعم.

الملغز: ولكن بالتأكيد، وبالنظر القابلية النظرية للتطبيق مستقبليًا ليس هذا من قبيل النقد المنطقي ذى الصلة بالأمر. أعتقد أن النظرية المرفوضة لا يمكنها أن تكون
صحيحة على المستوى العالمي (5). وبالتحديد، لا يمكنها أيضًا أن تكون صحيحة في الماضي، عندما كانت مستقرة. ولكن يمكن أن تظل بعض توابعها صحيحة، وبالتحديد يمكن أن تكون صحيحة على المستوى العالمي مستقبلاً.

دافيدي: هذه "الصحة في الماضي" و"الصحة في المستقبل" نوع من المصطلحات المروغة. كل تنبؤ محدد لنظرية هو إما صادق أو زائف، هذا غير قابل للتغيير إن ما تعنيه حقيقة هو أنه رغم أن النظرية المرفوعة هي على نحو مباشر زائفة لأنها تضع لنا بعض التنبؤات الزائفة، فكل تنبؤاتها عن المستقبل ربما رغم ذلك تصبح صادقة. وبكلمات أخرى فإن "نظرية مختلفة" التي تضع لنا نفس التنبؤات عن المستقبل، ولكن تنبؤاتها المختلفة عن الماضي ربما تصبح صحيحة.

اللغز: إذا أحبت ذلك، إذن بدلاً من سؤالي لماذا تكون النظرية المرفوعة غير قابلة للدفاع عنها عقليةً، لا بد، وبحديث مباشر، أن يكون سؤالي على هذا النحو: لماذا يجعل رفض النظرية كل فرع من فروعها الذي يتطلب معها عن المستقبل هو بدونه غير قابل للدفاع عنه عقليًا، حتى واأن هذا الفرع لم يتم رفضه؟

دافيدي: ليس هذا الرفض هو الذي يصور مثل هذه النظريات على أنها غير قابلة للدفاع عنها، ولكن لأنها أحيانًا تكون كذلك من حيث أن لها بعض التفسيرات السبعة. وهمكنا يحدث تقدم في العلم، لأنه لكي تتيح نظرية إحدى الحجج المؤيدة، هذا يجعل كل النظريات المنافسة غير قابلة للدفاع عنها، وهذا يشتمل كل فروعها التي ربما فكر فيها أي أحد. ولكن أذكر أن ما يعنيه النظريات المنافسة هي التي تكون في ذات المجال والتي تحتاج الدفاع عنها. وعلى سبيل المثال في مجال الجاذبية لا أحد اقترح نظرية قابلة للدفاع عنها وتتوافق مع التنبؤات التي خضعت للاختبار في النظرية الغالبة، ولكن (6) فعليًا، يمكنها أن تظل صحيحة عالميًا إذا ما كانت النظريات الأخرى زائفة على المستوى التجربي. (المؤلف)
تختلف مع تنبيهات عن التجارب المستقبلية. أنا متأكد أن مثل هذه النظريات ممكنة-
 مثلًا، النظريات التي سترشد النظرية الغالبة ستكون واحدة منها - ولكن طالما أن أحدًا
 لم يفكر بعد في مثل هذه النظرية، كيف للمرء أن يتصور بناء على ذلك؟
اللغز: ما الذي تعنيه بأن أحدًا لم يفكر بعد في مثل هذه النظريات أنا شخصيًا
استطيع أن أفكر في واحدة الآن.

دايفيد: أشك كثيرًا في أنك تستطيع ذلك.

اللغز: بالطبع أستطيع. ما هي: طالما أن يا دافيد تقفز من على السور أو من
المناطق العالية بطرق تباعد للنظرية الغالبة، سوف تقفل ذلك ستقوم في الهواء بدلاً من
ذلك. ويبدو أن عنا فالتفسير العالية التي تتمعن بالعالية، وتستضعها لك على هذا
ال نحو، كل اختبار في الماضي كان ضروريًا لنظرتي (الغالبة) سيكون بالضرورة لأزمًا
لنظرتي إذا كل تنبؤات كل منها متشابهة بالنظر لتجارة التي أجريت في الماضي.
وبما أن النظريات المناكسة لنظرتي قد رفضت هي نفسها التي رفعت بالنسبة
لنظرتي، وطالما أن نظرتي الجديدة قد تأيدت تمامًا كما تأيدت نظرتي الغالبة.
كيف إذن يمكن أن تكون نظرتي غير قابلة للدفاع عنها؟ أي أخطاء يمكن لها ألا تتشارك مع
نظرتي؟

دايفيد: فقط حول أي أخطاء في كتاب (دستور) الأديبين! إن نظرتي قد أنشئت
من خلال كونها تذبيلا للنظرية الغالبة بالإضافة ميزة غير مفسرة على شخص يعوم في
الهواء. هذه الميزة، من حيث التأثير، هي نظرية جديدة، ولكن لم تقدم دليلًا إما ضد
خواص الجانبية أو لصالح النظرية الجديدة. لقد جعلت من هذه الأخيرة غير قابلة لأي
نقد (غير الذي أعطاه الآن) ولا محال لأن اختيار تجريبي. إنها لا تحل - أو حتى تدعي
أنها تحل - أي مشكلة سائدة، ولا أنت اقترحت معضلة جديدة مثيرة يمكن لها أن تحل
والأسوأ من ذلك كله أن المرة التي قل بها لا تفسر شيئًا بل تفسد تفسير الجانبية

228
الذي هو أساس النظرية الغالبة. إنه التفسير الذي يُقوم اعتقادا على النظرية الغالبة وليس على نظرتيك. وهكذا وباختصار وبكل المعايير العقلية يمكن رفض الميزة التي اقترحتها.

اللغز: ألا يمكن أن يكون نفس الشيء عن نظرتيك؟ نظرتيك تختلف عن نظرتي من خلال نفس الميزة الصغيرة لكن الأمر على العكس من ذلك أنت تعتقد أن على أن أفسر الميزة التي اقترحتها. ولكن لماذا لا يتساوى موضع كل منا وموضع الآخر.

دافيد: هذا لأن نظرتيك لم تأت بتفسير لأي من تنبؤاتها، ولكن نظرتيك فعلت ذلك.

اللغز: ولكن لو أن نظرتي هي التي اقترحت سلفًا لبدت نظرتيك كأنها هي التي لديها ميزات غير مفسرة ولكل هم التي ستكون في الخلاصة مرفوضة.

دافيد: هذا ببساطة ليس صحيحاً. أي شخص عقلاني يقوم بالمقارنة بين نظرتيك وبين النظرية الغالبة، حتى لو كانت نظرتيك قد اقترحت قبلها، فهو سيرفض نظرتيك.

على الفور لصالح النظرية الكاذبة وذلك من أجل الحقيقة المتمثلة في أن نظرتيك هي إصلاح غير مفسر لنظرية أخرى أعلنت في عبارات عنها.

اللغز: أنت تعني أن نظرتيك تأخذ شكل مجرد "كذا وكذا"، وكذا" نظرية لها صفة العالية فيما عدا وضع "الكذا وكذا" ولكنني لم أفسر لذا يبقى لها هذا الاستثناء؟

دافيد: بالضبط.

ليس به فعل "يسقط" وإنما بدلاً منه "X يسقط" الذي يعني "يسقط" فيما عدا حين ينسب إليك فإنه يعني "يقوم في الهواء" وبالتالى فإن "X ي يقوم في الهواء" معناها "يقوم في الهواء" ما عدا حين تنسب إليك فإنها في هذه الحالة تعني "يسقط".

في هذه اللغة الجديدة فإنني يمكن أن أعبر عن نظرتي مثل كل التأكيدات الخائنة. كل الأشياء X تسقط إذا لم يتم تدعيمها. ولكن النظرية الغالية (التي باللغة الإنجليزية تقول إن كل الأشياء تسقط إذا لم يتم تدعيمها) فتصبح بذلك في اللغة الجديدة صالحة. كل الأشياء X تسقط عندما لا تدعم، فيما عدا دافيد فهو X يقوم في الهواء وهوذا فإن الصالح من أي من هاتين النظريتين يعتمد على اللغة التي يعبر بها عنها، أليس كذلك؟

دافيدي من حيث الشكل، نعم. ولكن هذا من قبل الثقافة. إن نظريتك تشتمل من حيث الجوهر على تأكيد غير مفسر يقمع به النظرية الكاشفة. هذه الأخيرة – من حيث الجوهر أيضاً – هي التي تكشف في نظريتك هذه الميزة غير المفسرة، ولا يهم كيف كشفت عنها، تلك حقيقة موضوعية مستقلة عن اللغة.

اللغز: إنني لا أرى لماذا. أنت نفسك قد استخدمت شكل نظريتي لتسلط الضوء على "الميزة غير المفسرة" لقد قلت إنه "إعلان" عن عبارة إضافية في جملتي عن النظرية بالإنجليزية. ولكن عند ترجمة نظريتي إلى لغتي، فلا ميزات قد تم الإعلان عنها، بل على العكس، فإن الميزات المعلنة ظهرت في العبارات المعبرة عن النظرية الغالية.

دافيدي: البالف هو كذلك، ولكن ليست كل اللغات متساوية أو متوازية. إنها نظريات وتشمل في قاموسها اللغوي وقواعدها تأكيدات جوهيرية عن العالم. وفي أي وقت نشئ:

= والنطق والمعرفة والأخلاق كما يُعد مناصراً للفلسفة التحليلية في أمريكا. وله كتاب أشهر عن "بناء المظهر: الواقع، الخيال، التبت..." (الترجم)
نظرية، فإن جزءًا صغيرًا منها هو الذي يتسم بالوضوح: أما الباقي فإن اللغة هي التي تحمل على عاقتها. ومثل كل النظريات فإن اللغة يتم إبداعها وتصنيفها على أساس قابليتها لحل مشاكل معينة. وفي هذه الحالة فإن المشكلات هي التي تعبر عنها في نظريات أخرى. وفي أشكال تمكنا من التعامل معها والمقارنة بينها ونقدها. وتعتبر واحدة من أهم الطرق التي تقوم فيها اللغة بحل المشكلات وهو التشخيص والوضوح في النظريات غير الخلافية والوثوق فيها بغير جدال، وفي نفس الوقت تسمح للأشياء المتعلقة للجدل حولها لكي يكون التعبير عنها بارعًا في إيجازه وخلوته مما يشوهه.

اللغز: أقبل بذلك.

دافع: إذن ليس ثمة صدفة في أن تختار لغة ما تغطي مفهومًا أساسيًا بمجموعة من المفاهيم بدلًا من مجموعة أخرى. إنها بذلك تعكس الحالة الجارية لوقف المتحد من المشكلة. ولهذا سُمح بكتابة نظرية معاصرة جيدة لحالة المواجهة مع وقف الجارية للمشكلة. سواء حل المشكلة أو فاقت منهما ولكنه ليس شكل نظرية الذي أشكو منه. إنه جوهر المشكلة. شكوك أن نظريات لتقابل وإنما هي تفاقم الوقف من المشكلة. هذا الخلل يكون ظاهراً عند التعبير عن النظرية باللغة الإنجليزية، كما يكون ضمنياً عندما يعبر عنها بلغتك وهو هنا لا يقل شدة كثيراً عن الحالة الأولى. إننا أستطيع أن أضع شكوك بطريقة متساوية سواء في اللغة الإنجليزية أو مستخدمًا الرطانة (اللغو) العلمية أو باستخدام لغتك المفترضة أو بناء لغة أخرى متأقته أو إمكانية التعبير عن المناقشة التي يجب أن تجد بيننا (يعتبر واحداً من البادئين البديريين العامة أن المروج يجب أن يرغب دوامًا في المضي في المناقشة باستخدام اصطلاحات الخصم).

اللغز: ربما تكون لديك وجهة نظر سليمة هنا. ولكن هل يمكنك أن تفصل لي كيف تفاقم نظرية من موضوع المشكلة، وكيف أن ذلك واضح حتى لمواطن يتحدث باللغة الافتراضية التي قلت بها؟
دافيد: إن نظريتك تؤكد وجود شذوذ فيزيائي، والذي ليس له وجود في النظرية الغالبة. ما يخرج عن القياس أو الشيء الشاذ الذي أتبع به كاستثناء هو الجاذبية من المؤكد أنه يمكن أن تجترع لفة تعبير عن هذا الشذوذ بوضوح، وهنا فالعبارات التي تستخدمها في نظريتك لا تحتاج إلى الإشارة إلى الجاذبية بوضوح. ولكن على نحو ما تشير إليها. الوردة أيا كان اسمها في لغات متعددة ستظل لها رائحة زكية. افترض أنك - وبالطبع أي آخر غيرك - مواطن تتحدث بلغتك واعتقد أن نظريتك عن الجاذبية صادقة، وافترض أنا جميعا أخذناها على محمل الثقية، واعتقدنا أنه من الطبيعي أن تستخدم الكلمة X ليسقط. لوصف ما يحدث لك أولى عند القفر من على السور. شيئًا من هذا لن يغير من صلب الموضوع بأدنى درجة تغيير. كل ما هناك من فارق هو استجابتي للجاذبية ولأي شيء آخر. إذا سقطت أنت من على السور ربما ستفسدني طوال رحلتك للاسف. ربما سيكون تفكيرك: أتى استجابتي للجاذبية تكون كاستجابة دافيد لها وليس بهذا القفر من الاختلاف عن طريقته.

المغرب: هذا صحيح. وذلك فقط لأن نفس الكلمة X يسقط تصف استجابتك للجاذبية واستجابتي أيضًا. ولكن أفكر في أن الاستجابة الفعلية هي نفسها. بل على العكس. فإني كنت متكامن بارع باللغة التي اقترحتها سأعرف جيدًا أن X يسقط تختلف فيزيائيًا بالنسبة لي وبالنسبة للك، والضبط كما يعرف متحدث بالإنجليزية أن الكلمات تعتن كونك شئًا شيئًا يختلف فيزيائيًا بالنسبة لشخص ما وبالنسبة "Being drunk" للك من الماء. أنا لن أفكر (إذا كان هذا حدث لدافيد X يسقط) كما حدث لي ولكني سأفكر (إذا كان ما حدث لدافيد أنه X يسقط وبقى حيا بينما سأتي مات أنا X يسقط وسأموت).

دافيد: والأخير من ذلك أنه على الرغم من تأكيد باني غير معروف في الهواء فإنك لن تفهم لماذا. أن تعرف شيئًا ليس مثل أن تفهمه. ربما سوف تكون فضولياً تجاه تفسير هذا الشذوذ المعروف جيدًا وهنا سيكون كل شخص آخر. الفيزيائيون سيبحثون.
من جميع أنحاء العالم لدراسة تلك الخواص الشاذة للجانبية التي قلّت بها. في الواقع، لو كانت لفظك هي الغالية حقًا وأن نظريتك قد أخذت على محمل اللغة من كل الناس، فإنني أفترض أن المجتمع العلمي كان ينتظر بفارغ الصبر لولدي وكأنها سيصبحون انتظاراً إسقاطيًا من طائرة! ولكن بالطبع فإن المقدمة المفترضة لكل هذا أن نظريتك قد تم الوثوق بها وأنها تتضمن اللغة الغالية: كل ذلك مناف للعقل. نظرية أو لا نظرية، لغة أو لا لغة، في الحقيقة لا يقبل أي عاقل أو يستمع مثلك هذا الشذوذ الفيزيائي الساطع دون أن يصحبه تفسير من القوة يمكن لهذا بالضبط فإنه كما سبقت رفض نظريتك في النهاية فإن لفظك بدورها ستُرفض أيضًا باعتبارها طريقة أخرى تضع بها نظريتك.

اللغز: هل يمكن أن يكون هنا حل لمشكلة الاستقراء بعد كل شيء ؟ دعني أرى كيف يمكن للبصيرة في أي لغة أن تغير الأشياء؟ حتمًا تقوم على وضع الشاب بين موقفك وموقفك. كانا يتبني نظريات كانت متتماسكة بشكل جيد، نتائج التجارب وأن النظريات (ما عدا كل منها) المناقشة لها قد رسخت أنت تقول إننا لا يمكن عقلانيًا لأن نظريتي تتضمن تأكيدات غير مفسرة، ولكنني واجهت ذلك بالقول بأنه في لغة أخرى فستكون نظريتك أنت هي التي ستتمحى مثل هذه التوكيدات. وذلك هو الشاب بين موقفنا. ولكني أوضح لي الآن أن اللغات في نظريات وأي التفكير البشري من لغتي المقترحة والنظرية يؤكد وجود الشذوذ الفيزيائي الموضوع أو المدرك حيًا، والمقارنة مع التركيب بين اللغة الإنجليزية والنحوية الغالية وما يكشف هذا التركيب. وهذا بدوره تشكيك بين موقفنا، أما الحجة التي أسوقها للأمام في هذا الأمر قد بائت بفشل ياسح.

دافيدي: بالطبع هو كذلك.

اللغز: دعني أرى إذا ما كنت مستطيعاً إيضاح الأمر قليلاً أكثر من ذلك. هل تقول إنه من قبلي البدا في العقلانية أن النظرية التي تؤكد على وجود الشذوذ
الموضوع، وعند أشياء أخرى تشبهه، تكون أقل ميلا لعمل تنبؤات صادقة بالنظر لغيرها من النظريات التي لا تفعل بالمرة؟

دافيد: ليس بالضبط. النظريات التي تسلم بالشذوذ دون أن نفسره هي الأقل ميلا عن منافساتها إلى عمل تنبؤات صادقة. وبصفة أكثر عمومية فإنه من قبله المبدأ العقلاني أن النظريات تتعدل للأشياء من أجل حل المشكلات، ولذلك فإن أي ادعاء أو إذعان من شأنه أن يحيل شيئًا، فمن الواضح رفضه. وهذا بسب أن أي تفسير جيد يقترح هذا النوع من الإذعان أو التسليم أو الادعاء يصبح تفسيرًا سيئًا.

الملفز: الآن، ما فهمته هو أنه يوجد حقيقة اختلاف موضوعي بين النظريات التي تضع تنبؤات مفسرة وبين تلك التي لا تفعل ذلك، ولا بد أن أعرف أن هذا أمر واعد كحل لمشكلة الاستقراء. يبدو أنك اكتشفت تقويم اعتمادك المستقبلي على نظرية الجاذبية بواسطة وضع المشكلة في الماضي (بما يشمله من أدلة ملاحظة سابقة) والفرق بين التفسير الجيد والآخر السيئ ولن تحتاج لأن تفترض أي فرض من مثل "أن المستقبل أشبه بأن يكون متضمنًا في الماضي.

دافيد: لم أكن أنا الذي اكتشف ذلك.

الملفز: ولا أظن أن بوير قد فعل ذلك أيضًا. لسبب واحد، إن بوير لم يعتقد أن النظريات العلمية يمكن أن تقوم على الإطلاق. لقد صنعت تفقة حذرة بين النظريات التي تقوم بالملاحظة (كما يعتقد الاستثنائيين) وبين تلك التي تقوم بالحجج والبراهين. وبوير لم يقم بمثل هذه التفقة وبالنظر لمشكلة الاستقراء فقد قال إنه على الرغم من أن التنبؤات المستقبلية لنظرياته لا يمكن تقويمها فلا بد أن نتصور حيالها كما لو كانت قابلة للتقييم.

دافيد: لا أعتقد أنه قال ذلك بالضبط، ولو قاله فإنه لم يكن يعني ذلك.

الملفز: ماذا؟

234
دافيدي: ولو كان عناه فقد كان مخطئًا. لماذا تكتب هكذا؟ إنه من الممكن تمامًا
لا أرى أن يكشف نظرية جديدة (المعرفة البويرية في هذه الحالة) وفي نفس الوقت
يظل معتقلاً بالأفكار المتارضة معها وكما كانت النظرية عملية، كلما كان ذلك لحدث.

المثلغ: هل تدعى أنك تقف نظرية بوير أكثر مما فعل هو نفسه؟

دافيدي: أنا لا أعرف ولا يهمني. أنت تعرف بالطبع أن التوقيتر الذي يحمله الفلسفة
المصدر التاريخية للأفكار هو من قبيل العنان أو الأمور المضلة. في العلم نحن لا
تعتبر أن اكتشف نظرية تحل أي بصيرة خاصة فيها. على العكس نحن بالكاد نرجع
إلى المصادر الأصلية، إن الشيء الثابت غير المتغير يصبح مطلقاً. بينما وضع الشكلة
هو الذي يحسنها وهو الذي يتحول بواسطة المكتشفات ذاتها. على سبيل المثال، معظم
Einstein النظريات ذات الصلة تقف اليوم نظرية أينشتاين
أكثر مما فعل هو.

ومؤسس النظرية الكمية قد فهموا نظريةهم بالكامل مما هي عليه. مثل هذه البدايات
المفتوحة وعندما تكون فوق أكتاف العلماء ليس صعبًا أن نرى أبعد منهم.
وعلى أي حال فسوف يكون ممتعًا ومثيرًا أن نتجادل حول كيف تكون الحقيقة، مما إذا
كان بعض المفكرين، مهما كانت عظمتهم، اعتقدوا هذا أو ذاك.

المثلغ: هذا كله صحيح، وأوافق عليه، ولكن انتظر لحظة، أعتقد أنني قلت منذ فترة
قريبة أنك لم تسلم وجود نوع من بدأ الاستقراء. انظر لقد قومت نظرية عن المستقبل
(النظرية الغالبة عن الجاذبية) بأنها أكثر قابلية للاعتماد عليها أكثر من غيرها (النظرية
التي اقترحتها) وذلك بالرغم أنهما كليهما متماسكان بالنظر إلى كل الملاحظات الجارية
المعروفة. وطالما أن النظرية الغالبة تستخدم الماضي والمستقبل، فأنك قد قومت في هذه
الحالة الفرض القائل، وبالنظر للجاذبية: "إن المستقبل يتضمن الماضي". ومثل هذا
سيكون قائمًا أيضاً قومت نظرية بأنها يمكن الاعتماد عليها على أساس أنها مثبتة أو
موثقة، الآن من أجل التقدم من التوثيق إلى إمكانية الاعتماد عليها، فقد اختبرت قوة
التفسير في النظريات. وهكذا فإن الذي أظهرته أنه يمكننا القول بأن -بدأ السعي
لتفسير أحسن، يتعين أن المستقبل سوف، مع كل الاحترام، يشبه الماضي. وهذا هو مبدأ الاستقراء؛ إذا كان مبدأ التفسير الذي قلت به يدعى أو يذعن لمبدأ الاستقراء، فإن النطق هو نفسه مبدأ الاستقراء. إن فإن فإنه بعد ذلك كله يكون الاستقراء صحيحًا، وليس هناك استقراء، قبل التنبؤ بالمستقبل، لا بد أن نطلب به واضحًا كان أو ضمنيًا.

دافيد: أه يا عزيزى! هذا الاستقراء هو حقيقة من قبيل المرض الخبيث. يقل في تفاؤل قليلة وسرعان ما يرتد ليصبح أكثر قوة عما كان.

المفتز: هل العقلانية البوبية قد قوّمت الحاجج كشيء موجه للمشاعر والأهواء وليس للعقل كذلك أيضاً؟ أسأل لذلك أعرف فقط.

دافيد: أعتقد لك، دعني أن نذهب مباشرةً إلى جوهر ما تقوله. نعم لقد قوّمت تأكيدات حول المستقبل. وأنت تقول إن هذا يعني تسليماً بأن "المستقبل يشبه الماضي". حسناً، وعلى نحو من البيلة، نعم، بقدر ما أي نظرية عن المستقبل سوف تؤكد أنه يشبه الماضي بمعنى من المعاني. ولكن هذا التداخل بأن المستقبل يشبه الماضي فهذا لا يعني أن القصد هو مبدأ الاستقراء، لأننا لا نستخرج أو نقول أي نظرية أو تنبؤ بالمستقبل من الماضي. لأننا على سبيل المثال لا نستطيع أن نفرق بين نظرية عن الجانبية وبين النظرية الغالبة وما تقوله كل منهما وبطريقة أيهما، بأن المستقبل يشبه الماضي.

المفتز: لا نستطيع أن نستنتج من مبدأ التفسير شكل مبدأ الاستقراء يمكن استخدامه للاختيار بين النظريات؟ ماذا عن: إذا لم يحدث في الماضي شرح لأي شذوذ فلن يكون المستقبل أمثل لأن يشبه؟

دافيد: لا تقوينا لن يعتقد إذا ما كان شذوذًا ما قد وقع في الماضي وإنما يتعلق الأمر إذا ما كان هناك تفسير لوجود هذا الشذوذ الآن.
اللغز: حسنًا إذا، دعني أضع المسألة بحذر أكثر: إذا لم تكن هناك الآن في الوقت الحاضر نظرية مفسرة تتنبأ بأن ثمة شذوذ معين سوف يقع في المستقبل إذا هذا الشذوذ سوف لا يكون أميل للحدث مستقبلًا.

دائم: هذا ربما يكون صحيحًا. أنا أعتقد ذلك ذو بالنسبة لهذه الحالة وحدها، ومع ذلك فهى ليست في شكل "المستقبل يميل لأن يشبه الماضي". والأكثر من ذلك، من أجل محاولة جعل الأمر يشبه ذلك باقصى ما يمكننا، فقد خصصت أنت الأمر على هذه الحالات: في الوقت الحاضر، في المستقبل، وفي حالة وجود شذوذ. ولكنها بالفعل حقيقية بدون هذا التخصص. إنه مجرد عبارة عامة عن فعالية الحجة. بالاختصار، إذا لم تكن ثمة حجة لصالح الإدعاء فإنه إذا لا يعتمد عليه ماضٍ كان أو مستقبلاً شاذًا كان أو غير شاذ، أو في فترة ما أو في غيرها.

اللغز: نعم، أنا أفهم ذلك.

دائم: ليس هناك شيء في "الحجة العقلية" أو في "التفسير" يربط بين المستقبل والماضي باي طريقة خاصة. ليس ثمة ما يدعى أو يطالب بأن يشبه شيء شاذًا. وليس ثمة ما يساعدنا إذا كان قد تم الادعاء بذلك. وعلى النحو الفارغ أو بشيء من البه الذي يقال فيه أن التفسير يستخدم فكرة أن المستقبل "يشبه الماضي". فمع ذلك هو لا يستخدم شيئًا عن المستقبل، وعلى ذلك فهو ليس مبدأ للأستقراء ليس ثمة مبدأ للأستقراء. كما ليست هناك عملية استقراء، لم يستخدمها أحد ولا ما يشبههم، وليس هناك بعد مشكلة استقراء. هل هذا واضح الآن.

اللغز: نعم. من فضلك اعترفني للحظات قليلة بينما أعيد ترتيب نظرتي للعالم بالكامل.

دائم: لكي أساعدك في هذا الاختبار، أعتقد أن عليك إعادة النظر لنظريتك البديلة عن الجاذبية بشكل أكثر قربًا.

237
المفاز: ...

دافيد: كما وافقتنا أن نظريتك تشتمل موضوعيًا، على نظرية للجازبية (النظرية الغالبة)، يرجحها تبؤ غير مفسر عني. تقول إنى سأقوم في الهواء بدون دعم. عدم الدعم يعني "بدون أي قوة دافعة لأعلى تعمال على"، وذلك يكون الاقتراح أنى ساكتون مستثنى أو وصوضًا ضد الجامبية التي يمكنها أن تسقطني لأسفل، الجامبية ليست قوة، إنها إعلان عن انحناء الزمكان. هذا الانحناء يفسر لماذا الأشياء غير المدعومة، متوى، ومثل الأرض: تدور مع الزمن قريبًا منه. وذلك وفي ضوء الفيزياء الحديثة فإن نظريتك تفترض القول بأن هناك قوة تدفعني لأعلى مطلوب منها أن تقيني على مسافة ثابتة دائمة من الأرض، ولكن من أين تأتي مثل هذه القوة، وما هي طريقة سلوكها؟ على سبيل المثال ما هي تلك المسافة الدائمة الثابتة؟ إذا كان للأرض أن تتحرك لأسفل هل ستستجيب لحظيًا أو على نحو خاطف لأحافظ على نفس السافة (والتي تسمح بأن يكون الاتصال أسرع من الضوء مناقصًا للمبدأ الآخر الخاص بالنظرية) أو أن المعلومة التي تتعلق بما إذا كانت الأرض ستحلقي بسرعة الضوء أو لا؟ وإذا كان الأمر كذلك ما الذي سيتحمل تلك المعلومة؟ هل هو نوع جديد من الموجات تجذب به الأرض؟ وإذا كان فلا ما معادلة يخضع الأمر؟ هل تحمل طاقة ما؟ وما هو سلوكها الميكانيكي الكمي؟ أم أنى ستستجيب بطريقة خاصة للموجات الموجودة، مثل الضوء؟ في هذه الحالة هل سيختفي الشذوذ فيما لو وضع حائط معتم أو غير شفاف بيني وبين الأرض؟ أليس الأرض ذاتها من قبل غير الشفاف على أي حال؟ وأين تبدأ "الأرض"، ما الذي يعرف السطح المفترض أنى أقوم في الهواء فوقه؟

المفاز: ...

دافيد: وأتصالا بذلك، ما الذي يعرف أن أبدأ أنا؟ وماذا أو كنت محما بسهل كبير، هل سيعوم في الهواء بدوره؟ لو كان الأمر كذلك إذ قد تضطر السفينة الطائرة التي أظهر بها أن تغلق آلاتها بدون أي حادث مأسف، ما الذي يجري في حالة
التوقيف: هل ستسقط الطائرة عندما أطلقتها من حالة الراحة الدائمة؟ وإذا كان التأثير لا يصل لأشياء أخرى أحملها معي، ماذا عن ملاسي؟ هل سيستقبل ثقلها ويتسبب حينذاك في مقتلى بعد كل شيء؟ وإذا قفزت من فوق السور، ماذا عن آخر وجبه لي ودورها في هذه العملية؟

اللغز:

دافيد: أستطيع أن استمر هكذا إلى ما لا نهاية، والنقطة في المسألة هي كلما أخذنا في الاعتبار تطبيقات نظريتك المقترحة عن الشذوذ، كلما ظهرت لنا أسئلة لا إجابة لها وهذا لا يتعلق فقط بأن نظريتك غير كاملة وإنما لأنها أسئلة من قبيل المتاهات. وبأي طريقة يمكن بها الإجابة عليها تفتح أسئلة ومشكلات طازجة من خلال إفساد رضانا عن تفسيرات ظواهر أخرى.

اللغز:

دافيد: ومن ثم فإن ادعاءك ليس مجرد أنه زائد أو غير ضروري بل أيضًا من الناحية الموضوعية هو ادعاء قديم. وبصفة عامة هو منحرف وغير صحيح، وكذا فإن النظريات غير المرفعة والتي يمكن للمرء أن يقتربها وهي مقيدة تسقط بخضوعة غير مستوية. هناك نظريات تدعم جواهر غير قابلة للانحلال مثل الجزيئات التي لا تتفاعل مع أي مادة أخرى (موسي أو كام: إذا رغبت) يمكن رفضها لأنها لا تتقصى لآية حصول وثمة نظريات أخرى، مثل نظريتك التي تنتبأ بشواذ ملموسة ولكن غير مفسرة. وأيضًا يمكن رفضها لذات السبب. أليس كذلك؟ أنا أعمل وأضيف أنها تصطدم مع الملاحظة القائمة. إنها تزيل قوة التفسير لنظريات قائمة من خلال تأكيد أن تنبؤاتها تحظى بالاستثناءات، ولكنها لا تفسر ذلك وكيف يحدث. حيث لا يمكنك القول فقط إن هندسة الزمكان تأتي لنا بالمضاعفات غير المدفوعة إلى جوار بعضها البعض إلا إذا كان أحدهما هو دافيد نفسه، وإلا ستترك كل منها وحدها. أو أن تفسير الجاذبية يكمن في احتواء الزمكان، أم هو غير ذلك: فقط قارن نظريتك مع صحة وشرعية التأكيد بأن
الريشة: سوف تعود في الهواء إلى أسفل ببطء لأن هناك الهواء الذي يمارس عليها قوة دفع إلى أعلى. هذا التأكيد بمثابة نتيجة تابعة لنظريتي المفسرة القائمة عما هو الهواء، وهكذا هي لا تقيم مشكلة جديدة كما تفعل نظريتك.

اللغز: أرى هذا معاك الآن هل تعطيين بعض المساعدة لتثبت نظرتي إلى العالم؟

دافيد: حسنًا، هل قرأت كتابي "نصيحة الحقيقة"؟

اللغز: إنني بالتأكيد أخطت لذلك، ولكن في الوقت الحالي فإن المساعدة التي أطلبها تتبع بصعوبة معينة جدًا.

دافيد: أرني ما عندي.

اللغز: الصعوبة هي. عندما أعود للملاحظة التي خضناها معا، أقنع تمامًا بأن تنبؤك، إذا ما قفزت أنت أو أنا من فوق هذا البرج، فإن الذي سيحدث حينئذ ليس مأخوذًا من أي فرضية استقرارية مثل "المستقبل يشبه الماضي". ولكن عندما أرد للخلف مليًّا النظر على منطق الوقوف كله، أخشى أنني لا أفهم كيف لهذا أن يحدث. حذ في اعتبارك العناصر الأولية للجدل بيننا. أساسا افترض أن ملاحظاتنا في الماضي والمنطق الاستقرائي هي وحدها العناصر الأولية. وبعدنا أوقع أن وضع المشكلة الحالي له صلة بالأمر أيضًا لأننا نحتاج لتقديم نظريتنا على أنه يمكن الاعتماد عليها والوثيق بها أكثر من النظريات المتاحة لها. وهينئذ على أن أخذ في الاعتبار المدى الواسع في مستويات النظرية التي يمكن أن تحكمها الحجة والبرهان فقط، وأن مبادئ العقلانية يمكن أن تتضمن العناصر الأولية لجدلنا. الذي لا أفهمه أين من هذه العناصر المبدين ملاحظاتنا في الماضي، وضع المشكلة الحالي، المبادئ الخالدة للمنطق والعقلانية، أي منهما لا يقوم هذه التدخلات القائمة بين الماضي والمستقبل، كيف تظهر من آين أتت تنبؤاتنا عن المستقبل. يبدو أن ما هنا فجوة منطقية. هل تصنع افتراضًا خفيًا في موضع ما من مناقشتنا؟

240
دافيدي: لا، ليس ثمة فجوة منطقية. ما تسميه "عناصر أولية أو مبدئية" يشمل تأكيدات عن المستقبل أفضل النظريات القائمة التي لا يمكن هجرها ببساطة لأنها تمثل حلاً للمشاكل، تتضمن بدورها تنبؤات عن المستقبل لعدم اقتصاءها أو فصولها عن الجهود الأخرى لهذه النظريات. كما حاولت أن أذكر، لأن هذا من شأنه أن يفسر قوة تفسيراتها. أي نظرية جديدة قد تكون فشلها لا بد أن تكون متساوية مع النظريات القائمة والتي تتاسب تطبيقاتها مع ما يمكن أن تقوله الجديدة عن المستقبل، وإما تتناقض مع النظريات القائمة ولكنها تعلل عن مشاكل جديدة نشأت معطية لنا تفسيرات جديدة شديدة تقيد بدورها ما يمكن أن تقوله عن المستقبل.

اللغة: وهكذا نحن ليس لدينا مبدأ تسبب يقول أن المستقبل سوف يشبه الماضي، وإنما لدينا نظريات حالية هي التي تقول ذلك، والتي تشير ضمنًا إلى شكل محدود من الاستقراء.

دافيدي: لا، نحن لدينا نظريات تؤكد ببساطة شيئًا عن المستقبل. ولعله من نافلة القول أن نذكر أن أي نظرية عن المستقبل تحتوي ضمنًا أن المستقبل سيفشل يشبه الماضي بطريقة ما. ولكننا نكتشف ذلك بعد أن نحظى بالنظرية ونعرف إلى أي مدى قات النظرية عن هذا التشابه بينهما. ويمكن أن نقول بذلك أيضًا من أننا طالما نتمسك هذه النظريات بملامح معينة للحقيقة بأنها هي ذاتها في الفضاء، أي أنها تدعى "ببدأ استقرائيًا فضائيًا" إلى درجة أن الأقرب مما يشبه البعيد القائم في الفضاء، ودعنا أوضح هنا، في أي مستوى عملي لعنصر كلمة "يشبه" فإن نظريتنا الحالية لا تقول بأن المستقبل يشبه الماضي، مثالاً، الاسترسال الكبير (النياهي الكون وعودته إلى نقطة التفرد) هي واقعة يتنبأ بها بعض الكنونيين ولكنها عن حقيقة تختلف عن حقيقة الحالية، يأتي معنى فيزيائي، من حيث إمكانية حدوثها. أية قوانين تنطب بعده فهذا لا يدعي إمكانية حدوثها بالضبط.
المفهوم: أنا مقتنيع بهذه النقطة، دعني أحاول مراجعتك لآخر مرة. لقد رأينا أن التنبؤات المستقبلية يمكن تقييمها تحت ظل إغواء مبادئ العقلانية. ولكن ما الذي يُقوم بهذه الأشياء؟ إنها رغم كل شيء ليست من حقائق المنطق الصرف. ومن هنا تبدأ إمكانيتان: إما أنهم غير قابلين للتقويم وبالتالي فإن النتائج المستندة منهم تكون بدورها غير قابلة للتقويم، وإما أنها يتم تقويمها بوسائل غير معلومة بعد. وفي الحالتين، تم تقويم مفطولاً. أنا لم أعد أشك في أن مشكلة الاستقراء هي مجرد مظهر خادع. ومع ذلك ما دمت قد فجرا مشكلة الاستقراء، ألم ينجم عن ذلك الكشف عن مشكلة تأسيسية أخرى، تلك المتعلقة بالتقويم المفطول؟

دافتيد: ما الذي يُقوم بمبادئ العقلانية؟ جدل آخر كالأعداء. مثلًا: والذي يقوم اعتمادنا على قوانين الاستقراء، على الرغم من حقيقة أن أي محاولة لتقويمها منطقية ستعود بنا إما إلى "الدائرية" أو إلى ندم أو أسف لا نهائى، إنها مقسمة على أساس عدم توفر أي تفسير موثوق من إحلال الاستقراء محل النظرية المفسرة.

المفهوم: إن هذا لا يبدو عليه أنه أساس آمن للمنطق الصرف.

دافتيد: ليس آمنا تمامًا ولا يجب أن نتوقع أنه كذلك، لأن التسبيح المنطقي ليس أكثر من كونه عملية فيزيائية لا تتعلق بالتسبيح العلمي وبالتالي يتواصل فيها عدم المعصومية من الخطا. قوانين المنطق ليست ذاتية الدليل. هناك أناس، الرياضيون أصحاب الحدس (الحداثيون) الذين لا يوافقون على أعراف قوانين الاستقراء (قواعد التداخل المنطقية). ولقد ناقشت نظرتهم الغرائبية عن العالم في الفصل العاشر من كتاب "تسيخ الحقيقة". إنه لا يمكن البرهنة على خطتهم. ولكنني سأشرح على أنهم على خطأ. وأنا متأكد أنك ستتوقف على أن برهان قد قومه هذه النتيجة.

(بمعنى أن النتائج متضمنة في المقترحات ولا جديد هناك وإنما دائرة مفرغة المترجم.)

242
اللغز: إذن أنت لا تعتقد بوجود مشكلة استقراءً.

دافيد: لا، لا أعتقد أن هناك مشكلة في الطرق العادية لتقؤم أي نتيجة في العلم أو الفلسفة أو الرياضيات. ومع ذلك فإنه يعد شقيقاً حقيقة أن الأكوان الفيزيائية تتنابأ أو تتفق مع إنشاء معرفة عنها وعن أشياء أخرى أيضًا. يمكننا أن نحاول بشكل عقلاني تفسير هذه الحقيقة بنفس الطريقة التي نفسر بها حقائق فيزيائية أخرى، أعني عبر النظريات المفسرة. سوف ترى في الفصل السادس من كتابي "تسعين الحقيقة" كيف أعتقد أن "بداية تورنج" يمثل أصل النظريات في هذه الحالة. أنه يقول أن من الممكن بناء مولد حقيقة تقديرية تكون فيه إعادة العرض شاملة لأي بيئة متكاملة فيزيائية. إذا كان مبدأ تورنج هو قانون في الفيزياء، وكما بالفعل على ذلك، فلا يوجد إذن لنا الآن الاندماج من إمكاناتنا تشكيل نظريات دقيقة وصحيحة عن الحقيقة، لأن الحقيقة التقديرية هنا هي التي على المفك. تماماً مثل حقيقة أن الآلات البخارية ممكنة لأنها تعبير مباشر عن مبادئ "التيورنوماينيك"، وهكذا فإن العقل البشري قادر على إنشاء المعرفة وهذا تعبير مباشر عن مبدأ تورنج.

اللغز: ولكن كيف لنا أن نعرف أن مبدأ تورنج صحيح؟

دافيد: بالطريقة لا تستطيع، .. لاتكن خائف،.. أليس كذلك خائف؟ من أننا لو لم نستطيع تقؤم مبدأ تورنج لسوف نفقد مرة أخرى تقؤمنا للاعتماد على أو الثقة في التنبؤات العلمية.

اللغز (ويصوت يمن على عدم اليقين الكامل): نعم.

دافيد: ولكننا انتقلنا الآن إلى سؤال مختلف كلية؛ نحن نناقش الآن حقيقة بارزة ووضوح من الحقيقة الفيزيائية ولا وهي أنها يمكننا أن نضع تنبؤات موثوقة بها عن نفسها. نحن نحاول تفسير هذه الحقيقة لنضعها في ذات الإطار العام مع غيرها من الحقائق التي نعرفها، أقترح أنه ربما هناك قانوناً ما في الفيزياء يتعلق بهذا. ولكن لو
كنت مخطئًا في هذا، بالطبع لو كنا غير قادرين تماما على تفسير هذه الخاصية المميزة للحقيقة، فإن هذا لن يقلل مثقال ذرة من تقويم أية نظرية علمية. لأنها لن تجعل هذا التقويم أسواً بمثقال ذرة.

المغال_Price: أظن أن مناقشتنا قد وصلت إلى نهاية بعد كل هذه الملاحظات، أنا مقتنع عقلياً. وإن بقي لدى أن أعرف أن في نفسى ما يمكن أن أصفه بأنه "شك عاطفي".

دافيد: ربما يمكنك مساعدة في الأمر لو استمرت بتعليق آخر، ليس حول الحجة التي أبرزتها أنت وإنما حول الاتهام وعدم الفهم الذي يضعف خطتنا تحتها جمعًا. أنت تعرف أنها كذلك. ومع ذلك لم تؤيد بعد ما تم إصلاحه في نظريتك للعالم. ربما كان هذا مصدر "الشك العاطفي" لديك.

المغال_Price: زدتي إيضاحًا.

دافيد: افتراض المفهوم هنا يتعلق بالحجة ذاتها وبالتفسير، يبدو أنك ربما تقترض أن الحجة هي التفسير الذي يقومان التصرف وفق نظرية بعينها، تتمنع تبراهن رياضية، والتي تسوقنا من مرحلة الافتراض إلى مرحلة النتائج. أنت تنظر إلى العناصر المبدئية (البديهيات) التي استقبلنا منها النتائج (النظريات). الآن، يوجد بالطبع هنا بناء منطقى من هذا النوع يرتبط مع كل برهان أو مناقشة ناجحة. ولكن عملية "البديهيات" لا تبدأ بها وتنتهي بالنتائج. إنها تبدأ من وسطها بتصور لفقر محير في الوعي الباطن، ونقوط ملتبسة قد لا تتدخل بالموضوع وكل هذه الأخطاء يتم انتقادها. جعلت المحاولات تحل محل النظريات، والنظريات المتناقضة هذه لا بد أن تكون تشوى عادة بعض البديهيات وذلك هو الخطأ في اعتبار أنها تبدأ بها أو أنها تقوم من خلالها. أعني النظريات التي تتوافق مع البديهيات أحيانًا. البرهان ينتهي بشكل مؤقت عندما يظهر أن التفسير المرتبط بها يرضينا، والبديهيات هنا ليست محدودة أو معتقدات غير قابلة للتحدى أنها نظريات مؤقتة للتفسير.

244
اللغز: أوافق، إنّ البلاء أو الحجة من هذا النوع ليست من نوع الاستنتاج أو الاستقراء غير الموجود، لأنّها لا تقوم على أي شيء أو يتم تقويمها بأي شيء. ولا يجب لها أن تكون، لأن هدفها هو حل المشاكل لتشير أن أي معضلة معينة لها حل معين.

دافيدي: أهلاً بك في نادينا(6).

اللغز (سابقًا): كل هذه السنين التي مرت اعتقدت فيها أنني كنت آمنًا مع مشكلتي الكبرى. كنت أعتقد أنني تقدمت على الاستعراضي المقامي ومتميز عنهم وأيضًا حتى على غلو بور، وطول الوقت وربما دون أن أدرى كنت واحدًا من الاستعراضي الملغزين! الاستقراء بالفعل مرض يجعل المرء أعظم.

دافيدي: لا تأخذ نفسك بهذه الشدة. لقد شففت الآن. إذا كان زملاؤك يعانون فربما تعرضوا لسهولة الانقياد بعدم الاقتناع بجرد الحجة أو البلاء.

اللغز (سابق): ولكن كيف كنت بهذا الوضع؟ للاعتقاد بأنني في إحدى المرات البيانا الخاسرة التي تجلب السخرية، بينما Derrida رشحت بور لجائزة(7) دريدا. طول الوقت كان قد قام بحل مشكلة الاستقراء. لا بد أنني أستحق الفخر. احتفظنا أيها الرأب لأننا قد أشعنا النار في قدس. إنني أشعر بالخجل، ولا أجد سببًا إلا أن ألقى بنفسني عبر ذاك القدر.

(6) مصطلح إنجليزى يفيد أنّه أصبح معبنا ومثمنا. (المترجم).

(7) فيلسوف فرنسي استعمل تقنيته للفلسفة الغربية على اللغويات والأدوات والتحليل النفسي. وأفكاره تقوم على رفضه للبحث عن تكبيرات ميتافيزيقية لصدر المتنى وكذلك نقد الفلسفة الغربية وقدم طريقة (إعادة التركيب) لقراءة كتب الفلسفة التي مكنته من تحديد الفلسفات المشتركة والفساد المستخدمة حتى بمعرفة الفلسفة التي تمّها في نقدهم للميتافيزيقية. وكان من رأيه أنه بدلاً من الاستياء الفلسفي علينا القيام بتحليل اللغة باعتبارها بديلًا جذريًّا لكي تكون الفكرة الرئيسية الناجمة عن التحليل قادرة بذاتها على البعض أي فلسفة يمكن التساؤل عنها والجواب. (المترجم)
دافيد: بالتأكيد الأمر لا يستحق كل ذلك. نحن البوييرين نعتقد بترك نظرياتنا تموت في موقع أقدامنا. فقط ألق بالاستقراء من فوق السفينة بدلاً من ذلك.

اللغز (السابق): سافعل، سافعل.

اصطلاحات:

<table>
<thead>
<tr>
<th>الاستقراء الشاذ</th>
<th>الغامض (أو اللغز): Crypto Inductivist</th>
</tr>
</thead>
<tbody>
<tr>
<td>هو الشخص الذي يعتقد أن عدم صحة الاستقراء ينشئ مشكلة فلسفية جادة وهي مشكلة كيف تقوم الاعتمادية على النظريات العلمية أو الوثائق بها.....</td>
<td></td>
</tr>
</tbody>
</table>

فيما يلي، ستتجد الفروع الرابع من الفروع الأربعة التي تشكل في نظرى نسيج الواقع، وتتمثل في نظرية التطور التي تجيب على سؤال: ما هي الحياة؟
الفصل الثامن

معنى الحياة
كان من المثير به منذ العصور القديمة إلى حوالي القرن التاسع عشر أن بعض القوى الخاصة أو الفيزياء كانت متطلبية لتبعية الحياة في مادة الكائن الحي وتجعل المادة فيه تسلك بشكل مختلف وملحوظ عن أي مادة أخرى. وكان هذا يعني من ناحية التأثير أن ثمة نوعين من المادة في الكون: مادة حية ومادة أخرى ليست فيها حياة، وكل منهما تختلف عن الآخر في الخواص الفيزيائية على نحو أساسي. على سبيل المثال: كائن حي كالد. إن الصورة الفوتوغرافية لدب تشبه الدب الحي في بعض النواحي، وكذا يكون الأمر بالنسبة للأشياء الأخرى غير الحية كدب مات. بل وتشبه مجموعة الدب الأكبر (من النجوم) وإن كان ذلك بدرجة محدودة جداً. فقط المادة الحية هي التي يمكن أن تنطقب وأن تراوحها متى خلف الأشجار. ثم تمسك بك وتمزق إلى أجزاء متفرقة. الأشياء غير الحية لا يمكن أن تفعل مثل ذلك العمل الهدف، أو هكذا فكر القدماء حيث لم يروا أبدًا صاروخًا موجهاً.

كان الشيء الواضح والبارز بالنسبة لآرسطو وسائر الفلاسفة القدماء في المادة الحية أنها قابلة لنشوء الحركة. لقد اعتقدوا أن شيئًا غير حي مثل الصخرة مثلًا عندما تكون في حالة راحة أو ثبات فإنها لا تتحرك أبدًا ما لم يصطدم بها شيء. ولكن المادة الحية كدب في حالة نبات شتوي يمكن أن يكون في حالة سكون كهذه وبعدها بدأ في الحركة دون أن يكون وراء ذلك اصطدام من أي نوع. وبفضل علما الحديثة نستطيع أن نجد نفسًا ما في مثل هذه التعميمات، وفي فكرة إنشاء الحركة بالذات التي تبدو الآن كأنها غير مفهومة تمامًا. نحن نعرف أن الدب يستيقظ بسبب عوامل كيميائية كهربيّة تجري في جسده. وهذه قد تنشأ لأسباب خارجية كارتفاع درجة الحرارة أو لأسباب داخلية مثل الساعة البيولوجية الداخلية التي تستخدم تفاعلات كيميائية بطيئة لحفظ الوقت. التفاعلات الكيميائية ليست أكثر من حركة الذرات، ولهذا فإن الدب لا يكون تمامًا في حالة سكون أو ثبات. ومن الناحية الأخرى فإن نواة البوليمر، التي هي ليست مادة حية بالتأكيد قد تبقى بدون تغيير لبلايين السنين وفجأة ودون أي

249
حافز يثيرها على الإطلاق تنحل بعنف وتتفتت وتتحطم. وإذا فإن المحتوى الإسمي لفكرة أزسطو يعتبر عديم القيمة في أيامنا هذه. ولكن كان لديه شيء واحد صحيح ومهم وإن كان أكثر المفكرين الحديثين قد فهموه على نحو خاطئي. في محاولته ربط الحياة مع مفهوم فيزيائي أساسي (دعنا من الفهم الخطا: الحركة) لاحظ أن الحياة تعد ظاهرة أساسية في الطبيعة.

تكون الظاهرة أساسية عندما يكون الفهم الكافي للعالم معتدباً على فهم تلك الظاهرة. الآراء تختلف بالطبع حول أي وجه من العالم يستحق أن نفهمه وبالتالي ما هو الأعمق والأكثر أساسية. البعض قد يقول أن الحب هو أكثر الظواهر أساسية في الحياة. بينما يعتقد آخرون أن الامك هو حفظ كتاب مقدسة معينة عن ظهر قلب، عندئذ يفهم المرء كل شيء يستحق الفهم. لكن الفهم الذي أتحدث عنه هو الذي يعبر عنه قوانين الفيزياء، وبصفة مبدئية تلك المنطقية والفلسفية منها. والفهم الأعمق هو الذي يكون أكثر عمومية ويساعدنا بمزيد من الصلاح والعدل في الحقبة الظاهرة المتاحة. ويشير لنا أكثر الفرص غير المشروعة. إن أكثر الظواهر أساسية هي تلك الموجودة في تفسيرات الظواهر الأخرى، ولكنها مشروعة بذاتها بواسطة قوانين جذرية ومبادئ متصلة.

ليس كل الظواهر الأساسية ذات تأثير فيزيائي كبير. الجانبية عكس ذلك وهي بالطبع ظاهرة أساسية. ولكن التأثير المباشر للتدخلات الكمية مثل نموذج الظلو الموصوف في الفصل الثاني، ليس تأثيرًا كبيرًا. من الصعب استكشافه: الظلو وتأثيره، بدون غموض أو التباس. ومع ذلك فقد رأينا أن التدخلات الكمية هي ظاهرة أساسية. فقط بفهمها نستطيع أن نفهم الحقيقة الرئيسية عن الحقيقة الفيزيائية، التي نسموها وجود الأكوان المتوازية. لقد كان واضحًا لأرسطو أن الحياة أساسية نظرًا وأن لها تأثيرًا فيزيائيًا كبيرًا، وكما سنرى فقد كان محقًا ولو أنه كان لديه الأسباب الخاطئة والمتمثلة في الخاصية الميكانيكية المتميزه في المادة الحية، والهيمنة على سطح.
الأرض من خلال العمليات الحيوية. اعتقد أرسطو أن الكون يتكون من المحيط الحيوي (الحياة بمجالات نشاطها المختلفة) على الأرض بما فيه من أشياء صغيرة أخرى، ثم ما يطوق الأرض سماويًا: المحيط السماوي، ثم ما هو داخل الأرض، وهكذا أخذ في اعتباره ما فوق الأرض وما في باطنها، إذا كان المحيط الحيوي على الأرض هو المكون المبدئي للكون عندئذ، فمن الطبيعي أن تفكر في الأشجار والحيوانات على أنها على الأقل من الأهمية بمكان مثل الصخور والنجم في مخطط شامل للأشياء، وخاصة إذا كانت معرفتك ضاحكة بالفيزياء والبيولوجيا. لقد جعلت الثورة الكبيرة في الأرض تابعة أو ثانوية إزاء الشمس وهي غير حية، والمكتشفات التي تلت ذلك في الفيزياء والفلكل أطلعتنا على أن الكون ليس فقط واسعًا جدًا بالمقارنة مع الأرض، وإنما أنه موصوف بدقة هيئة بواسطة القوانين التي تطوقها والتي لم تشر إطلاقا إلى الحياة.

نظرية تشارلز داروين (Charles Darwin) عن "التطور" شرحت معنى الحياة بمشتقات لا تتطلب فيزياء خاصة ومن وقتها اكتشفنا الكثير عن تفصيلات ميكانيزم الحياة ولم نجد هناك فيزياء خاصة أيضًا.

هذه النجاحات المبهرة للعلم، قوانين نيوتن والفيزياء الناتجة عنها بصفة خاصة فعلت الكثير لجعل التصويرية ("reductionism") أبداً جذيًاًا. منذ الإيمان بأن الحقائق المكتشف عنها ربما تنتراب مع العقلانية التي تحتاج مزيدًا من الافناء على

Charles Robert Darwin (1882 – 1879) عالم إنجليزي طبيعي، استغرق عمله حول "الأنواع" 20 عامًا كاملًا، وانتهى إلى كتاب بنفس العنوان (مترجم للعربية) لـ "الاتجاه الطبيعي" و"البقاء للأصلح"، والذي لم يعترضه وقتها سوى بعض الفقهاء الذين لخلو الكتاب من معلمة الخلق الإلهي، وجنوه في أن الحياة البشرية تتصرف كحياة الفيزيائية (الترجم)

ويتميزة المذهب القائل بالبحث عن صفات المواد بدلًا صفات مكوناتها أو البدء من الأكبر فالأصغر (أي من الجسيمات إلى الجزيئات ثم الذرات ثم الجسيمات دون الرمية) كالإلكترونات والبروتينات والببتيدات ثم مكونات هانيشير من قوارن و جلسات بتنوعاتها

251
النقض، ومع ذلك فإن كثير من الناس يتوقف للأسئلة المطولة للأشياء التي يمكن أن يعتقدوا فيها أو يصدقوها. إذا لم يحصلوا بعد على نظرية تتميز بالتمييز عن كل شيء لكي يعتقدوا فيها ويبقاؤها، فهم على الأقل ينصحون إلى واحدة بهذا الشكل. لقد كان موثوقاً به أن ترابية تتميز بالإتقان في مجال العلوم، تتأسس على فهاظة الأصغر (دون النظرية)، هي متممة للنظرية العلمية للعالم، وأنها تتعرض فقط للانتقاد من قبل العلماء البارزين وهؤلاء الذين يتموردون على العلم نفسه، ومنذ الوقت الذي كنت أتعلم فيه البيولوجيا في المدرسة، تغيرت حالة هذه السائدة إلى العكس مما ذهب إليه أرسطو بوضوح. لم يكن منظراً للحياة على أنها أساسية على الإطلاق. مصطلح “الفيزياء” أو الطبيعة كمواد دراسة والتي تعني “البيولوجيا” قد أصبحت من قليلى المفاهيم التاريخية أو ما يحدث في غير زمانه. أساسيًّا الطبيعة هي الفيزياء. ساكون مختلفاً في التبسيط على نحو ما إذا ميزت سمات النظرة السائدة كما يلي: الفيزياء لديها فرع منها هو الكيمياء التي تدرس التفاعلات بين الذرات والكمياء لديها فرع هو الكيمياء العضوية الذي يدرس مركبات عنصر الكربون وفي المقابل الكيمياء العضوية لديها فرع يدرس كيمياء العمليات التي نسميها “الحياة”. هل لأننا موضوع هذه العمليات يجعل من أبعاد الفرع الأخير عن فكرة الأساسيّة مثيراً أو ممتعاً بالنسبة لنا. وبالمقارنة فإن الفيزياء ينظر إليها على أنها مهمة وذاتية الأدلة بالنسبة لصدقها لأن الكون كله بما فيه الحياة يقوم بالأداء وفقاً لمبادئها.

أنا وزميلي في الفصل كان علينا تعلم - عن ظهر قلب - عدد من سمات الأشياء الحية. وهي كانت مجرد أوصاف. وكانت الإشارات قليلة ما هو أساسي من المفاهيم. = التي تعددت وما زال البحث جاريًا عن المزيد مما يمكن اكتشافه منها) وبحلولات أخرى: إمكانية التوصل إلى صفات الكل "الأكبر" بدلاً من صفات الجزء "الأصغر". (المراجع)
واعترف أن آبنتي الجريمة كان واحدًا منها، وهما جميعًا - وبالتعريف كانت مجرد صدى لفكرة أرسطو. وكان التنفس والتبرز من بينها أيضًا. وكان هناك أيضًا إعادة الإنتاج والنمو، وكذلك التي لا تنسي وأعني بها "القابلية للتأثير" والتي تعني أنك إذا اصطدمت بشيء فإنه يصطدم بك بدوره. تلك التي يفترض أنها من سمات الحياة كانت تقترب إلى الأثناء وتحذق التفكير وعمقه، ويشكل ما لم تُصَنَّف بثقة. وكما سيقول لنا الدكتور جونسون، كل شيء حقيقي قابل للتأثير والتاثير رد الفعل. ومن ناحية أخرى فإن الفيروس لا يتلف، ولا ينمو ولا يخرج، كما لا يتحرك إلا إذا اصطدم به شيء، ولكنه مع ذلك حي، والأحياء المصابون بالعقم، ولو أنهم لا يعيدوا الإنتاج (ينجبون) فهم أحياء أيضًا.

السبب في أن نظرة أرسطو وكذلك الكتب المدرسية قد فشلت في أن تلتقط التمييز التصنيفي بين الأشياء الحية وغير الحية، دع عناي أي شيء له عمق، هو أنهما معًا افتقدا ما هي النقطة الرئيسية فيما هو حي (خطأ يمكن غفرانه لأرسطو لأنه في وقته لم يكن ثمة من يعرف أكثر منه). البيولوجيا الحديثة لا تحاول تعريف الحياة عبر سمات فيزيائية تساهم أو تجعل وجودًا للحياة. لم نعد نتوقع مثل هذه الأشياء، لأننا الآن نعرف أن المادة الحية التي تشكل كائنات حية ليست هي أساس الحياة أنها مجرد واحدة من تأثيرات الحياة وأن أساس الحياة يتمثل في الجزيئات التي تمهد أو تمكن لبيئات معينة أن تحتوي نسبًا من هذه الجزيئات.

مثل هذه الجزيئات تسمى "تَمْعِيِدُ النَّسْخِ". وبشكل عام فإن أي "تَمْعِيِدُ النَّسْخِ" هو الذي يحقق بينات صالحة لنسخه هو ذاته، وليس كل "تَمْعِيِدُ النَّسْخِ" هم جزيئات. أو على صلة، البيولوجيا على سبيل المثال: البرنامج الكمبيوتر الذي يعيد نسخ نفسه (مثل فيروس الكمبيوتر) هو من قبيل "تَمْعِيِدُ النَّسْخِ"، "النكتة الجديدة" هي أيضًا من نفس الشكلة لأنها تسبب وجود مستمرين لها يعيدونها على مسامع آخرين.
أن يَنَحِلَ أو يَعَطِّلُ مصطلحًا: Richard Dawkins (4) وقد استطاع ريتشارد داوكنز (4) "جمعها (5) مماثلًا مع قافية كلمة تفسدة (Cream) فاصدادًا بها ممعيدى النسخ" المتمثلة في أفكار البشر مثل النكت والمزح. ولكن كل الحياة على الأرض تتوقف على "معيدي النسخ" من الجزيئات، وهي ما تسمى بالجينات. كما أن علم البيولوجيا هو دراسة الأصل أو الجذور وبناء وكيفية أداء تلك الجينات وأيضًا تأثيرها على المواد الأخرى. وفي معظم الكائنات الحية تتكون الجينات من متتابعة من جزيئات أصغر، حيث يوجد أربع أنواع مختلفة ترتبط مع بعضها في سلسلة أسماء guanine, cytosine, adenine, thymine. تلك المكبلات الأصغر هي: أدينين, سيتروزين, جوانين, تيمين. وعادة ما يتم اختصارهم إلى: (G, A, C, T). وتسمى الكيميائي المختص لأي سلسلة من أربعة من جزيئات RNA "T, A, C, G" ونُشِرُ على أنها تؤدي إلى "T, A, C, G". DNA:

الجينات في أي برامج كمبيوترية ذات قيمة يُعتبر عنها كتوابع لـ "T, A, C, G" كرموز في لغة معيارية تسمى شفرة جينية والتي مع تنويع طفيف هي مشتركة في سائر مناحي الحياة على الأرض. (بعض الفيروسات تقوم على طرائض لها صلة من الجزيئات حيث تكون البروتينات RNA، بمعنى ما هي جزيئات بروتينية تعيد نفس نفسها) بناءات خاصة في خلايا الكائن الحي تشكك كما لو كانت كمبيوترات لتنفيذ برامج هذه الجينات. هذا التنفيذ يتكون من صنع جزيئات معينة (بروتينات) من خلال جزيئات أبسط (الأحماض الأمينية) تحت ظروف خارجية معينة. مثالًا متتالية.

(4) ريتشارد داوكنز (ولد عام 1941) عالم حيوان إنجليزي حاصل على الدكتوراه من أوكسفورد في الحياة الحيوانية ويعد أستاذاً مساعدًا في ذات المجال. جامعة كاليفورنيا بيركلي - أولهم The Selfish Gene كتاب حقق له شهرة وهو أول مؤلفاته كان عن "الجينات الأثباتية بين مولعات بعد ذلك نهر خارج عدن" وننتقل جبل مرفع الحدوش. (المترجم)

(5) "الهم" تعادل أو تكافأ كلمة "جين" ولكن سُخدم الأصل في سياق الدراسات الإنسانية والحضارية أو الثقافية، بينما يقتصر استعمال الأخيرة على الدراسات البيولوجية. (المترجم)
هو بناء يدمج الحمض الأميني ميثيونين methionine في الجزء البروتيني ATG المصنوع.

وبالمثل فالجين يفتح كيميائيا في خلايا معينة بالجسم، ويستطيع تعليماته تلك الخلايا لتصنع البروتين المتدفق. على سبيل المثال فإن هرمون الأنسولين الذي يحكم مستويات السكر في الدم بالنسبة للحيوانات الفقارية هو من مثل ما قصدته قبالة بالبروتين المتدفق أو المتماثل. ولكن تصنع الجينات ذلك فهي حاضرة في كل خلايا الجسم تقريبا، ولكنها تفتح للعمل في خلايا معينة متخصصة في البنكرياس، وفقط عندما يحتاج الجسم إليها. وعلى مستوى الجزيء، هذا ما يستطيع أن ييرمجه الجين أن جين في كمبيوتره الخلوي لكي يفعل: صنع كيمياويات معينة. ولكن الجينات نجحت في أن تصبح من معيدي النسخ لأنه في هذا المستوى المنخفض من البرمجة الكيميائية أضفت فيما هو طبقة فوق طبقة من التحكم وإعادة التغذية المعقدة والخاضعين لمستوي عالي رفع من التعليمات. ومتصلا بذلك فإن جينات الأنسولين والجينات التي لها علاقة بصلبها وفتحها تتعلق ببرنامج كامل من قواعد الدم في مجري الدم.

وتشابه مع ذلك، هناك بعض الجينات المحترفة على تابعها بكيف ومتى تقوم هي وجينات أخرى ينسخ أنفسهم وتعليمات لصنع مزيد من الكائنات الحية من نفس النوع، بما فيه كمبيوترات الجزيئات التي ستستخدم هذه التعليمات في الجيل التالي. وهناك تعليمات أيضا لكيف للكائن الحي ككل أن يستجيب للمنبهات أو المثيرات، مثل: كيف ومتي يصطاد، يأكل، يحب (فعل الحب)، يقاتل أو يجري هاربا... وهكذا...

الجين يمكن أن يقوم بإعادة النسخ فقط في بيئة معينة. وبالتشبيه: بكَّة إيكولوجية "متحلة بالبيئة" (مجموعة البيئات التي يستطيع الكائن الحي البقاء فيها وأن يعيد الانتاج، سوف يستخدم مصطلح "الكُرة": niche للتعبير عن مجموعة البيئات التي يمكن فيها لعالم من النسخ معين أن يكون سببا في إعادة نسخ نفسه. كوة جين الأنسولين

255
تشمل بيئات يتموضّع فيها هذا الجين في جزيئات الخلية مصحوبًا بجيئات أخرى
معينة، والخلية نفسها متموضّعة بدقة في تسلاسل وظائف الكائن الحي وفي موطن
مناسب لهذا الكائن الحي لكي يبقى حيًا وأن يعيد الإنتاج. ولكن ثمة بيئات أخرى مثل
معامل البيونتكولوجيا "الهندسة الحيوية" حيث يتم تعديل الجينات لتتطابق مع
الجينات لتصبح مثل جين الأنسولين مثلًا. مثل هذه البيئات هي أيضًا جزء من الكورة
البيئية للجين مثل عدد لا نهائي من البيئات الأخرى الممكنة التي تختلف جدًا عن تلك
التي أُطلقّت منها الجين، أو نشأ فيها.

ليس كل ما يمكن أن يُنسخ هو من قبيل "معيد النسخ"، معيد النسخ يتصادف أن
يتسهب في البيئة التي يمكن أن يُنسخ فيها، بمعنى أنه يساهم عمدًا في إنشاء البيئة
التي ينسخ فيها. (مصطلحاتي هنا تختلف قليلاً بما استخدمه د. جونسون فهو يعتبر
كل ما يمكن نسخه لأي سبب كان هو معيد نسخ، ما أسمي أنا كذلك سيعتبر هو
معيد النسخ النشط) وهذا معناها عمومًا الذي يساهم اتفاقًا أو مصادفة في شيء ما
يشتري ما سوف أوعد إليه. إنما الذي أعني هنا هو أن ظهوره واتخاذه شكل معمّن لمعيد
النسخ هو ما يصح فرقًا بين ما إذا كانت عملية النسخ قد جرت أو لم تجر. وبدأت
أخيرًا فإن معيد النسخ لا تحكم عليه بمجرد ظهوره لنا كذلك، وإنما إذا كان قد حل
محله أي شيء أو مصنع آخر على الأقل، حتى لو كان مجرد شبيه له، وهذا الآخر لن
ينسخ مرة أخرى. على سبيل المثال، فإن جينة الأنسولين تنتسب في خطوة واحدة
صغيرة في العملية المعقدة الهائلة الخاصة بإعادة نسخها (وهي العملية الكاملة لدورة
الحياة في الكائن الحي). ولكن الأغلبية العظمى من الجينات المتنوعة لن تتشكل خلابة
تصنع الكيمياء التي تشكل وظيفة الأنسولين، إذا كانت جينات الأنسولين في خلايا أي
كائن حي سوف تحمل محلها مجرد جزيئات بسيطة مختلفة، سوف يتهيي الأمر بموجب
ذاك الكائن الحي (ما لم يتم الإبقاء على حياته بوسائل أخرى)، وسوف يكون أيضًا
فاضلاً في أن يتكاثر (أي يصبح عقيدًا) وهذه الجزيئات لن يمكن أن تعيد نسخ نفسها.
ومع ذلك الجزء فشل نتيجة تابعة عشوائية من "T،A،C،G" تسمى أحياناً تظاهر بدورها في كل الكائن البشري، وهي يتم نسخها DNA بـ "تفاية" ما DNA تظهر بدورها في كل وتُريرها لذريته الكائن البشري، وأيضاً ما كانت هذه النتائج يتم إهللها بنتائج أخرى مساوية لها في الطول فهي تظل يعاد نسخها ومن هنا يمكننا أن نستنتج أن نسخ هذه النتائج لا يعتمد على شكلها الفيزيائي المعين، وعلى عكس الجينات فإن هذه النتائج ليست من قبل البرامج، إذا كانت لها وظيفة (وليس معروفًا إن كان لها وظيفة من عدمه) فلا يمكن أن تتحاول نقلها من أي نوع، ولو أنه يتم نسخها إنما هي في إعادة النسخ هذه وهي لذلك لا تعد من معيدات النسخ.

هذه مسألة في الواقع. كل ما يمكن نسخه لا بد على الأقل أن يساهم في عملية DNA إعادة نسخه. النتائج الفيزيائية النفاية لل DNA والتي هي مصنوعة بدورها من الوظائف الأخرى هي التي تسهم بالكمبيوتر الخلوية لأن يسنبحها والذي لا يمكن أن ينسخ جزيئات غير ال DNA وليس من قبل التوضع دائما القول بأن أي شيء هو معيد نسخ إذا كانت مساهمته قليلة في إعادة نسخه حتى ولو أنه على سبيل الكلام المباشر فإن اعتبار معيد النسخ على أنه كذلك هي في النهاية مسألة درجة. وسوف أُرفق "درجة التاقلم" لعيد النسخ لبيئة معينة لأنها درجة مساهمته عمدا في عملية إعادة نسخه في تلك البيئة. إذا كان معيد النسخ قد تاقل ميدًا مع معظم كوب التي اليميكنا من أن نصفه بأنه قد تاقل ميدًا مع الكوب. لقد رأينا تأثر أن جين الأنسلوين قد تاقل بدرجة عالية مع كوبه، النتائج الفيزيائية كنفاعة ال DNA لها درجة
تأقلم تافهة وغير جيدة بالاهتمام بالمقارنة مع جين الأنسولين أو أي جينات مسائدة.
ولكنها متوافقة بشكل أبعد مما تفعله أي جزيئات أخرى.

لاحظ أنه كنحدث درجة تأقلم فليس علينا فحص معيد النسخ محل السؤال وحده ولكن يجب أن ننظر إلى مدى سلسلة من نظائره وكلما ازدادت حساسيته لإعادة النسخ في بيئة معينة لشكل الفيزيائي، كلما كانت درجة تأقلمه لهذه البيئة أعلى. وأكثر معيدات النسخ تأقلمًا (وهي وحدة التي تستحق أن تسمى "معيدات نسخ") تدفعنا إلى أن نأخذ في اعتبارنا بشكل عادل عدد قليل من التنوع، لأنها في ظل التعدد التنوعي الواسع لن تظل معيدات نسخ. وهكذا نحن نتأمل أو نفكر مليًا فيما يحل محل معيد النسخ من أشياء واسعة النطاق معه. لكي نحدد مقدار تأقلم معيد النسخ لكل بيئة من بيئات الكوة، علينا أيضًا أن نأخذ في اعتبارنا عدد من تنوعات البيئة كنوعات معيد النسخ. إذا فشلت أغلب تنوعات معيد النسخ في أن يكون سببًا في معظم بيئات الكوة لبعض نسخه فيها، فإنه يستتبع ذلك أن شكل معيد النسخ ذاك هو سبب له معنى في إعادة نسخ ذاته في تلك الكوة. ومن الناحية الأخرى إذا استطاعت معظم تنوعات معيدات النسخ إعادة النسخ في معظم بيئات الكوة، فإن شكل معيد النسخ هنا لن يشكل سوى فرقًا بسيطًا. لأن عملية النسخ ستستند على أي حال. في هذه الحالة فإن مساهمة معيد النسخ في العملية ستكون قليلة وبالتالي لن يكون على التأقلم مع الكوة.

وهكذا فإن درجة تأقلم أي معيد النسخ، لا تتوقف فقط على ما يفعله نحو بيئته الفعلية وإنما أيضًا ما سيجعله نحو عدد واسع من الموضوعات (التي أغلبها غير قائمة) في بيئات أخرى غير بيئة هو. لقد واجهتنا من قبل مثل هذه الخاصية الغربية. وقوع المحاكاة في الحقيقة التقديرية لا تعتمد فقط على استجابة الآلة فعليًا لما يفعله مستخدمها، وإنما أيضًا على الاستجابات التي لا تقوم بها، تجاه الواقعة للأشياء التي

258
لن يستجيب لها المستخدم في الواقع هذا التشابه بين العمليات الحية والحقيقة التقنية ليس من قبيل الصادقة، كما سأوضح بعد قليل.

أهم العوامل التي تحدد بيئة معين نشغ هي في العادة، أن إعادة نسخ الجين تعتمدت على حضور جينات أخرى. على سبيل المثال، إعادة نسخ جينات الأنسولين في دب لا تعتمدت فقط على وجود بدن الدب أو وجود كل جيناته الأخرى فقط وإنما أيضًا على وجود بيئة خارجية، من الجينات الأخرى للكانات الحية. الدببة لا تستطيع البقاء بدون تغذية، والجينات التي تصنع هذه الأغذية موجودة فقط في كانات حية أخرى.

مختلف أنواع أو طرازات الجينات التي تحتاج تعاون غيرها من الجينات لتتم عملية إعادة النسخ عادة ما تعبيس معًا في شرائط وسلاسل طويلة من _DNA_ الخاص بكون حي. الكائن الحي هو ذلك النوع من الأشياء مثل حيوان أو نبات أو ميكروب - الذي نعتقد في كل قرية من بيوتيه بأنه يتمتع بالحياة. وما قلته يستتب أن الحياة هو أن الطف و الكثيرين أن جملة عندما نطبقها على أعضاء الكائن الحي أنها شيء أكثر _DNA_ من ال _DNA_. الكائن الحي بذاته ليس من _معيدي النسخ_ إلا جزء من البيئة اللازمة لإعادة النسخ بل هو من أهم الأجزاء من الجينات، الذي يحافظ عليها بقاء تلك البيئة هو طراز القاتل أو المستوطن الذي يمكن أن يشغله الكائن الحي (مثل قمة الجبال أو أعمق المحيطات) وطراز الحياة المميزة التي يقوم بها هذا القاطن (مثل الصائد، أو الجهاز الذي يلقم الماكينة بأشياء معينة بعد ترشيحها _Filter - Feeder_ الذي يجعل الكائن الحي قادرًا على البقاء لمدة كافية للجينات بحيث يعاد نسخها.

في حديثنا اليوم نتحدث عن كانات حية تعبي صناعة أو إنتاج نفسها، بالطبع، فهذه واحدة من _السمات_ التي يفترض أنها تميز الأشياء الحية. وبكلمات أخرى نحن نعتقد أن الكائنات الحية من قبيل "معيدي النسخ" ولكن هذا ليس دقيقًا. الكائنات الحية لا تنسخ عبر عملية إعادة الإنتاج، واللأبعد من ذلك أنها لا تسبب إعادة نسخهم.
إنهم ينشؤون وبشكل طِرَكٍ طبقيًا للطبيعة الأولية المتضمنة في الـ DNA الخاصة بالكائن الحي الذي هو والديهم. على سبيل المثال، إذا تغير شكل أنف الدب بسبب حادثة ما ربما يؤدي هذا إلى تغيير في أساليب حياة الدب وفرصه في البقاء. لكي ينتج نفسه ربما تتأثر إلى الأحسن أو الأسوأ. إذا ما كانت لديه فرصة الإنجاب فإن شكل أنف ذرائية ستكون طبقيًا للشكل الأولي للأنف قبل الإصابة. أما لكي يحدث تغييرًا في الجين ذو الصلة (إذا أجريت ذلك بعد إدراك وفهمه للدب، ستحتاج فقط لتغيير جزئي واحد) فلن تعمل ذرية الشكل الجديد للفن بل وتستعيد من الجينات المستجدة أيضا. وهذا يوضح أن شكل كل أنف كان وراء هذا الجين، وليس شكل أي أنف سابقة. وهكذا فإن شكل أنف الدب لن تصنع مساهمة اتفاقية في شكل أنف الذرائي. ولكن شكل جينات الدب تساهم في عملية إعادة نسخها وفي شكل أنف الدب وشكل أنف ذرائي. ويشكل تقليدي فإن أنف الدب وموقعه (عريسه) يصنفان، على نحوه له احترامه، على أنهما خواص حية وبدون حياة معًا. ولكن هذه التفقة ليس لها أساس له معنى. لا فرق هناك أساسياً بين الأنف وموقعه، وربما أنهما من معيدات النسخ فلا فردية هناك أن يؤثر ذلك على استمراريةهما كذلك. الأنف وموقعه هما مجرد أجزاء في البيئة التي عبرها يتبنى لجينات الدب أن تعالج بجددية إعادة نسخ ذواتهم.

هذا الأساس الجيني في فهم الحياة - أن الكائن الحي جزء من بيئة الجينات - أستخدم كأساس للبيولوجيا منذ دارون بل وكانت هي السبادة حتى على الأقل أواخر ستينيات القرن الماضي. ولم تفهم بالكامل حتى طبع ريتشارد داوكنز The extended Kins الأثنائي (6) في عام 1976 "والظهر الموروث المتد" عام 1982 phenotype
أعود الآن للسؤال عمّا إذا كانت "الحياة" ظاهرة أساسية في الطبيعة. لقد حذرت ضد التفسير "التصغيري" بأن ظاهرة "الانطباقة" مثل "الحياة" هي بالضرورة أقل أساسية من تلك الظواهر الميكروسكوبية في الفيزياء. وبصرف النظر عن كل ما ظلّ أردها من أنه يبدو أن الحياة تشير إلى أنها مجرد أثر جانبي في نهاية سلسلة طويلة من الآثار الجانبية. لأنها ليست مجرد تنبؤ من جانب البيولوجيا التي يمكن تصورها، من حيث البداية، إلى "الفيزياء". إنها على السطح منها، وأيضًا من تفسيرها. كما قلت، فإن النظريات الكبيرة الشارقة لدارون (وفقًا للرؤية الحديثة التي نشرها داوكز، والكيمياء الحيوية الحديثة) هي ذات طبيعة "تصغيرية". إن الجزيئات - الجينات - هي مجرد جزيئات تطبع نفس قوانين الفيزياء والكيمياء كما لو أنها غير ذات حياة. إنها لا تحتوي على عناصر خاصة ولا مساهمات فيزيائية خاصة. ولكن يُجده في بيئة معينة أنها تعيد تشك ذواتها، وخصوصية أنها من "معيدات النسخ" متوقف بشكل كبير على وجود قربة على ذلك - بمعنى أنها تعتمد على تفاصل يصعب تحليله في بيئة إعادة النسخ. جوهر إعادة النسخ يقوم في بيئة ولا ي يقوم في أخرى. وأيضًا خاصية التآكل مع "كوة" عبئية لا يعتمد على مساهمة بسيطة أو فعالة (متضمنة في طبيعته) يملكها معيد النسخ وقت جريان عملية الإعادة، ولكن بمؤثرات قد تحدث مستقبلًا وفي ظل ظروف افتراضية وقتها (مثلا في ظل تعدد من البيئات). الخواص الافتراضية تلك التي تحتاج إلى قرائن هي بالأخص اشتقاقية أو ثانية، وبذلك من الصعب للمرء أن يرى فيها أن الظاهرة يمكن أن تسمى فقط بهذه الخواص على أنها ظاهرة أساسية في الطبيعة.

والانظار لتأثير الفيزيائي للحياة، فإن النتيجة واحدة. تبدو تأثيرات الحياة بسيطة وجديدة بالانفتاح عنها. لأن كل ما نعرفه أن الحياة لا توجد إلا فوق كوكب الأرض دون سائر الكون بالتأكيد نحن لم نرى دليلاً على وجودها في مكان آخر، وبالتالي حتى مع الانتشار الواسع لتأثيراتها فإنها أصغر من أن تكون موضوعًا لإدراكنا الحسي. ما
نراه وراء الأرض هو كون نشط مضطرب بالأشكال والمتنوعات، قوى، ولكنه ملء بالعمليات غير الدي. مجرات تدور متعاقدة حول محاور. نجوم تتكاثف، تسطع، تتموج بضوء خاف، تتفجر وتتهار، أجسام أقل من ذرة ذات طاقة هائلة، وأمواج تنساب في كل اتجاه من الجاذبية والكهرومغناطيسية، سواء كانت هناك حياة أو لا. عبر هذه العمليات العظيمة فلن تؤثر على هذه العمليات بدءاً صور التأثير. يبدو أن الأمر سيكون على ما هو عليه حتى ولو لم تظهر الحياة أصلاً. أو كانت الأرض متضمنة في توجه شمس كبير فليس لذلك أي معنى فلكي، محبطاً الأرضي والعضوية (الإيجابي)

سيتحول فوراً إلى شيء موجب وعتيق. وهذه الكارثة سوف يكون لها تأثير بسيط على الشمس ككل، تأثير نقطة مطر على بركان ثائر. محبطنا الحيوية، من حيث كتبته أو طاقته أو في قياس فيزيائي فلكي آخر مشابه، سيكون مجرد كمية تافهة حتى بالنسبة للأرض، إذ أن من المسلم به فلكياً أن النظام الشمسي يتكون أساساً من الشمس وكوكب المشتري. أو شيء آخر (بما فيه الأرض) هو مجرد شوائب والأكثر من ذلك أن النظام الشمسي نفسه هو شيء ثابت بالنسبة لمجرتنا (درب التبانة) التي هي بدورها أمر غير ملموس بالنسبة للكون المعروف. وهكذا يبدو الأمر كما وضعه ستيفن هوكينج

(1) الجنس البشري ليس إلا مجرد زبد أو جفاء كيميائي على كوكب متواضع الحجم يدور في مسار حول نجم عادي في ضاحية مترطة لواحة من بين مئات البلايين من المجرات.

تلك هي الرؤية السائدة في أيامنا هذه والتي تتمثل في أن الحياة، بعيداً عن كونها مركزية هندسياً ونظرياً وعملياً، فهي لا تكاد تكون ذات معنى يمكن فهمه أو إدرائه.

(2) ستيفن هوكينج

(3) فيزيائي نظري إنجلزي - صاحب نظريّة انفجار البلاك السوداء، التي تقوم على أساس نظريّة التفوقية ومعكوساً لك، كما اقترح التشكيل الذي وقع في الانتهاء الكبير فضلاً عن مساهماته في مجال الفيزياء، والتي جلبت له - رغم مرزقه الشديد - العديد من الترشيحات الاستثنائية، ومن أشهر مؤلفاته الموجودة في مصر - على حد علمي - تاريخ موجز للفيزياء والكون في قصبة جوز: (المترجم)
الإحصائية أو البيولوجيا في هذه الصورة هي موضوع له نفس حالة الجغرافيا. معرفة تخطيط لمدينة أوكسفورد ليس مهما إلا للقاطنين بهذه المدينة ولا يهم الذين لم يسبق لهم زيارتها. ويشبه ذلك ما يبدو أن الحياة هي خاصية لمنطقة، ربما مناطق ضيقة من الكون، هي أساسية بالنسبة لنا لأنتنا من الأحياء، ولكنها ليست أساسية سواء نظرًا أو عملياً في الخطط العام للأشياء. وإن كان هذا المظهر من قبل المراوغة أو المخادعة ببساطة ليس صحيحًا أن الحياة ليست لها معنى من ناحية تأثيراتها الفيزيائية، ولا أنها اشتقاقية أو ثانوية من الناحية النظرية.

وكخطوة أولى لشرح ذلك دعني أشرح أولاً ملحوظتي الباقرة بأن الحياة هي شكل لجبل من مولدات الحقيقة التقديرية. لقد استخدمت تعبارية "الحوسبة على الميكانيزم أو الآلية التي تنفذ بها الجينات البرامج الكائنة في الخلايا الحية ولكن هذا نوع من الاصطلاحات المنغلقة قليلاً. بالمقارنة مع الكمبيوترات ذات الهدف العام التي ننتجها صناعياً، فإننا نفعل ما هو أكثر وما هو أقل. ليس سهلاً على المرء برمجتها للقيام بنظام كلمات أو تحليل عدد كبير من الأرقام. ولكن من ناحية أخرى هي تبذل جهدًا فائقة ورائعًا ودقيقًا في التحكم التفاعلي على استجابات (الكائن الحي) إزاء بيئة معقدة لأي شيء قد يحدث له. وهذا التحكم موجه لتسبب البيئة التي تمثل رد فعل الجينات بطريقة معينة (يمعنى أن تعيد النسخ) مثل أن شبكة التأثيرات على الجينات تكون على نحو ما - ويقدر الإمكان - مستقلة عما يحدث في الخارج. وهذا أكثر من مجرد الحوسية. إنه محاكاة للحقيقة التقديرية.

التنازل الديني الذي أقمناه مع التقنية البشرية. الخاصة بالحقيقة التقديرية ليس متكاملاً. أولاً: لو أن المسألة تتعلق بالجينات، تمامًا، مثلما يفعل مستخدمو الحقيقة التقديرية داخل بيئة إنشاءها بالكامل وسلوكها محدد بواسطة برامج (وفي حالة الجينات فهي تحتوي على هذا البرنامج) إلا أن الجينات لا تقوم بتجريب أو اختبار هذه البيئة لأنها فاقدة الحس والخبرة. وهكذا فإن الكائن الحي يحاكي حقيقة تقديرية.
لذا فإن المحاكاة في العمليات الحية وفي الحقيقة التقديرية تنحى فيها تلك الخلافات البدائية على سطحها جانبًا لكنهما يقومان بنفس العملية. كلاهما...
 يتعلق (ومتضمنًا فيزيائيًا) بالنظريات العامة عن البيئة. وفي الحالتين فإن هذه النظريات هي لتحقيق الانتباه لهذه البيئات والسيطرة عليها والتفاعل معها وهو ما لا يعتمد فقط على مظهرها اللحظي وإنما أيضًا على استجابتها التفصيلية لكل محفز عام.

الجينات تتطوى على معلومات عن كوناتها. كل شيء له معنى أساسي حول ظاهرة الحياة يعتمد على هذه الخاصية وليس إعادة النسخ في حد ذاته. وهكذا لا تستطيع الآن أن تتقدم بالناقشة إلى ما وراء إعادة النسخ. من حيث المبدأ يمكننا أن نتخيل نوعًا من الكائنات بجانبنا غير قادرًا على قابلية إعادة النسخ. وإذاً بلداً من ذلك تكون متاقلنة على إبقاء الترتيب الفيزيائي دون تغيير بعملية متصلة من الصيانة الذاتية وحماية نفسها من أي تفويض خارجي. مثل هذا الكائن لا يمكن أن يثبت طبيعيًا، وإنما يمكن إنشاؤه صناعيًا ومجدد أن درجة التنقل لدى معبد النسخ يتم تعريفها على درجة مساهمته عمدًا أو اتفاقياً مع عملية إعادة النسخ، فإننا يمكن تعريف درجة تأقلم هذه الجينات غير القابلة لإعادة النسخ بأنها درجة ما تساهم فيها في عملية بقائها في شكل معين. تخيل كائنًا ما حُفِّزت بجانبنا أو كان محظوظًا بها في قطعة من الماس في شكل نموذج. الماس العادي له شكل عشوائي ويمكنه أن يثبت لدورة في مختلف الظروف ولكن ذلك الشكل ليس مهيئًا للبقاء لأن أي قطعة ماس أخرى مختلفة الشكل سوف تعيش في ظل ذات الظروف أيضًا. ولكن لو أن قطعة الماس المتكونة على جينات كان افتراءه تسبب للكائن الحي أن يتصرف بطريقة، مثلًا، قام فيها بحماية سطح الماسة من التآكل والصدا في بيئة محددة أو مضادة أو قام فيها بالدفاع عن الماسة في مواجهة صبيان آخر يرغب أو يحاول إدخال معلومات مختلفة إلى قلب الماسة. أو ساعدوا ضد محاولات اللصوص الذين سيقومون بتقطيعها في شكل أحجار كرية مصممة.

وبالتالي ستكون مسدومة بتقليم عبقرة للبقاء في تلك البيئات (من بين المصادفات، أن الأحجار الكريمة تحجز درجة من التنقل للبقاء في بيئة أرضنا الحالية. البشر

265
يبحثون عن الماس البكر غير محدد الشكل لتغيره شكله إلى تلك القطع من الأحجار الكريمة. وفي نفس الوقت عندما يسمعون وراء الأحجار الكريمة يحتفظون بها على ما هي عليه من شكل وهكذا ففي مثل هذه البيئة يساهم شكل الماس اتفاقياً في عملية بقائه.

عندما تنتهي صناعة هذه الكائنات الصناعية، فإن عدد فرص جينات كل منها في عدم إعادة النسخ تكافئ تتمد، لن يحدث لها أي إفتقار أو انتشار مرة أخرى أبدًا. ولو حتى تناقصت فطامً كانت المعلومات التي تحتويها كافية لها لتنس استراتيجيتها بقائها في الكوة التي تشغلها. وأخيرًا فإن تغييرًا كبيرًا لدرجة كافية في القاطن أو إنهال بسبب أي أحداث، ربما تنحى الكائنات، وربما أيضًا تبقى للمدة الطبيعية التي يبقاؤها النوع. الجينات في هذا النوع تشارك الجينات الحقيقية في خواصها ما عدا إعادة النسخ، وبيضة خاصة هي تنتمي في تكونها المعلومات الضرورية لمحاكاة كائناتها العضوية بالضبط كما تفعل الجينات الحقيقية.

إنها مسألة بقاء المعرفة وليس بالضرورة بقاء الجينات أو أي موضوع فيزيائي آخر، ذلك هو العنصر الشائع الذي يفرق بين جينات تحوّل خاصية إعادة النسخ وأخرى لا تحولها. وبشكل مباشر هي قطعة معرفة أكثر من أنها موضوع فيزيائي يتلاقى أو لا يتأقلم مع كوة معينة. إذا ما تناقلت فستكون حائزة على الخصائص الداخلية ضمن تركيب الكوة، وتستكون راغبة في البقاء على ما هي عليه. ومع وجود معيد نسخ فإن المادة الفيزيائية المشتقة عليه ستظل تنغير، ونسخة جديدة مشابهة من مكونات ليست لها خاصية إعادة النسخ سوف تظهر في كل مرة يتم فيها النسخ. معلومات عدم إعادة النسخ ربما أيضًا تشملها بنجاح أشكال فيزيائية متنوعة مثلها تنتقل مجموعة أصوات مسجلة إلى شريط مضغوط ومؤخرًا إلى إسطوانة مدمجة. المرء يستطيع أن يتخيل كائن حي صناعي قائم على أساس عدم إعادة النسخ سوف يقوم بمثل هذا النوع من العمل أخذًا كل فرصته في نسخ المعلومات في جيناته عبر أكثر الوسائط

266
الأمنة المتاحة. ربما في يوم من الأيام سنتمكن الأخيارات القادمة من صنع أو تحقيق ذلك.

أعتقد أنه من الخطأ أن نقول على هذه الكائنات العضوية من هذا النوع الافتراضي بأنها غير حية، ولكن المصطلحات هنا ليست بذات أهمية. المسألة أنه بالرغم أن كل الحياة المعروفة تقوم على أساس إعادة النسخ، فإن ما يدور حوله ظاهرة الحياة فعلًا هو "المعرفة". إذا نستطيع أن نضع تعريفًا للتأمل بمصطلحات مباشرة من المعرفة، كل جهد ما يتقترب مع كوة إذا كانت مشتملة على معلومات تجعل الكوة سبيًّا في بقاء هذه المعلومات في حالة وجود. الآن قد اقتربنا من ماذا الحياة أساسية. الحياة تدور حول التضمن أو الاشتتام الفيزيائي للمعرفة، وفي الفصل السادس مرتنا على قانون فيزيائي، بدأ تورنجة والذي يدور بعده حول الاشتتام الفيزيائي على المعرفة.

إنه يقول أن من الممكن تضمن قوانين الفيزياء كما تستخدم في أي بيئة ممكّنة فيزيائيًا في برامج مولدات الحقيقة التقديرية. الجوانب في هذه البرامج ليس هذا فقط بل أيضًا كل برامج الحقيقة التقديرية الموجودة، والتي ستوجد هي مؤثرات مباشرة أو غير مباشرة على الحياة. على سبيل المثال فإن برامج الحقيقة التقديرية التي تجري في أجهزة كمبيوتراتنا وفي أدمغتنا هي ذات تأثير غير مباشر على الحياة البشرية. وهكذا فالحياة هي وسائل. ربما وسائل ضرورية. لهذه التأثيرات كي تشسر من خلالها إلى أن مبدأ تورنجة مزروع في الطبيعة.

هذا يعد مشجعًا، ولكن ليس كافيًا تمامًا لدعم فكرة أن الحياة ظاهرة أساسية. لأنني لم أنظر بعد من إنشاء فكرة أن مبدأ تورنجة نفسه يجوز حالة القانون الأساسي. قد يحاول أي متشكّك في أنه كذلك وربما يأخذ هذا التشكيك وجهة النظر القائلة بأن المعرفة هي جزء ضيق وأنها مفهوم أنتروبيولوجي مركزي (العلم القائم على مركزية الإنسان في الكون) أكثر من أنه مبدأ أساسي أو أنه واحد من الأشياء المفهومة لنا بسبب ما نحن عليه: حيوانات تشتهى كُوناتها الأيكولوجية المعرفة وتسخدمها ولكنها غير
مفهومة بالمعنى المطلق. وبالنسبة لدب الكوала "Koala" الإيكولوجية على أوراق شجر الإيكالبتوس، يتسمان في "eucalyptus" المعنى في المعروفة التي يستخدمها فرد الهوموسابيان "homin sapiens" الذي هو النوع البشرى أو الإنسان. المعنى إذن لها معنى workflows

ولكن هذا المشكل على خطاً. المعروفة ليست لها معنى فقط للنوع البشرى وليس فقط على كوكب الأرض. لقد قلت أن أي شيء له أو ليست له تثباثات واسعة فيزيائيًا ليس ذلك هو الأمر الفصل فيه بقدر ما يكون الفصل في هل هو أساسي في الطبيعية أو أن له صلة بذلك. دعنا في ذلك نأخذ في اعتبارنا تأثيرات المعروفة الفلكية.

نظرية تطور النظام النجمي - بناء وتطور النجوم - هي واحدة من قصص النجاح في العلم (لاحظ هنا الصدام بين المصلحات كلمة "التطور" في الفيزياء تعني "النمو" أو ببساطة "الحركة" وليس التنوع والانقراض). منذ قرن مضى حتى ولو أن مصدر طاقة الشمس لم يكن معروفًا، كانت أفضل فيزياء وقتها تقدم فقط النتيجة الزائفة بأنه مهما كان مصدر طاقة الشمس فإنها لن تكون قادرة على التوهج لأكثر من مائة مليون سنة. من المثير أن الجيولوجيين وعلماء الباليونتولوجي Palaentologists يعلمون الآن أن أدللة إحفورية عما كانت عليه الحياة بأن الشمس ظلت متوهجة وتنشر توهجهما ذات على الأرض لما لا يقل عن مليون سنة. وبعد ذلك تم اكتشاف الفيزياء النووية وطبقت بتفصيل كبير على فيزياء ما هو داخل النجوم. ومن وقتها نجحت نظرية النظام النجمي. نحن نفهم ما الذي يجعل النجم متواضعًا. ونحن نستطيع التنبؤ بدرجة الحرارة واللون ومدى السطوع والقطر لكل مرحلة في تاريخ النجم، ولأي مدى.
بقية هذه المرحلة، وعلى أية عناصر يقوم عليها التحول النووي وهكذا، هذه النظرية قد
والت عبر ملاحظتنا للشمس والنجوم، كما تم إخضاعها للاختبار.

نستطيع أن نستخدم النظرية في التنبؤ بمستقبل تطور الشمس. هذا التنبؤ يقول
أن الشمس سوف تستمر في تهيجها باستمرار عظيم لعدة خمسة بلياد أخرى من
السنين أو حولها، وحينئذ تتمدد إلى مائة مثل مقياسها الحالي لتصبح نجمًا أحمرًا
عملاقًا، وعندئذ تنبع، تنحور وتتحول إلى ضياء متعاظم مستمر ثم تتهاوي وتبعد،
وأخيرًا تتحول إلى قزم أسود. ولكن هل سيحدث كل هذا للشمس؟ هل كل نجم تشكل
منذ بضعة ملايين من السنين قبل الشمس ولله نفس حجمها ونفس كوكبها تتحول
بالفعل إلى عالم أخر كما تنبأ النظرية؟ أم من الممكن أن تكون عمليات كيميائية ذات
معنى واضحة على كواكب أصغر تدور في مدار على حول النجوم أن تغيّر مجري
العمليات النووية والمحطمة بالجاذبية لتصبح ذات حجم وطاقة أكثر وأكثر؟

إذا أصبحت الشمس نجمًا أحمرًا عملاقًا سوف تبتيح الأرض وتدمرها. وإذا كان
خلفنا للنا فيه كما أرضًا أو عقليًا قد استمروا في التواجد على الأرض في ذلك الوقت ربما لن
يرغبو في حدوث ذلك، وربما يصنعون ما في وسعهم لمنع حدوث ذلك.

من الواضح أنهم لن يكونوا قادرين على ذلك، بالتأكيد لأن تقنياتهم الحالية أضعف
من أن تقوم بالمهام بعيدة أيضًا عن ذلك ولكن نظريتنا عن تطور النظام النجمي لا
أي فيزياء نعرفها تعطينا سببًا للانتظار بأن مثل تلك المهمة مستحيلة. على العكس نحن
نعرف، ويكاد معظمها ضفاضية، والذي نريدها للمهمة وما الذي سيتعلق بها (بمعنى: إزاحة
المادة عن الشمس) ولدنا عدة بلياد من السنين لتصبح ونكممل خططنا "المسلقة" ونجعلها محلا للعمل الفعلي، وإذا استطاع خلفنا إنقاذ أنفسهم بهذه الطريق، فإن
نظريتنا الحالية عن تطور النظام النجمي عندما تستخدم أو تطبق على نجم بعيدنا،
الشمس، ستعطينا الإجابة الخاطئة تمامًا. ولذا تعطينا إجابة خاطئة فإنها لم تأخذ
في حسابها تأثير الحياة على تطور النظام النجمي. فقط أخذت في اعتبارها تأثيرات

269
أساسية فيزيائية مثل القوى النووية والكهرومغناطيسية والتنافسة الجاذبية والضغط الإشعاعي والهيدروستاتيك، ولكن ليس الحياة.

ويبقى أن المعرفة المتطلبة للسيطرة على الشمس بهذه الطريقة لا تميل إلى أن تبرز بناءً على التصنيف الطبيعي وحده، وهكذا لا بد وبالتحديد أن تكون ثمة حياة ذكية هي التي ستبدو بارزة ويتوقف عليها مستقبل الشمس. والتي من خلالها يتم الإشارة إلى أن مبدأ تورنجر مستقر في الطبيعية. الآن ربما يكون موضوعًا لنا في نشوء ذلك الفرض غير الداعم. لأن الذكاء سوف يكون قائماً على الأرض لبضعة بليغين السنين، وإذا كان قائماً فسوف يتملك المعرفة اللازمة للسيطرة على الشمس وهذا فرض آخر إضافي.

النظرية الجارية أن الحياة الذكية على الأرض الآن تعاني من خطر تدمير نفسيها، إن لم يكن عبر حرب نووية فحسب، كارثة تأثيرات جانبية للتقدم التقني أو الأجهزة العلمية. والبعض يعتقد أنه إذا استمر الذكاء على الأرض فذلك لأنه سيقمع التقدم التقني. وهكذا ربما يخشى أن تنمية تقنياتنا يتطلب ضبطًا للنجوم وهذا يتضارب مع البقاء لعدة أطول كافية لاستخدام تلك التقنية، وبالتالي فإن الحياة على الأرض مقدرة سلفًا بطريقة أخرى وبحيث لا تؤثر على تطور الشمس.

أما على يقين بأن مثل هذا التشاؤم مضلل الإتجاه، وكما سأشرح في الفصل 14 أن هناك سببًا لحدوث وتخمين بناءً على ما سوف يسيطرون على الشمس في نهاية المطاف. أكثر من ذلك أيضًا رغم الاعتراف باننا لا نستطيع التنبؤ بتقنية ولا برغباتهم. ربما تختاروا إنقاذ أنفسهم بالهجرة من المجتمعات الشمسية أو تجميد الأرض، أو يختاروا إيجاد أنفسهم في الزيادة من الهجرة. ونرى أن نشاط غير مفهوم لنا وليس من بينها التأثير أو الحب مع الشمس. ومن ناحية أخرى ربما يرغبون في التحكم في الشمس بالقرب مما يتطلب منه تحولها إلى مرحلة النجم الأحمر العملاق (على سبيل المثال: بدلاً من نسب طاقتها على نحو أكفاء أو استنزاف مادتها الأولية بما من شأنه إنشاء مزيد من الاماكن للعيش فيها). ما علينا، النقطة التي أحاول إبرازها هنا لا تعتمد على قدرتنا على التنبؤ بما سيحدث.
فإنما أن الذي سيحدث سيعتمد على المعرفة التي سنكون لدي هؤلاء الخلفاء، وكيف سيكون اختيارهم لاستخدامها وتطبيقها. وهكذا لا يتسنى للمرء أن يتنبأ بمستقبل الشمس دون أن يأخذ في اعتباره مستقبل الحياة على الأرض، وتحديدًا مستقبل المعرفة. بقاء لون الشمس لعشرة بلنين سن تأثر بالاذبابة والضغط الإشعاعي والحمل الحربي وأطروحة القوة النووية. إنه لا يعتمد بالرغم على جيولوجيا كوكب الزهرة ولا كيمياء المشتري ولا نموذج الحفر على القمر. إنه يعتمد على ما سيحدث للحياة الذكية على كوكب الأرض أنه يعتمد على السياسة والاقتصاد ونتائج الحروب. إنه يعتمد على ما يفعله الناس ما هي القيادة التي يصنعها، ما هي المعضلات التي يطولها، ما هو القيم التي يبنونها، كيف يسلكون تجاه أبنائهم.

المرء لا يمكنه تجنب هذه النتيجة: تبنى نظرية متشائمة عن مشهد بقائنا. مثل هذه النظرية لا تأتي من أي قانون فيزيائي أو أي مبدأ أساسي نعرفه، ويمكن تقريمهما فقط بمستوى عالٍ من المصطلحات البشرية (مثل أن المعرفة العلمية قد سبقت المعرفة الخلقية، أو شيء من هذا). ولذا فإن الجدل انطلاقًا بمثل هذه النظرية يمكن للمرء أن يستدل منه بوضوح أن النظريات عن الشؤون البشرية ضرورية لصنع تنبؤات فيزيوكلاية، وحتى لو فشل الجنس البشري في تلك الواقعة وتكللت جهوده للبقاء بعدم البقاء، هل يمكن تطبيق النظرية المتشائمة على الذكاء خارج نطاق الأرض في سائر الكون؟ إذا لم يكن - إذا كان ثمة حياة ذكية، في مجرة ما أمكنها أن تنجح في البقاء لعدة بلنين من السنين - فإن الحياة لها معنى في تطور الفيزياء، بمثابة الأشمل والأعم في أرجاء الكون كله.

عبر مجرتنا وعبر متعدد الأزكون يعتمد تطور النظام النجمي على أين ومنى تتبع الحياة الذكية، وإذا كان الأمر كذلك فعلي نتائج حروب هؤلاء الآنكياء وعلى كيف يعاملون أبنائهم. ويمكننا التنبؤ مثلا بشكل مبدئي بأي نسبة توجد النجوم الملونة بألوان مختلفة (وبشكل أكثر تحديدًا النجوم ذات الأطياف المختلفة عبر المجرة) ولكن نفعل
ذلك علينا أن نضع بعض الفروض عن مدى وجود حياة ذكية هناك، وما الذي يفعله (أساسًا إذا لم تكون كثرة من النجوم قد انطفأت). في هذه اللحظة فإن ملاحظاتنا متفقة على أنه ليس ثمة حياة كذلك خارج نظام مجموعتنا الشمسية. وعندما يتم تصحيح نظرتيما أكثر عن بناء مجرينا، سوف نكون قادرين على صنع تنبؤات أكثر تجديدًا، ومرة أخرى فقط على أساس الافتراضات عن توزيع وسلوك الذكاء في المجرة.

وإذا لم يتم تصحيح هذه الفروض سوف نكون تنبؤائنا خاطئة كما أو أخطأنا في تكوين الغازات بين النجمية أو في كتلة نرة الهيدروجين. فإذا اكتشفنا شذوذات معينة في الطرازات المشهورة فإن هذا يمكننا أن تكون أداة على مظهر الذكاء في المجالات خارج الأرض.

الكونيَّان (نسبه إلى علوم الكون) جون بارو (۳) وفرانك تيلر John Barrow

ركزاً اعتبارهما في التأثيرات الفيزيوكليية التي ستكون في الحياة أو استمرت Tipper في البقاء بعد الوقت الذي (۶) ستصبح فيه الشمس مارداً أحماً. وجداً أن الحياة أخيراً سوف تحدث تغييرات مهمة وoviesية في بناء المجرة ومتانةها، بعدها في بناء الكون كله (سوف أعود لهذه النتائج في الفصل ۱۴). ومرة أخرى، عندما تكون هناك أي نظرية حول بناء الكون في شكلها العام أو في مراحلها الأولية فلا بد أن يكون لها وضع بالنسبة لما ستكون عليه الحياة وقتئذ. ليس ثمة مهر من ذلك: مستقبل تاريخ الكون

John Barrow (مواليد ۱۹۵۲) إنجلزي حاصل على الدكتوراه من أكسفورد في الفيزياء الفلكية وعمل أستاذًا في قسم الرياضيات التطبيقية والفيزياء النظرية، وتركز أبحاثه على التماثل الكوني ونوعية الثوابت الفيزيائية حيث يسعى دائمًا أنهم كيف يعمل العالم وربما أن الكيمياء في فئالية بالفعل، وأن البيولوجيا أكثر من مجرد فرع من التاريخ الطبيعي، وما يذكر أنه بسبب وجودنا في الحائز الروحية فإن له وجهة نظر تقول بأن كلًا من الفيزياء الدينية والتماثل العلمي تعنينا حقائق محدودة، وكمنا لم تلغ النسبيه العامة لأينشتاين نظرية الجاذبية لنيوتن فإن الحقائق الدينية لا تغلف أو تستبعد التكبيرات والتشابهات الجزيئية في مفاهيم البشر عن الكون، وغير الممكن، علوم الحدود، واليد البشرى للخلق، وحدود الإدراك البشري، والمبدأ الأثريولوجي وغيرها (حوالي ۱۷ مؤلف). (الترجمة)
يعتمد على مستقبل تاريخ المعرفة. اعتاد الفلكيون على الاعتقاد بأن الأحداث الكونية لها تأثير ونفوذ على الشؤون البشرية. بينما اعتقد العلماء عدة قرون أنه ليس لأيهم نفوذ على الآخر. الآن نحن نرى أن الشؤون البشرية هي التي لها تأثير ونفوذ على الأحداث الكونية.

يستطيع الأمر أن نوجه انتباهنا على ما انحرفتنا أو ضلنا في فهمه عن التأثير الفيزيائي للحياة. لقد كان ذلك بجعلنا له في حيّز ضيق (ومن السخرية أن القدامى حاولوا تجنب تلك الخطأ بجعل الأمر في حيّز أكثر ضياعًا)، في الكون كما نراه، لم تؤثر الحياة على أي شيء فيزيوكونكي له معنى. أيّا كان الأمر فإننا لا نرى إلا الماضي، ووقت الماضي القريب منا من حيث الحيز المكاني الذي نرى تفصيلاته. وكلما نظرا أكثر توجهنا أكثر للخلف ونقل التفصيلات التي نراها. ولكن حتى الماضي كله - تاريخ الكون منذ الانفجار الكبير وحتى الآن - فهو مجرد جزء صغير من الحقيقة الفيزيائية.

وتعالى تاريخ طويل سبمضى من الآن حتى الانسحاب الكبير (إذا حدث ذلك) وربما أكثر من ذلك عند الحديث عن الأكواكب الأخرى. لا يمكننا ملاحظة كل ذلك أو أيّا منه ولنكن عندما نطبق أفضل نظرياتنا على مستقبل النجوم والجراث والكواكب الأخرى، سنجد مدى كبيرًا لتؤثر الحياة، في المستقبل البعيد للهيمنة على كل ما يحدث، تمامًا كما هو حدث الآن في مسألة الهيمنة على جو الأرض أو محطات الحياة.

الجدل التقليدي عن أهمية الحياة يعطي وزنًا كبيرًا للأحجام الكبيرة للأشياء مثل الحجم والكتلة والطاقة. وكانت هذه مقاييس الفيزيائيات الفلكية ذات المعنى بالنسبة للجزء الذي يمثل الماضي والحاضر. ولكن ليس هناك سبب في الفيزيائي لأن يستمر ذلك على نفس النحو، والأكثر من ذلك أن المجال الحيوي للأرض يبدنا بامتياز متواجدة ومتعلقة في التطبيق العام لمقاييس المعنى هذه. وعلى سبيل المثال فقد كانت كتلة الجنس البشري في القرن الثالث قبل الميلاد تقدر بحوالي عشرة ملايين طن. ولذلك قللمرد أن يخرج بنتيجة من ذلك بأن هذه العملية الفيزيائية لا تشبه أن تكون حدث في
القرن الثالث قبل الميلاد وما يتعلق بكثير من الأزمات في حركتها في حين لم يتأثر معنى الكتلة في غياب الجنس البشري. ولكن سور الصين العظيم الذي تبلغ كتلته حوالي ثلاثمائة مليون طن قد بني في حوالي تلك الفترة. تحريك ملايين الأطنان من الصخور هو عمل يقوم به البشر في كل زمان. في أيامنا الحالية تحتاج لبضع عشرات من البشر لحفر مليون طن لحقوق أو إنشاء سكة حديد (هذه النقطة تظهر بقوة أكثر) أو أجرينا مقارنة عادلة بين الكتلة التي يتم نقلها من الصخور وبين الجزء الرفيع من أنفسهم المهندسين أو الأباطرة التي تحتوي مجرد Arrakis أو المُبَعَّرات "memes" التي تنسب إلى نقل الصخور). الجنس البشري ككل (أو إذا شئت مخزون من المُبَعَّرات) ربما لديه المعرفة الكافية لتدمير كل الكواكب إذا كان يعتقد على مثل هذا العمل. حتى الحياة غير الذكية شكلت في كثير من الأوقات كتلة الكتلة حول سطح وجه الأرض. كل الأوكسوجين في جوبا - على سبيل المثال حوالي ألف تريليون طن - قد أُنشئ بعمر ملايين السنوات. وذلك كان أكثرًا جانبيًا لإعادة النسخ للجينات. الجزيئات التي نشأت عن جزيئ واحد مثلاً، الحياة تحقق تأثيراتها ليس بأن تكون أكبر أو أضخم أو أكثر طاقة أكثر من أي عملية فيزيائية وإنما بأن تكون أكثر معروفة وقابلية لها. وبذلك نتائج التأثير الفاحش على مخزونات العمليات الفيزيائية، فالإفلاس على الأقل لها معنى مثلاً مثل أي كم فيزيائي آخر.

لكن هل هناك - كما افترض القدماء أنه في حالة الحياة لا بد من وجود فرق أساسي فيزيائي بين من يحبز المعرفة ومن لا يحبزها - فرق يتمتع لاحظة كما يعترف على موضوعات البيئة ولا على تأثيراتها على المستقبل البعيد، ولكن على المساهمين الفيزيائيين الذين يقيموا التأثير. من المرجح أن هناك فرق. ولكنëرة ما هو لا بد أن نأخذ وجهة النظر التي تأخذ بمباركة الأكوان.

انظر إلى الـ DNA للكائن حي مثل الدب وافترض أننا عثرنا في مكان ما من هذا الوتر أو الخيط المميز المكون من عشرة TCGTCGTTTC جينات على المتشابكة 274
جزئيات في كُنْتِه الخاصة المكونة من باقي الجينات وكُوّائِنَه. هذا الوتر أو الشريط هو من معيدات النسخ، ويتضمن قدر ضئيل من المعرفة ولكن ذا معنى، والآن من أجل المجادلة افترض أننا استطعنا العثور على نقية جينات (وهي ليست جينات) تتمثل فصيلاً أو جزء من DNA الدب ولها أيضًا نفس المتتالية التي سبق وعثرونا عليها. ومهملاً يُكن，则 هذه المتتالية لا تستحق أن نطلق عليها "مغدورة نسخ" لأنها لا تساهم بشيء تقريباً في إعادة نسخها كما لا تشمل على أي معرفة. إنها متتالية عشوائية، وهكذا فإن لدينا هنا شيئين فيزيائيين كليهما يمثل جزء من سلسلة ال DNA واحد منهما يستعمل على معرفة الأخرى متتالية عشوائية ولكنهما متساويان فيزيائيًا. كيف يمكن للمعرفة أن تصبح كما فيزيائيًا أساسيًا إذا كان شيء يجوزها والمتاهل الفيزيائي له لا يحملها.

هذا ممكن لأن هذين الجزيئين ليسا متماثلين حقيقة. إنهما فقط يدوان متماثلين عندما ينظر إليهما من بعض الأكوام مثل كوننا على سبيل المثال، دعنا ننظر إليهما مرة ثانية كما يدوان من أكوام أخرى أنه لا يمكننا أن نلاحظ الأكوام الأخرى مباشرة.

إذ لا بد من استخدام النظرية.

نحن نعلم أن ال DNA في الكائن البشري هو أمر بطبيعته يتصل بالتنوع العشوائي - التغيير الإحصائي - في متتابعة جزئيات T, A, C, G. وطبقًا لنظريات التطور، والتأقلم في الجينات وبالتالي فإن وجود هذه الجينات يعتمد على تغيير إحصائي يحدث وسبب التغيير الإحصائي فإن أي جمهرة من الجينات، أى جينات، تشمل على درجة من التنوع، والأفراد الذين يحملون جينات لها درجة عالية من التأقلم تميل إلى أن يكون لديها إشار أو إخصاب أكثر من غيرها من الأفراد. معظم التنوعات في الجين يجعلها غير قادرة على أن تكون سببًا لإعادة النسخ لأن تتابع التغيير لم يعد قادرًا على توجيه تغييرات للخلية لصنع أي شيء مفيد، وآخرون يصبحون إعادة نسخ أقل شبهًا (ألنهم يُضِيّقون كوة الجين).
إلا أن البعض ربما يحدث أن يشتملوا على تعليمات جديدة لصنع إعادة نسخ أكثر شبهاً. هذا التصنيف الطبيعي يحدث - مع كل جيل من التنوٍ وإعادة النسخ - أن تتسع درجة تألق الجينات التي بقيت حية. الآن شعاع كونى يحدث على سبيل الصدفة تغيرًا إحيائيًا عشوائيًا عندما يصطدم بنا، وأيضًا ليس فقط في جمهرة الكائنات الحية في كون واحد ولكن في الأحياء الأخرى. الشعاع الكوني هو عنصر دون ذرٍ عالٍ للطاقة وهو مثل أنظمتنا المنبعثة من بطارية ضوئية، يزدح في اتجاهات مختارة وفي أكُونات مختلفة. ولذا فإن عندما يصطدم عنصر إشعاع يُصَرّب في سلسلة DNA تغير إحيائي فإن بعضاء من نظامه في أكون أخرى تتفقد نسخاً منها في شريط ال DNA أيضاً. بينما أُخرى تستخدم به في مواضع مختلفة محدثة تغيراً إحيائياً مختلفاً. وهكذا فإن شعاعاً كونيّاً واحداً يُصَرّب في بُينَت ذُرات شريط DNA واحد ستحدث على وجه العلوم مستوي كبيرا من التغير الإحيائي المختلف يظهر في أكونات مختلفة.

عندما نأخذ في اعتبارنا كيف يبدو شيء بعينه في أكون أخرى، يجب أن ننظر بعيداً إليه في متعدد الأكون لأنه من غير الممكن التعرف على نظائر هذا الشيء في كون آخر. خذ مثالاً جزء من ال DNA في بعض الأكون لا يوجد به جزيئات على الإطلاق. في بعض أُخرى تشتمل عليها ولكن غير مشابهة مع ما لدينا لدرجة أنه لا توجد طريقة للتعرف على أي جزء في أكونات أخرى التي يتوافق مع تلك التي DNA تعتبر أنها في هذا الكون. ولا يعني لأن نسأل عن كيف يبدو جزء ال DNA الخاص بنا في مثل هذه الأكون إذا يجب أن نأخذ فقط في اعتبارنا الأكونات التي تتشابه بدرجة كافية مع كوننا حتى لا ندع مجالاً لظهور مثل هذا الغموض. مثلًا يمكننا أن نأخذ في الاعتبار الأكونات التي توجد بها دينية والتي يمكن لعينيك من الـ DNA التحليل ثم برمجتها على طبع عشرة حروف تمبّل بناء وضع معين له صلة بعلامات معين. والمناقشة التالية ستكون غير مؤثرة لو أننا اختبرنا أي معيار آخر للتعرف على أجزاء ال DNA المتواصلة في أكون قريبة...
وبإي من تلك المعايير، فالأجزاء من جينات الدب لا يبد لديه نفس المتتابعة في تقربيًا معظم الأوكان القريبة كما في كوننا. وهذا بسبب افتراض أنها لها درجة عالية من التنقل، وهذا يعني أن معظم تنوعاتها لن تنجح في أن تعيد نسخ ذواتها في معظم تنوعات ببئنها، ومن ثم لن تظهر في موضع الـ DNA لدب يتمتع بالحياة. وعلى التقيض DNA الذي لا يحمل معرفة عندما يبحث خبرة التغيير الإحصائي، فإن الوجه المتغير أو المعرض للطغية يظل قادرًا على أن يعاد نسخة. عبر أجيال من إعادة النسخ، كثير من التغيير الإحصائي سوف يحدث وكثير منه لن يؤثر في إعادة النسخ، وللذى فإن جزء نفاية الـ DNA الذي لا يشبه نظيره في الجين سوف يكون متغير الخواص بالكامل في الأوكان الأخرى. ربما يكون هذا التنوع الممكن لنتابعته ظاهراً بالتساوي معه في الأوكان الأخرى (والذي تعني به الضرورة أن يكون على نحو مباشر عشوائي الطبيع).

وهكذا فإن المشهد التعدد يكشف عن بناء فيزيائي إضافي في الدب. في DNA هذا الكرون سوف يشتمل على جزئين من المتتابعين TCGTCGTTCC واحد منها جزء من الجين والآخر ليس جزءًا في أي جين في معظم الأوكان القريبة. الجزء الأول منهما ستكون له نفس المتتابعية TCGTCGTTCC والتي لن تكون كذلك في علمنا، أما الثاني سيختلف جدًا بين الأوكان القريبة. وهكذا من حيث وجهة نظر التعدد فإن الجزيئين ليسا متشابهين حتى ولو عن بعد. (شكل 8-1).

مرة أخرى أصبحنا في حيز ضيق جدًا ومساقين للخلاصية الزائفة بأن خاصية قدرنا على حمل المعرفة تتشابه مع خاصية عدم القدرة على حمل المعرفة. وهذا ينعكس بالشكل على مدى أساسية حالة المعرفة. ولكننا الآن قد اقتربنا من غلاف الدائرة. يمكننا أن نرى أن الفكرة القديمة القائلة بأن المادة الحية لها خواص فيزيائية معينة كانت فكرة صادفة: إنها ليست المادة الحية ولكن المادة القادرة على حمل المعرفة هي المميزة.
فيزيائيًّا. فيكون واحد قد يبدو هذا غير عادي، وإنما عبر أكوإن متعددة فسيكون بناءً عادياً مثلما في الناس عبر التعدد.

وهكذا فإن المعرفة هي كم فزيائي أساسي بعد كل شيء، وكذا ظاهرة الحياة.

ولكن بدرجة أقل قليلاً. تخيل أنك تنظر من خلال ميكروسكوب إلكتروني لجزيئات DNA من خلية لدى محاولة التمييز بين الجينات والتمتيعات. غير الحيدية، وقياس درجة التاقيم في كل جين. في أي كون واحد هذه المهمة تكون مستحيلة.

(شكل 8–١)

نظرية عبر متعدد الأكوإن لأثنين من أجزاء الـ DNA التي يحدث أن تكون متماثلة في كوننا. واحد منهما في جين والآخر في عشوائية

واحدة من خواص الجين هي أنه - المتاقل بدرجة عالية - يمكن الاستدلال عليه في كون واحد ولكن بشكل معقد للغاية. إنه ذو طبيعة انطباعية، يتوجج عليك عمل عدة نسخ من الـ DNA مع تعدادات، واستخدام هندسة جينية لخلق عدة دبكة في حالة جينية لكل نوع من الـ DNA سامحاً لها أن تنمو وتعيش في بيئات مختلفة ممّثة في كوة الدب ثم ترى أيها الذي سينجح في الإخصاب.

278
لكن من خلال ميكروسكوب سحري يمكننا من رؤية ما في الأكوان الأخرى (وهو ما أضخص هنا على أنه مستحيل: نحن نستخدم النظرية في التخيل لنتعرف أنه يجب أن يكون هناك) فإن اللمحة ستكون سهلة. وكما في شكل 8-1 فإن الجينات سوف تقف بين غير الجينات كما لو كان حقلًا مزروعًا بارزًا من خلال غابة في صورة خيالية أو مثل البلور الذي كشفناه من حالة الدنوبان. إنها من العادات في الأكوان القريبة، ليست من بين العادات. وبالنسبة لدرجة التاقللم لدى جين ما فهذا تقريبًا من السهل تقديره. الجينات الأكثر تألقًا سوف تكون لها نفس البيئة في مستوى أعرض من الأكوان. ستكون لها "اللورات أكبر.

الآن، إذا أذهب إلى كوكب خارجي محاولًا العثور على الأشكال الحية الملاحية هناك إذا كان ذلك، هذه مهمة صعبة للغاية. سوف تستلزم إقامتهم تجارب معقدة وحازفة والتي تعتبر مخاطرة في النهاية موضوعًا لعدد من قصص الخيال العلمي. ولكن لو أنك استطعت فقط النظر في تسلسل تعدد سوف تتشابه لك الحياة وتتواصل في طرفة عين. سوف تحتاج فقط لنظر لأي بنية معقدة تبدو شاذة في أي كوكب واحد ولكنها تستدامة في الأكوان القريبة. وإذا وجدت شيئًا من ذلك فقد عثرت على شيء فيزيائي متضمن "المعرفة"، أيما توجد المعرفة فلا بد أن تندفع بنا إلى الأقل في الماضي.

قارن بين دب حي وبين المجموعة النجمية السماوية "الدب الأكبر". الدب الحي يتشابه تشريحيًا مع مثيلاته في كثير من الأكوان القريبة. ليست فقط جيناته التي لها هذه الخاصية ولكن جسده كله (بغرام أن مساهمات أجزاء جسده الأخرى، مثل وزنه مثلًا، تختلف كثيرًا عن الجينات بسебب، مثلًا، في أكوان مختلفة سيكون الدب ناجحًا بدرجة أقل أو أكثر في البحث عن غذائه). ولكن في مجموعة نجم "الدب الأكبر" لن تكون هناك هذه "الخاصة" من كون إلى آخر. شكل المجموعة هو نتيجة الحالة الإبداعية للغازات المجرية (نسبة إلى المجرة) التي تشكلت منها النجوم. تلك الشروط

279
الابتدائية كانت عشوائية ومتنوعة جداً في الأكوان المختلفة، على المستوى الميكروسكوبى، وعملية تكون أو تشكل النجوم من هذا الغاز داخلاً كثيرة وتنوعات من عدم الاستقرار الذي ساعد في تخضيم والإفراط في تلك التتنوعات. وكنتيجة فإن نماذج النجوم التي نراها في المجموعة توجد في مستوى ضيق جداً من الأكوان. في معظم الأكوان القريبة المختلفة عن كوننا هناك أيضاً مجموعة نجمية في السماء ولكن ستبدو مختلفة.

في النهاية دعنا ننظر إلى كوننا بطريقة مشابهة، ما الذي سيعجب عينا السمورة ويعزز ذلك؟ في كون واحد فاكثر البنى التي تقدمنا هى الأجرات وعناقيد المجرات لكن هذه الأشياء ليس لديها بنية يمكن إدراكها عبر التعدد. فهى حين توجد مجرد في كون واحد، فإن عددًا وافراً من الأجرات تترابط في متعدد الأكوان وهي مختلفة جغرافياً. ولهذا فهي في كل مكان من التعددية، الأكوان القريبة تتشابه فقط في السمات الكبيرة، كما تتطلب قوانين الفيزياء، التي تنطبق عليها جميعاً. ولذا فإن معظم النجوم تستقر بدقه في المحيط السمائي في التعددية، ومعظم الأجرات لها شكل كروي أو إهليلجية (بيضاوية) الشكل. ولكن لا شيء يبعث على داخل الأكوان الأخرى ومن أن يتم تغيير بنويس غير ملحوظ، فيما عدا في تلك الأماكن القليلة التي تشمل على المعرفة. هذه الأشياء تمت فيها عبر عدد من الأكوان بطريقة ملحوظة. ربما الأرض هي وحدها من هذا النوع في كوننا في الوقت الحالي. على أي حال فإن هذه الأكوان بالمعنى الذي وصفته كموضيع للعمليات - الحياة والفكر - هي التي ولدت التمييز الواسع في الأكوان المتعددة.
الاصطلاحات:

<table>
<thead>
<tr>
<th>مصطلح النسخ أو (ناسم)</th>
<th>Replicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>جزئٍ معيد نسخ. الحياة على الأرض تقوم على الجينات التي هي شرائح الـ DNA (الـ RNA في حالة بعض الفيروسات).</td>
<td>Gene</td>
</tr>
<tr>
<td>أي فكرة قابلة لاستنساخها، مثل النكتة أو النظرية العلمية.</td>
<td>Meme (جمعها ممَّات)</td>
</tr>
<tr>
<td>كومة أي معيد نسخ هي مجموعة كل الجينات الممكنة التي يستطيع معيد النسخ أن يكون سببًا في إعادة نسخ ذاته. كومة الكائن سببًا في إعادة نسخ ذاته. كومة الكائن الحي هي مجموعة الجينات الممكنة وطرازات الحياة التي يستطيع أن يحيا فيها ويعيد إنتاج نفسه (أو يشعر أطفالًا له).</td>
<td>Niche</td>
</tr>
<tr>
<td>درجة تأقلم معيد النسخ مع كومة هو الدرجة التي يستطيع فيها معيد النسخ أن يعيد فيها نسخ ذاته في هذه الكومة. ويشمل أكثر عمومية: تأقلم خاصية مع كومة يعني احتواءها أو تضمنها المعرفة التي تسبب في قيام هذه الكومة بالحفاظ على وجود تلك المعرفة.</td>
<td>Adaptation</td>
</tr>
</tbody>
</table>

(°) المعنى المقصود هو الإشارة والتكرار. (الترجمة)
الخلاصة:
التقدم العلمي منذ جاليليو يبدو أنه رفض الفكرة القديمة القائلة بأن ظاهرة الحياة هي ظاهرة أساسية في الطبيعة. لقد كشفت عن المدى الواسع للكون بالمقارنة بالمحيط الحيوي للأرض. البيولوجيا الحديثة يبدو أنها أثبتت هذا الرفض من خلال شرح الحياة بمعطيات الجنسات معيديت النسخ والجينات التي يحكم سلوكها نفس قوانين الفيزياء عند تطبيقها، على المادة غير الحية. ومع ذلك تشارك الحياة مع مبدأ أساسي في الفيزياء ألا وهو مبدأ تورنر والذي يعد الوسيلة التي من خلالها لوحظت الحقية التقديرية لأول مرة في الطبيعة. وأيضاً من الظهور، فإن الحياة هي عملية لها معنى على المستوى الكبير للزمان والمكان كليهما. مستقبل سلوك الحياة هو الذي سيحدد السلوك المستقبلي للنجم والمجرات. والبنية المعتادة في مستواها الأكبر عبر الأكوان توجد حيث توجد المادة القادرة على حمل المعرفة كما ظهرت مثلًا: الأدمغة أو جينات DNA. أجزاء الـ...

هذه الصلة المباشرة بين نظرية النمو والتفسير الكمي تبدو لمقيلا واحدا بين الصلاط غير المتوقعة وأكثرها صدمية من العلاقات بين الأفرع الأربعة. الأخرى هي وجود نظرية كمية جوهرية للحوسبة هي التي تحدد وجود نظرية الحوسبة. هذه الصلة هي موضوع الفصل التالي.
الفصل التاسع
الكمبيوترات الكمية
ينبغي تعبير "الحوسبة الكمية" كأنه - لن هو جديد على الموضوع - اسم لتقنية جديدة، وربما الأحدث في التطورات المرجوة في عالم الحوسبة الآلية، والحوسبة الإلكترونية ومدّها بالترانزستورات والشرائح السيليكونية "chips" للحوسبة ... إلخ.

ومن الصحيح أنه حتى في تقنية الكمبيوترات الموجودة أنها تقوم على عمليات ميكانيكية كمية ميكروسكوبية (بالطبع كل العمليات الفيزيائية هي من قبل الميكانيكا الكمية، ولكنني أعني هنا العمليات التي تعطي لـها الفيزياء الكلاسيكية أي غير الكمية. تنبؤات غير دقيقة بالكامل). إذا كانت النية الاتجاه إلى ما هو أسرع، والهارد وير للكمبيوتر الأصغر وعندما يستمر كل ذلك فلا بد للتقنية في هذا المجال أن تكون أكثر ميكانيكا كمية. بهذا المعنى، لأن تأثيرات ميكانيكا الكم تهيمن بكفاءة على كل الأنظمة الصغيرة.

وإلا لم يكن لها أكثر من ذلك فإن الحوسبة الكمية يمكنها أن تسجع بصورة أي تفسير لنسبية الحقيقة له طابع أساسي لأنه لن يكون هناك جديد فيما هو أساسي فيها، وأيما كانت عمليات الميكانيكا الكمية التي تمارسها الكمبيوترات اليوم فهي ليست إلا مجرد تطبيقات في تقنية مختلفة لنفس الفكرة الكلاسيكية، التي تحصل في ماكينة تورنج العالية. ذلك هو سبب أن إعادة العرض في الحوسبة المتاحة التي تقدمها الكمبيوترات القائمة حاليًا هي بالضرورة نفس الفكرة. تختلف عنها فقط في سرعتها وقدرتها التخزينية وميزات المدخلات والمخرجات فيها. ويمكننا أن نقول ذلك على أدنى مستوى فيها كمبيوتر المنزل، إذ يمكن تورنج لهجل أي مشكلة، أو يحاكي أي بيئة مثل أقوى كمبيوتر. وذلك بمجرد تزويده بطاقة ذاكرة إضافية والهارد وير المناسب لتحقيق النتائج المرجوة.

الحوسبة الكمية أكثر من مجرد تقنية أسرع وأكثر منه فيما يمكن إضافته كأدوات مساعدة لأن تورنج. الكمبيوتر الكم هو آلة تستخدم تأثيرات ميكانيكية كمية مختلفة، لتقوم بطرزات حوسبة جديدة كليًّا. لاستخدامها بآلة ماكينة لـ تورنج، حتى...

285
من حيث المبدأ وبالتالي تستحيل على كمبيوتر كلاسيكي. ولذلك فإن الحوسبة الكمية لا تقل عن كونها طريقة جديدة ممزة في تسخير الطبيعة.

عندى أفصل هذه المقالة، فقد كانت الابتكارات الأولى هي أدوات يتم تحريكها بواسطة عضلات البشر كان ذلك بمثابة ثورة في أحوال أسلافنا، لكنهم عانوا كثيرًا من محدودية ما تتطلب من الجهد وتوجيه الانتباه للكلاسيك في كل لحظة في وقت استخدامها. التقنية التقليدية لذلك تغلبت على هذه المحدودية: قام الجنس البشري باستثناء بعض الحيوانات والنباتات محاولة بذلك "المقاومة" التي تحياآ في بيئتها الطبيعية للاحتياجات البشرية. يعني أن المحاصيل تنمو وكبدة الحراسة تراقب حتى لو كان أصحابها نائمين في أسرتهم ثم هناك تقنية أخرى بدأت حين ذهب الجنس البشري إلى ما وراء استخدام التنقيح الكائن (والطواهر غير البيولوجية مثل النار). وإنشاء نوع جديد من التنقيح في العلم في شكل صناعة الفخار، قوالب الطبول، العجلات، الآلات المعدنية، ولكن في كل ذلك كان عليهم التفكير وفهم القوانين الطبيعية التي تحكم العالم التي تتضمن -- كما قالت آنفة -- ليس فقط وجهها الاصطناعي الظاهر بل نسيج الحقيقة القائد وراء الطبيعة الظاهرة. وهنا مرت آلاف السنوات من التقدم في هذا النوع من التقنية: تسخير بعض المواد وإجبار وحفظ الفيزياء. ثم أضيف إلى تلك القائمة في القرن العشرين "المعلومات" عندما أتاحت الكمبيوترات عمليات معقدة للمعلومات تجبر خارج مخ الإنسان. الحوسبة الكمية التي هي الآن في مرحلتها الاستهلاكية الباكرة في خطوة أخرى جديدة ممزة في طريق هذا التقدم، إنها ستكون أول تقنية تسهم بتحقيق مهام ذات فائدة بالتعاون بين الأكوان المتوازية. الكمبيوتر الكمي سيكون قادرًا على توزيع مكونات لها مهام معقدة بين عدد واسع من الأكوان المتوازية ومن ثم يجوز نسبيه من النتائج التجميعية.

لقد ألحق بالفعل إلى معنى "عالمية الحوسبة" – حقيقة أن كمبيوتر فيزيائي ممكن وواحد، وبإعطائه زمنًا وذاكرة كافيين، يمكن أن يحقق الحوسبة التي يستطيع أي

286
كمبيوتر فيزيائي آخر أن يحققها. القوانين الفيزيائية كما نعرفها وكما هو السائد بيننا تسمح بالحوسبة العالمية. ومع ذلك ولكل نموذج أكثر فائدة وأكثر معنى في المعطيات العالم للأشياء فإن العالمية كما عرفتها حتى الآن ليست كافية. إنها مجرد أن يقوم الكمبيوتر العالمي ببناء أداة مما يستطيعها أداة أخرى أي الكمبيوتر الآخر. ويذكر أن مع إعطاء وقت كافٍ هو عالمية. ولكن ماذا إذا لم يعط الوقت الكافي؟ تخيل كمبيوتر عالمي يستطيع أن ينفذ عملية حوسية واحدة على مدى طول عمر الكود هل تبقى عالميته تلك كخاصة شامخة للحقيقة؟ من المفترض أن الأمر ليس كذلك.

ولكن نضع هذا بشكل أكثر عمومية فإن المرء يستطيع أن يعتقد هذا الجزء الضيق من مفهوم العالمية لأنها تصنف مهمة القائمة في "إعادة العرض" للكمبيوتر بعيداً عن المصادر الفيزيائية التي سيتظلها الكمبيوتر في تحقيقها لل مهمة، وفي هذا، على سبيل المثال، قد نأخذنا في اعتبارنا مستخدم "الحقيقة التقديمية" الذي يتهمها للمضي في تحرير أو إحياء موقف لبلائيين السنين، بينما يحسب الكمبيوتر ما الذي سيعرضه بعد ذلك. وفي مناقشة الحدود القصوى للحقيقة التقديرية، وهو الأسلوب الصحيح الذي يتوجب اتباعه، ولكن عندما ننتمي لفائدة الحقيقة التقديرية - أو ما هو أكثر أهمية ألا وهي القاعدة الأساسية التي تجري في الحقيقة التقديرية - يجب أن تكون أكثر دقة ودقة التطور لم يكن ليظهر على الأرض، إذا كانت مهمة محاكاة بعض خصائص السكان الأوليين البسطاء لم تكن قابلة للتشكيل (بمعنى: إمكانية حوسبيتها في زمن معقول) بالاستخدام السهل للبرمجيات المتاحة مثل الكمبيوترات. وبالنسبة لإن العلم والتكنولوجيا لم يكونا ليظهرا أبداً على الأرض فيما لو احتاج تصميم أداة حجرية آلاف السنين من التفكير. والأكثر من ذلك، الذي كان صحيحًا منذ البداية ظل شرطًا مطلقاً للتقدم في كل خطوة فيه. عالمية الحوسبة لم تكن لم تكن مهمة في مجال الجينات، أيا ما كان ما تحويه من معلومات إذا كانت محاكاة نظمها من قبيل المهام غير القابلة للتشكيل، بل إذا كان ثمة دائرة واحدة منتجة سوف تستغرق بلايين السنين.
ومن هنا كانت حقيقة وجود نظم معقدة، وأن ثمة تطور في التقدم التدريجي للمبتكرين والنظريات العلمية (مثل ميكانيكا جاليليو، وعدها ميكانيكا نيوتن، فميكانيكا أينشتاين ثم ميكانيكا الكم... وهلم جرا) التي تمكننا من المزيد عن أي نوع من الحوسبة العالمية الموجودة في الحقيقة. وأن القوانين الحالية في الفيزياء، حتى الآن على الأقل، ناجحة تقريباً مع النظريات التي تطُنها تفسيرات أجود وتبنياً أحسن، وأن مهمة اكتشاف كل نظرية، مع الأسبق عليها يصبح قابلاً للتشكل حسباً، ومع القوانين السابق معرفتها والتقنية السابقة المتاحة. إن نسب النجاح الحقيقة كما كانت دوماً، لا بد أن يكون في دقة طبقات قابلة للنجاح في استخدامها ومتقبلة تكنولوجيا لنا، إذا فكرنا في التقدم ذاته كحوسبة، أن ثمة كثير من النظم الحية مشفرة من خلال الـ DNA تسمح بتبني أفضل لحوسبتها (مثل أن تظهر) باستخدام المصادر التي تمدنا بها أسلافها الأسوأ في مجال التكيف أو التأقل. ومن ثم نستطيع أن نستطيع أن قوانين الفيزياء، بالإضافة لوضع فهمها الثوري تحت سيطرة مبدأ ترونج، لتؤكد تناغم عملياتها الثورية مثل الحياة والتفكير، لا تحتاج أو تستلزم وقتاً طويلًا أو تتطلب مصادر عديدة من أي نوع آخر لتحدث في الواقع (الحقيقة).

وهكذا فإن قوانين الفيزياء لا تسمح فقط (أو تتطلب كما نعتقد أنها) بوجود الحياة أو التفكير، بل أنها تتطلب "الكشف" لكي يوجد أي منهما وذلك بمعنى مناسب. والتعبير عن هذه الخاصة القاسية للحقيقة، فإن التحاليل الحديثة للعالم تصل بأن الكربونات لا بد أن ينظر إلى عالمها بمعنى أقوى مما يفعله مبدأ ترونج، وعلى السطح من ذلك يتطلب الأمر ليس فقط أن مولدات الحقيقة التقديرية ممكنة، وإنما يمكن بناها بحيث لا تتطلب مصادر طبيعية عديدة بشكل غير عملي لحاكاية أوجه بسيطة للحقيقية. منذ الآن فصاعداً ساعدنا بالعالمية ذات المعنى ما لآخر لغير ذلك.

فقط كيف نعطي أوجها للحقيقة ليتم محاكاتها بكفاءة؟ وبكلمات أخرى ما هي الحوسبة الممكن إجراؤها في وقت محدد وعبر ميزانية معروفة؟ هذا هو السؤال.
الأساسي لنظرية الحوسبة المعقدة، التي كما أسلفت، هي دراسة المصادر المتطلبة لتحقيق مهام حوسبة معينة. نظرية "التعقيد" ليست مدمرة بشكل جيد مع الفيزياء بدرجة تكفي لإعطائنا عديدًا من الإجابات المحددة ومع ذلك فقد أعطتنا قدرًا معقولًا في طريقة التفرقة السهلة والمبدعة بين ما هو قابل للفك تراظي وما هو غير قابل له، واكتسب العام تم توضيحه جيدًا من خلال مثال. تخيل مهمة ضرب رقمين كبيرين في بعضهما مثالًا 851,220 في 2,095,424.2 الكثير منا يتذكر الطريقة التي تعلمناها حين كنا أطفالًا لتحقيق هذه العملية. إننا نحتاج ضرب كل عدد مفرد (أقل من عشرة) من الرقم الكبير الأول في مئات من الرقم الكبير الثاني وبعمليات تبديل وإضافة بطريقة قياسية معينة نحصل على النتيجة التي هي في هذه الحالة: 239,895,629,769,100.

الكثير منا قد ينافد من استنتاج أن مثل هذا الإجراء الرهيب يجعل عملية الضرب من قبل ما هو قابل للتشكل، بأي معنى عادي للكلمة (في الحقيقة ثمة طرق عديدة كفاءة لضرب الأرقام الكبيرة في بعضها، ولكن هذا المثل يلبينا بإيضاح جيد). ولكن من وجهة نظر "نظرية التعقيد" المتعلقة بالمهام الكبيرة التي يقوم بها الكمبيوتر، فإن هذه ليست من دواعي الضجر، وتكاد لا تحظى أبداً في أن هذه الطريقة تفشل على مستوى "القابلية للتشكل".

الذي يهم بالنسبة للقابلية للتشكل، وفقًا لتعريفات الرياضيات لها، ليس الوقت الفعلي الذي تستغرقه عملية الضرب لرقمين معينين أيهما في الآخر، وإنما أن هذا الوقت لا يزداد بحدٍّ عندما نطبق نفس الطريقة حتى على أرقام أكبر من هذين الرقمين. ربما، ومن الدهشة، أن هذه تعد طريقة غير مباشرة لتعريف قابلية التشکل. وبشكل عملي للآخرين (إذن كانوا ليس الكل) فيما يخص الستويات الأمنية للمهام الحواسبية. على سبيل المثال: مع عملية الضرب يمكننا أن نرى بسهولة بأن الطريقة القياسية يمكن استخدامها في ضرب أرقام قل مثلًا أنها أكبر عشر مرات من تلك التي ممثلًا بها، بمزيد من العمل الإضافي، ذلك أن كل عملية ضرب أولية لعدد مع الآخر
سوف تستغرق في كمبيوتر معين ميكروثانية واحدة (شاملة لكل العمليات الأخرى من تبديات وخلايله التي تتوافق عملية ضرب أولية). عندما نضرب الرقم المكون من سبع أعداد 420,851 في الرقم الآخر 209 في السبعة الأخر، 59 هزات عدد من السبعة أعداد سيضرب في عدد من السبعة الأخرى. ومن ثم فإن الوقت الكلي لهذه العملية (إذا تمت العملية بشكل تتابعي) سيكون سبع مرات السبعة أو 49 ميكروثانية. فإذا أدخلت الكمبيوتر الرقم الذي افترضنا أنه أكبر من ذلك عشر مرات ليتم ضربه في مثيل له، والذي سيستغرق من ثمانية أعداد، فإن الوقت المتطلب لإتمام العملية سيكون 64 ميكروثانية أي زيادة مقدارها 21٪.

من الواضح أن أرقامًا من مستوى أكبر، متضمنًا أي رقم يمكن قياسه إطلاقًا كقيمة في التطور الفيزيائي، يمكن ضربه في شريحة رقمية من الثانية. ومن هنا فإن عملية الضرب من قبل العمليات القابلة للتطبيق لكل أعراض الفيزياء (أو على الأقل الفيزياء القائمة). وأعرف بإمكانية عنصر أعراض أكثر عملية لضرب أكبر كثيرًا خارج الفيزياء، مثل إنتاج الأرقام الأولية لعدد 125 (من الأعداد دون العشرة) أو غيرها والتي هي مثيرة بالنسبة للعاملين في فك الشفرات. الانتاج الإفتراضي ستكون قادرة على ضرب رقمين أوليين كأولئك المنتجة لأرقام من 100 عدد دون العشرة، وذلك في حوالي بضعة مئات من أجزاء الثانية. وفي ثانية واحدة يمكن أن ينتج عملية ضرب رقمين من 1000 عدد دون العشرة، حتى الكمبوبترات الحقيقية اليوم يمكنها بسهولة تحقيق الأمر في مثل هذا الوقت. فقط بعض الباحثين يتفقدون بعمل مثل هذه العمليات الواسعة وغيرها المفهومة من عمليات الضرب. ونحن نرى حتى الآن أنه حتى هؤلاء لا سبب لديهم للنظر إلى عملية الضرب على أنها قابلة بالتأكيد للتشكيل.

وبالتناقص مع ذلك، فإن عملية التحليل إلى العوامل الأولية هي على العكس من عملية الضرب وتبدو أكثر صعوبة. المرء يبدأ برقم تقوم بإدخاله مثل
ً. والهمة هي معرفة الأرقام التي بضربها في بعض تنتج لنا هذا الرقم ومنا قمنا بضربها فعلاً فإننا نعرف أن الإجابة في هذه الحالة ستكون {851, 849, 879, 851} و{451, 451, 451} (وإذا أنها أعداد أولية فهي الإجابة الوحيدة الصحيحة). ولكن بدون هذه المعلومات الداخلية، كيف يمكن العثور على الحقيقة أو المعاملات الأصلية؟ سوف تبحث عن ذكريات طفولك عن أي طريقة سهلة، ولن تجد.

أبسط طريقة للتحليل هنا هو أن تقسم الرقم على كل معامل ممكن بدءًا من الرقم 2 واستمرارًا مع الأرقام الفردية كلها حتى يمكن لأحدها أن يقسم الرقم بالضبط.

افتترض على الأقل أن واحداً من المعاملات (مثل أن الرقم الذي أدخلناه لين أولياً) لم يعد أكبر من الجذر التربيعي للرقم الذي أدخلناه، وأنه يمكن تقديره إلى أدنى مستويات العملية. في حالة ما اعتبرنا أن كمبيوترنا يمكنه العثور على الرقم الأصغر 594, 209 في حوالي ما لا يزيد عن الثانية، فإن أي مدخل أكبر (>1) يعطى الرد سيكون له جذر تربيعي أكبر بحوالي ثلاث مرات على سبيل المثال. وعلى الرغم من أن المعادلة المتصلة بذلك معروفة، فإن صعوبة تطبيقها في الحالات الفعلية شديدة ومباشرة. هذه الصعوبة قد لفتت الانتباه مؤخرًا في الكتب الشعبية والمقالات إلى "الفوضى: Chaos" و"تأثير الفراشة" هذه التأثيرات ليست منهجية عن عدم القابلية للتشكيل التي كانت تدور في رأس فاينمان (Richard Phillips Feynman (1918 - 1988) فيزيائي أمريكي نظرًا، إلى جانب أبحاث المهنة في ميكانيكا الكم والتي حصل بسببيباً على جائزة نوبل مع آخرين عام 1965، فقد استكمل قبل وفاته بناء النظرية السابقة عليه أصلاً وحل بعض معضلاتها، وذلك من بين أبحاث عديدة أخرى. (الترجمة)
التقليدية، إذا أردت فقط توجيه ضوء حقيقي على السمات المختلفة للتقليدية وكمومية عدم قدرتها على التنبؤ.

نظرية الفوضى تدور حول حدود القابلية للتنبؤ في الفيزياء التقليدية، وماخوذة من جذر الحقيقة القائلة أن معظم المنظومات الكلاسيكية كانت غير مستقرة على الدوام، وعدم الاستقرارية المقصودة هنا ليس له علاقة بنيّة السلوك بعنف أو بدون اندماجية، ولكن تدور حول الحساسية الفائقة للشروط المبدئية. افترض أننا نعرف الحالة الحاضرة لأي منظومة فيزيائية مثل مجموعة كرات بليردبو تتتحرك على مائدة. إذا كانت المنظومة تتبع الفيزياء التقليدية لدرجة تقريبية جيدة، فلا بد سنقوم قادرين على تحديد سلوكها المستقبل، مثل اتجاه أي كرة نحو الحفرة أو لا وذلك من خلال قوانين الحركة المتعلقة بذلك، تمامًا مثلما نفعل بتنبؤنا عن الخسول والاختلافات الفيزيائية من نفس قوانين الحركة. ولكن من الناحية العملية لن تكون قادرين أبدًا على قياس الشروط المبدئية ولا سرعة الضوء بكفاءة. وهنا يبرز السؤال: إذا كنا نعرفها بدرجة معقولة من الضبط، هل يمكننا أيضاً التنبؤ بنفس الدرجة المعقولة من الضبط، كيف سيكون سلوكها في المستقبل؟ والإجابة عادة ما تكون أننا لا نستطيع، الفرق بين المسار المنحنى الحقيقي، والمسار المنحنى المتنبؤ به لكوكب، يتم حسابه من قائمة معلومات غير دقيقة، وينحو للنمو بطريقة رأسية وغير منتظمة (بفوضوية) مع الزمن، لدرجة أنه بعد فترة ستكون المعرفة الأصلية عن الوضع والتي تعتبر أساسية فيها، في حالة غير صحيحة بدرجة طفيفة، غير صالحة لقياسنا على الإطلاق إلى كيف سيكون ما يفعله النظام. تطبق تنبؤات الكمبيوتر على الحركات الكوكبية، أعلى خلاصات الفيزياء التقليدية وقابليتها للتنبؤ، ليست مقياس للنظام التقليدية. لكي ننتمي بنظام تقليدي سوف يتم بعد فترة زمنية متوسطة، على الرؤء أن يحدث شروطه المبدئية لدرجة عالية الأحكام وليس غير صالحة ولو بدرجة طفيفة. وهذا يقال عنه من حيث المبدأ إن رفرفة جناح الفراشة في جو أى
كوكب يمكن أن تحدث إعصارًا في جو كوكب آخر، إن صعوبة التنبؤ بالجو تتصل بصعوبة الاعتماد على كل فراشة على الكوكب.

ومع ذلك فإن الأعاصير الفعلية والفراشات الحقيقية تطيع نظرية ميكانيكا الكم وليس الميكانيكا الكلاسيكية وعدم الاستقرار الذي سرعان ما ستضخم بدرجة قليلة من عدم التوصيف في الحالة المبتدئية التقليدية ليس بسبب طاقة ملمحة من النظام الميكانيكي التقليدية. في ميكانيكا الكم، ثمة انحراف قليل عن الحالة المبتدئية الموصوفة بسبب بدوره انحرافًا عن الحالة النهائية المتنبأ بها. بدلاً من التنبؤ الدقيق الذي يجري بصفوية بسبب تأثير مختلف.

قوانين ميكانيكا الكم تتطلب موضوعًا له موقعًا معينًا (في كل الأكوان) لكي يبرز أو ينتشر في أكوان متعددة. على سبيل المثال فإن فوتون وكل نظرائه في كون آخر كلها تبدأ من نفس النقطة فوق خيط متواجد ثم بعدها تتحرك إلى تريليون اتجاه مختلف. وفيما بعد لو أجرينا قياسًا لما حدث سبق اختلاف فيما بيننا في القياس تبعًا لما يراه كل منسوب منا فيما حدث في عالمنا الخاص. إذا كان الأمر المثير هو جو الأرض. فربما يحدث الإعصار في 20٪ من العوالم، مثلًا، وليس في ال30٪ الباقية، وبموضوعية، نحن نفهم ذلك من خلال مفقر واحد في شكل عشوائي وغير قابل للتنبؤ، ولو أنه من خلال وجهة نظر متعدد الأكوان فإن كل المفرزات قد وقعت بالفعل في هذا المتعدد الأكوان المتوازي وهو السبب الحقيقي في عدم قابلية الجو للتنبؤ. وعدم قابليتنا لقياس الشروط المبتدئية بدقة هو أمر لا صلة له بالأمر إطلاقًا، حتى لو عرفنا الشروط المبتدئية بالكامل فسوف يبقى التعدد وبالتالي عدم التنبؤ، ومن الناحية الأخرى، وبالتنافض مع الوضع التقليدي فإن التعدد المخلي مع شروط مبتدئية مختلفة قليلاً لن تسكن باختلاف كبير عن التعدد الفعلي. سوف تعاني الأعاصير في 1,000,000٪ من الأكوان والتي لن تقع في 999,999.99٪ الباقية.
رفعة أجنة الفراشات لا تتشارك الأعاصير في الحقيقة بسبب اعتماد الفوضى أو العشوائية التقليدية على غاية محددة، وهي غير الموجودة في عالم واحد، اعتبر مثلًا مجموعة من الأكوان المتصلة في لحظة ما من كل منها تعرف فيها فراشة بجانبها، ثم مجموعة ثانية من الأكوان كانت في نفس اللحظة متماثلة مع المجموعة الأولى فيما عدا أن الفراشة فيها لم تعرف أو كانت ساكنة. انتظر لعدة ساعات فإن ميكانيكا الكم تتنبأ بالإثني:

ما لم تكن هناك ظروف استثنائية مثل شخص يراقب الفراشة وفي نفس الوقت يضع إصبعه على زر لتفجير نبتة ذرية ليضغط عليه فور أن تبدأ الفراشة في الرفعة، مجموعة الأكوان اللوات كن في البداية متماثلة تقريبًا، سوف يظلن كذلك ولكن كل مجموعة مع نفسها ستختلف كثيرًا عن المجموعة الأخرى، وذلك بما فيه الأكوان التي وقعت فيها الأعاصير، وتلك التي لم تعقب فيها، وحتى عدد قليل من الأكوان التي قامت فيها الفراشة في وقت متزامن بغير نوعها من خلال إجراءات عارضة لكل ذراتها، لأن الشمس قد انفجرت لأن كل ذراتها قد طررت صدفة كرد فعل للذرات الانتفاجية التي وقعت في قلبيها، وحتى في هذه الحالة ستظل المجموعتان متشابهتين بدرجة عالية. في الأكوان التي رفعت فيها الفراشة ومن ثم وقعت الأعاصير، لم تكن الأعاصير متنبأ بها، ولكن الفراشة لم تكون مستقلة عن ذلك عمداً، لأن أعاصير أخرى قريبة الشبه من تلك قد وقعت في أكوان يتشابه كل شيء فيها مع الأولي فيما عدا أن أجنة الفراشة كانت ساكنة.

ما يستحق تأكيده عليه هذا هو التمييز بين عدم القابلية للتنبؤ وعدم القابلية للشكل. عدم القابلية للتنبؤ ليس له صلة بمصادر الحوسبة المتاحة. النظم التقليدية هي من قبل عديمة القابلة لتنبؤ (ولا بد أن تكون كذلك لو كانت موجودة) بسبب حساسيتها إزاء الشروط المبدئية. النظم الكمية ليست لديها هذه الحساسية، ولكنها غير قابلة للتنبؤ بدورها بسبب سلوكيها المختلف في أكوان مختلفة، والذي بسبب يبدو الأمر عشوائيًا في
معظم الأركان. في أي من الحالات هل ثمة كمية من الحوسبة سوف تقلل من عدم
القابلية للتنبؤ؟ وعلى النقيض من ذلك تكون القابلية للتشكل أمر يمكن التنبؤ به. إنها
تشير إلى حالة يمكن فيها التنبؤ بسهولة إذا استطعنا أن نحقق الحوسبة المطلوبة،
ولكننا لا نستطيع لأن الوسائل المطلوبة تجريبيًا ذات قدر كبير. ومن أجل حل المعضلة،
معضلة عدم القابلية للتنبؤ لا بد أن نأخذ في اعتبارنا النظم الكمية التي هي من حيث
المبدأ، قابلة للتنبؤ.

عادة ما يتم تقديم نظرية الكم على أنها تصنف تنبؤات احتمالية، على سبيل المثال
في حالة الحائط المتقوب والشاشة في تجربة التداخل الموصوفة في الفصل 2، فإنه
يمكن ملاحظة وصول الفوتونات في أي مكان من الجزء المشرق من نموذج الخظ. ولكن
من المهم فهم أنه في تجارب أخرى كثيرة تتنبأ نظرية الكم بمخرج واحد محدد.
وبكلمات أخرى فهي تتنبأ أن كل الأركان سوف تتنبأ إلى نفس المخرج أو النتيجة،
حتى لو كانت مختلفة عن بعضها في نفس وقت مراحل التجربة، كما تتنبأ بكيف
ستكون عليه هذه النتيجة. في مثل هذه الحالات لن نلاحظ ظاهرة تداخل غير عشوائية.

يستطيع "المدخن" أن يبرهن على هذه الظاهرة بوضوح، وهو جهاز بصري مكون
أساسًا من مرآة في كلا من الناحية الأصطلحية (شكل 9) ومرايا نصف
مفضصة (تكال التي تستحضر فيها الخدع والألعاب من نوعية ١٠٠٠-١٠٠٠٠
معبدة في الشكل ٩-٢).

lice stations"
المرايا نصف المفضّضة تصنع مبدئيًا نفس الاختلاف
في العوالم في كل مجموعتين متكافئتين منها، فيما عدا اختلاف وحيد يتحصل
في المسار الذي يتخذه فوتون واحد.
إذا اصطدم فوتون بمرأة نصف مفضضفة فضية، فهو في نصف الأكوان سيرتد أو يثب بعيوبية كما لو كانت مرآة تقليدية ولكنه في النصف الآخر سيمر خللالها كما لو أن شيئًا ليس هناك.

إن فوتونا واحدا سيدخل المدخال في أعلى اليسار كما هو في الشكل 9-2 في كل الأكوان التي تجري فيها التجربة. الفوتون ونظرائه سوف يرتحلون إلى المدخل بنفس الطريق. هذه الأكوان متشابهة. ولكن بمجرد أن يصطدم الفوتون بمرأة نصف مفضضفة، فإن الأكوان المتشابهة تتحول إلى أكوان متفرقة أو متداخلة. في نصفها يمر الفوتون مباشرة في الجانب العلوي من المدخال. وفي الأكوان البدائية يرد أو يثب بعيوبية إلى الجانب الأيسر من المدخل. الوجه البادئ للفوتون في هاتين المجموعتين يصطدم ويرتد أو يثب بعيوبية في المرايا العادية في الجانب الأعلى الأيمن وفي الجانب الأيسر منها على التوالي. وهكذا ينتهي بالوصول متزامنا في المرآة شبه الفضية في الجانب الأيسر الأيمن ويتداخل مع كل منهم. تذكر أننا ندخلنا فوتونًا واحدًا في الأدوات، وفي كل كون سيظل هناك فوتونًا موجودًا. في كل الأكوان اصطدم الفوتون في أسفل مين المرآة. في نصفها فقد اصطدم بها من اليسار. وف− نصفها الآخر اصطدم في أعلاها. أوجه الفوتون في هذه المجموعات من الأكوان تتداخل بقوة.
فوتون واحد يمر خلال مدخل. أوضاع المرآيا
(في المرآيا الفلزية ذات اللون الأسود) بينما في المرآية نصف المضطقة
(ذات اللون الرمادي). يمكن ضبطها حتى يحدث التداخل بين وجهي الفوتون
(في مختلف الأذواق) أخذ (أي) نفس طريق الخروج من مرآة شبه المضطقة السفلى.

النتيجة الكلية تعتمد على الوضع الهندسي للحالات ذاتها، ولكن في الشكل 9–2
تظهر حالة الفوتون في كل الأذواق منتهية باختصار الطريق الذي يشير إلى اتجاه اليمين
خلال المرآة ولكن لا ينتقل أو يعكس إلى الأسفل في أي كون وهكذا تكون كل الأذواق
متشابهة في نهاية التجربة، ولأنهم كانوا في البداية متوازين، وتدخلوا مع بعضهم
فقط للحظة تمثل قدراً ضئيلاً من الثانية فيما بينهم.

هذه اللحظة عن التداخل غير العشوائي لا مهرب لها من دليل صغير عن وجود
متعدد الأذواق، مثلها مثل ظاهرة الظلال. لأن النتيجة التي وصفتها لتعارض مع أي
من المسارات الممكنة التي يتخذها عنصر في كون واحد. إذا أطلقنا فوتون في اتجاه
اليمين من النار اليمني للداخل، مثلما سوف يمر ربما من خلال مرآة شبه المضطقة
كما فعل الفوتون في تجربة التداخل. ولكن ربما لا يفعل – في بعض الأحيان ينعكس.
إلى أسفل. وبالمثل فإن إطلاق فوتوت إلى أسفل الدارع اليمنى ربما ينعكس في اتجاه
اليمين كما في تجربة التداخل، أو ربما يرجح مباشرة إلى الأسفل. وهكذا في أي
مسار ستوه إليه فوتوت واحد إلى داخل الأدوات سوف يظهر إلى يبرز عشوائيًا. فقط
عندما يقع التداخل بين المسارين فإن النتيجة تكون قابلة للتتبؤ بها. إذا تلا ذلك ما
ظهر عبر الجهاز بالضبط قبل نهاية تجربة التداخل لا يمكن أن يكون فوتوت واحدًا
ومسارًا واحدًا؛ إنه لا يمكنه على سبيل المثال أن يكون مجرد فوتوت مرتحلًا إلى الذراع
الأسفل. لا يد أن هناك شيء آخر قد منعه من الارتقاء مباشرة إلى الأسفل، ولا أن
هناك مجرد فوتوت مرتحل إلى يمين الدارع مرة أخرى، لا يد أن هناك شيء آخر
يمنعه من الارتقاء مباشرة إلى الأسفل، كما يبدو أحيانًا، كأنه وحده هناك. فقط مع
الظلال يمكننا أن نبتني مزيدًا من التجارب لإظهار أن هذا “الشيء الآخر” له كل خواص
فوتوت المرتحل في مسار، يرتدي مع الفوتوت الذي نراه في كوننا بدون وجود شيء
آخر معه.
طالما أنه لا يوجد سوى نوعين مختلفين من الأكوان في هذه التجربة، فإن
حسبات ما يمكن أن يحدث سوف تستغرق فقط ضعف ما كان ليحدث لو أن عنصرًا
يخضع للقوانين التقليدية مثلًا كما لو كانا نحسب مسار كرة بلياردو. معامل من اثنين
سوف يجيل الأمر بصعوبة أو هذه الحوسبة إلى شيء عسير الملاحظة. على أية حال،
لقد رأينا بالفعل أن التعددية في مستوياها الأكبر هي من الأمور التي يمكن تحقيقها
بسهولة. في تجربة الظل مر الفوتوت عبر حائط به عدة ثقوب ثم سقط على شاشة.
افترض أن ثمة آلاف من الثقوب في الحائط هناك أماكن في الشاشة أو مواسمه
يستطيع الفوتوت السقوط عليها (يسقوط فعلًا في بعض الأكوان) وأماكن لا يمكن له
السقوط عليها. لكي نحسب ما هي النقطة المحددة التي يمكنها أو لا يمكنها استقبال
الفوتوت على الشاشة، لا بد لنا أن نحسب تأثير التداخل المتباين في ألف كون متوازي
على أوجه الفوتوت. وبالتالي تبيننا أن نحسب ألف ممر من الحائط إلى النقطة المعينة
على الشاشة، ثم نحسب تأثيرات هذه الفوتوتان على بعضها البعض لتحديد ما إذا كان هناك أو لم يكن هناك ما يمنعها من الوصول إلى هذه النقطة. وهكذا نحتاج لوقت متضاعف ألف مرة للحوضسة فيما لو كنا نعمل على عنصر واحد تقليدي سيضطدم ب نقطة ما أولاً.

تعقيدات هذا النوع من الحوضسة توضح لنا أن هناك ما يحدث أكثر بكثير في بيئة ميكانيكية كمية مما تلتقي به العين، بالمعنى الحرفي للكلمة، فقد نالت هذه التغييرات على معدل ر. جونسون للحقيقة من خلال مصطلحات تعقيدات الحوضسة، أن هذه التغييرات هي السبب الرئيسي في أنها لا تجعل إنكار وجود بقية متعدد الأكوان أي معنى. ولكن ثمة تعددية على مستوى أكبر تكون ممكّنة عندما يكون هناك عنصران أو أكثر متفاعلان عبر ظاهرة تداخل. افترض أن أي من هذين العنصرين المتفاعلين له (مثلًا) ألف مسار مفتوح أمامه. الآثاث يمكنهما في مليون حالة مختلفة في مرحلة متوسطة من التجربة، ومن ثم يكون هناك مليونًا من الأكوان تختلف عن بعضها حيث يعمل هذان العناصران. وإذا كان ثمة ثلاثة عنصران يتفاعل مع بعضها، يمكن أن يكون عدد الأكوان المختلفة واسعًا إلى البليون، وإذا كانت أربعة عنصر يكون الرقم هو تريليون، وهكذا. وبهذا الشكل يكون عدد التربيعات المختلفة التي يجب أن نحسبها إذا أردنا التنبؤ بما يحدث في مثل هذه الحالات سيزداد بشكل أساسي مع عدد العناصر المتفاعلة مع بعضها. هذا هو السبب في أن نظام كمّي نموذجي سوف يشكل بطريقة فعلاً وبصدق كنير قابل للتشكيل.

عدم القابلية تلك التي قام فانيماين بتجربتها. ويمكننا أن نرى أنه لا علاقة لها بعدم القابلية للتنبؤ: بل على العكس فإنه يُعتبر عنها بوضوح في الظاهرة الكمية التي ترفع فيها درجة القابلية للتنبؤ. لأنه في مثل هذه الظاهرة فإن نفس النتيجة تقع في كل الأكوان، ولكن هذه النتيجة هي نتاج للتفاعل بين عدد واسع من الأكوان التي كانت متمايزة أو مختلفة أثناء التجربة. كل هذا من حيث المبدأ متوقع كنير للتنبؤ من خلال
نظرية الكم وليس عالم الحساسية تجاه الشروط المبدئية. والذى يجعله صعب التنبؤ هو أن مثل هذه التجارب تتطلب عادة كميات هائلة من عمليات الحوسبة عند إجرائها لها.

عدم القابلية للتشكل - من حيث المبدأ - تعتبر عائقا أكبر للعملية من عدم القابلية للتنبؤ مهما كانت درجته. لقد قلنا بالفعل أن محاكاة دقيقة ومتزامنة لوحدة الروزليم لتنبؤ - يجب أن تكون - أن نعطي تتابع الأرقام كما هي عليه في الواقع، وإنما نستطيع (أو يجب أن نستطيع يوما ما) أن نقم محاكاة لجود، وإن كانت لن تتطابق مع الأحوال الجوية التي كانت في يوم ذي تاريخ محدد فإنها - مع ذلك - بالغة الوعي في سلوكها لدرجة أن مستخدما، مهما كان خبيرا، لن يكون قادر على تمييزها عن الجو الأصلي: نفس الأمر يصدق على أي بيئة لا ترينا أثار الداخل الكمي (التي تعني معظم البيئات). محاكاة مثل هذه البيئة في الحقيقة التقديرية هي مهمة حوسية قابلة للتشكل. ومع ذلك ستطهر على أن محاكاة عملية تكون ممكنة لبيئة ترينا أثار الداخل الكمي. بدون عمل كميات حوسية مهولة لكن كيف نتأكد في مثل هذه الحالات أن البيئات المحاكية لن تفعل أشياء لم تقم بها البيئة الأصلية بصرامة، بسبب بعض من ظاهرة التداخل.

يبدو طبيعيا أن نستنتج أن الحقيقة، بعد كل شيء، لا تعرض حوسية وذات عالمية أصلية، لأن ظاهرة التداخل لا يمكن محاكماتها بفافية أو بشكل مفيد. ومع ذلك فقد استنتج فاينمان بشكل صحيح النتيجة العكسية: بدلاً من النظر إلى قابلية محاكاة ظاهرة كمية كما لو كانت عقبا فإنه نظر إليها على أنها فرضة. لو كان حساب استنتاج ما سيجري في تجربة تداخل سيحتاج هذا الكم الكبير من الحوسبة، فإن عملية إقامة هذه التجربة وقياس مخرجاتها أو نتائجها يعادل تنفيذ حوسية معقدة. وهكذا سبّ فاينمان هذا بأنه يمكن، بعد كل شيء، لنا إقامة أو تنفيذ مثل هذه التجارب إذا ما رؤذنا الكمبيوتر الذي سيقوم بها بأشياء ذات طبيعة ميكانيكية. سيختار الكمبيوتر -
حيحينث - أيًا من القياسات التي يتوجب عملها على قطع إضافية من الهاوبورد الكمي
وهو في سبيل أن يدمج نتائج القياسات في عملية الحوسبة الشاملة.

القطعة الإضافية من الهاوبورد الذي الطابع الكمي سوف تكون من حيث التأثير
كما كانت هي ذاتها كمبيوتر. على سبيل المثال فإن المدخل يمكنه أن يقوم بعمل مثل
هذه القطة ومتى أن شيء فزيائي آخر يمكن التفكير فيه على أنه كمبيوتر - وقد
نسميها في آيامنا هذه: كمبيوتر لغرض خاص. تقوم ببرمجته من خلال وضع المرايا
بمواضع هندسية معينة وتقول فوتوتا واحدا على الواحة الأولى. في تجربة تداخل غير
عشوا في سوف يمرر الفوتون في اتجاه واحد معين، محدد بسبب مواضع المرايا.
ونستطيع أن نستطيع أن هذه الاتجاه يشير إلى نتائج الحوسبة. في تجربة أكثر
لاجابة، بها عدة عناصر متفاعلة مع بعضها، مثل هذه الحوسبة، كما أوضح،
ستصبح بسهولة غير قابلة للتشكل. وما دمنا نستطيع بسهولة الحصول على النتائج
بتنفيذ هذه التجربة، فهي في الواقع لم تعد غير قابلة للتشكل. الآن يجب أن نكون أكثر
حرصًا تجاه المصطلحات المستخدمة.

يحدث أن هناك أهداف حوسية غير قابلة للتشكل إذا ما حاولنا إجرائها عبر
استخدام المكبوبتر الموجود حاليا، لكنها ستكون قابلة للتشكل إذا استخدمنا أشياء
ميكانيكية كمكبوبتر ذات غرض خاص. (لاحظ حقيقة أن الظاهرة الكمية التي
يمكن استخدامها للحوسبة بهذه الطريقة تعتمد على أنها ليست معرضة للفوضى). إذا
كانت مخرجات الحوسبة ليست عالية الحساسية كوظيفة للحالة المبنية، برامج هذه
الميزة بوضعها في الحالة المبنية المناسبة ستكون مهمة صعبة ومستحيلة.

استعمال وسيلة كمية إضافية بهذه الطريقة ربما تعتبر نوعًا من الفش، طالما أن
أي بيئة يتضح أنه من السهل محاكاتها إذا استخدم المرء نسخة إضافية أو احتيالية
لها للقياس أثناء المحاكاة. استحضرنا فايديتان صورة ذهنية بأنه لن يكون ضروريا
استخدام صورة حرفية للبيئة التي تمت محاكاتها لأنه من الممكن العثور على طريقة

302
أكثر سهولة بإنشاء وسيلة إضافية لها خواص تداخلية سوف تكون مع ذلك، متشابهة مع البيئة المستهدفة. وفي هذه الحالة يستطيع كمبيوتر عادي أن يتم بقاها المحاكاة، بالعمل عبر التشابه بين الميزه الإضافية والبيئة المستهدفة.

وتوقع فينمان أن هذه مهمة قابلة للتشكيل. وأكثر من ذلك أنه، حسب أو خفي على نحو صحيح، كما يبدو، أن كل الخواص الليكانيكية الكمية، لأي بيئة مستهدفة يمكن تشبيهها خلال وسائل إضافية من طراز خاص جداً هو (أعني نظام من الذرات - الزاوية المفرغية الحركة تتفاعل كل منها مع جاراتها) وسمي هو كل هذه المزاي.

"مشابه أو محاكى كمي عالمي".

لكنها ليست ماكيئة واحدة، كما يجب أن تكون للتقوم كمبيوتر عالمي. التفاعل الذي ستحدثه الذرات في هذا المشابه أو المحاكى لن تحقق مرة واحدة وللأبد، كما في الكمبيوتر العالمي، ولكنه يحتاج لإعادة هندسته للتشابه مع كل بيئة مستحدثة. النقطة هنا هي أن العالمية تعني إمكانية برمجة ماكيئة واحدة تتخصص مرة واحدة وللأبد لتحقيق أي حوسية أو محاكاة أي بيئة ممكنة فيزيائيًا. في عام 1985 برهنت على أنه في ظل الفيزياء الكمية ثمة وجود كمبيوتر كمي عالمي. البحوث كان مباشرةً وسهلاً.

كل ما كان على أن أفعل هو تقليد إنشاءات تورنيد، مع استخدام النظرية الكمية لتعريف الفيزياء الحديثة بدلاً من الليكانيك التقليدية التي افترضها تورنيد بوضوح. الكمبيوتر الكمي العالمي يمكن أن يحقق حوسية يستطيع أي كمبيوتر كمي آخر (أو ماكيئة من طراز ماكيئات تورنيد) أن يحققها، ويمكنه محاكاة أي عدد متنا من البيئات الممكنة فيزيائيًا وذلك في الحقيقة التقديرية. والكثير من ذلك، ومنذ تبين أن الزمن والوسائل الأخرى التي يمكن أن تحتاج إليها لتحقيق هذه الأشياء لن تزيد بطريقة نسبية مع حجم تفاصيل البيئة التي يتم محاكاتها، وهكذا فإن الحوسية ذات الصلة بالأمر ستكون قابلة للتشكيل مع معايير نظرية التقادم.
النظرية التقليدية للحوسية والتي ظلت حوالي نصف قرن غير قابلة للتحدي، أصبحت الآن مهجورة فيما عدا، مثل باقي الفيزياء التقليدية، أنه يمكن اعتبارها كمخطط تقريبي. نظرية الحوسية في الآن: النظرية الكمية للحوسية: لقد قال أن تورنجر استخدم الميكانيكا التقليدية مع إنشاعائه. ولكن بالاستفادة من التقدير المتأخر عن زمانه نرى الآن أنه حتى النظرية التقليدية للحوسية لا تتطابق كلية مع الفيزياء التقليدية، وأنها تحتوي على ما يشير بقوة إلى النظرية الكمية. وليس صدفة أن الكلمة بايت تعني أصغر كمية معلومات يمكن للكمبيوتر أن يتعامل معها. تعني وصفة أساسية نفس المعنى: "كم" أي مقدار مميز ومنفصل. المتغيرات المتغيرة (المتغيرات التي لا تستطيع قبول استمرارية مستوى من القيم) هي ذاتها غريبة أو بعيدة أو نائية عن الفيزياء التقليدية. على سبيل المثال: إذا كان لتغيير ما قيمتان ممكنتان، فنقول صفر وواحد فكيف لنا أن نحصل على 1 من صفر (سأقل هذا السؤال في الفصل 2). في الفيزياء التقليدية على أن تتوفر بدون استمرارية، والتي يتغمر معه معرفة كيف تعمل القوى والحركة في الفيزياء التقليدية. في الفيزياء الكمية، ليس من الضروري أن تغير غير استمرارية حتى لو كانت كل الكميات القاسية تعتبر مميزة. إنها تعمل كالتالي:

دعنا نبدأ بتخيل مجموعة متوازنة من العوامل مُشددة في هيئة رزمة من الكروت، وهي الرزمة التي تعرض في هبئبه العامة فكرة متعدد الأكوان (في مثل هذا النموذج، والذي ترتيب فيه الأكوان نحو شكل تعاوني، يتضح بقوة تعدد الأكوان وإنما هو يكشف الإبراز وجهة نظرنا هنا). والآن دعنا نعدل النموذج لأخذ في اعتبارنا حقيقة أن تعدد الأكوان ليس مجموعة مميزة من الأكوان وإنما سلسلة متعلقة منها. وأنه ليست كل الأكوان مختلفة عن بعضها. في الواقع أنه مع كل كون يعرض لنا هنا أيضًا سلسلة متعلقة من الأكوان المشابهة، مُشكَّلاً نسبة صغيرة، ولكنها ليست صفرًا، من التعددية. في نموذجنا هذه النسبة قد يمثلها سمك الكارت، باعتبار أن كل كارت الآن
يملأ كل الأكوان من الطراز المعين. ومع أنه على غير حالة سمك الكارثة، فإن نسبة كل طراز من العوالم تتغير مع الزمن، في ظل قوانين الميكانيكا الكمية للحركة. وبناءً على ذلك في هذه النسبة من الأكوان التي لها خاصية معينة تنغير، وتنغير بشكل مستمر في حالة التغيير المميز الذي يغير من صف إلى واحد. افترض أن التغير له القيمة صفر في كل الأكوان قبل أن يبدأ التغيير. وبعد أن يتم تكون له القيمة واحد في كل العوالم. أثناء التغيير التي فيها القيمة صفر تسقط بنعومة من نسبة 100% إلى صف وفدي العوالم التي بها التغير قيمته واحد يرفع متراضلا مع الحالة السابقة من صف إلى 100% شكل 9-4 يوضح مشهدًا للتعددية حال التغير.

ربما يبدو من الشكل 9-4 أن الانتقال من القيمة صفر إلى القيمة واحد هو مستمر من حيث المبدأ من زاوية المشهد التعدد، ولكنه يظل غير مستمر من زاوية شخصية من وجهة نظر كون واحد، كما هو واضح، بخط أفقى في منتصف الشكل 9-4. ومع ذلك فقد هذا مجرد تحديد للرسم البياني، وليس ملمحاً حقيقياً لا يجري بالفعل. ولو أن الرسم البياني يجعل الأمر يبدو كأنه في كل لحظة هناك كوناً معيناً تتغير على التوالي من صف إلى واحد لأنه قد يعبر على الفور الحدود. ليست هذه هي الحقيقة. ولا يمكننا أن تكون لأن مثل هذا الكون يتطابق بصورة مع كل كون آخر فيه الرَّبَّاَتُ له القيمة واحد في هذا الوقت. وإذا فإن كان سكان هذه الأكوان يعونون بتجربة أو خبرة التغير غير المستمر، يكون كل سكان الأكوان الأخرى كذلك. وبالتالي فإن يكون أي من كليهما قد مر بتك هذه الخبرة. وليس هذا فقط، كما سأشرح في الفصل 11، فإن فكرة أن كل شيء يتحرك عبر رسم بيات مثل الشكل 9-4 الذي يتضح فيه الزمن، هي فكرة ببساطة خاطئة. في كل لحظة فإن الرَّبَّاَتُ لها القيمة واحد في نسبة معينة من الأكوان والقيمة صفر في نسبة أخرى. كل تلك الأكوان في هذا الوقت، موضحة في الشكل 9-4 أنها جميعاً لا تتحرك إلى أي مكان.
وجهة نظر عبر متعدد الأكوان

عن كيفية تغيير البنية "أ" باستمرار من صفر إلى واحد.

شدة طريقة أخرى تتضح فيها أن الفيزياء الكمية كانت ظاهرة في الحوسبة التقليدية هو ما اندلُع على طراز ماكينة تورنج الكمبيوتر من أنه يعتمد على أشياء مثل المواد الصلبة والمغناطيسية التي لا توجد في غياب تأثيرات النيكانيكا الكمية. على سبيل المثال فأن جسم صلب يتكون من صفوف من الذرات التي تتكون هي من خليط من الجسيمات المشحونة كهرباً (مثل الإلكترونات والبروتونات داخل النواة). ولكن بسبب "الفوضى التقليدية" فإن العناصر المشحونة لا يمكن أن تكون مستقرة في ظل الظروف التقليدية للحركة. العناصر المشحونة الوجبة والسالبة سوف تتحرك، بسلاسة من مواضعها وتتصادم بعضها مع البعض والبناء يتفسخ وتنهار كله. فقط قوة التداخلات الكمية بين المسارات المختلفة التي تتخذها العناصر المشحونة في الأكوان المتوازية هي التي من شأنها أن تمنع هذه الكارثة وتجعل المادة الصلبة ممكنة.

بناء كمبيوتر كميا عالمي يقع بعد كثيراً من قدرة التقنية المتاحة حالياً. وكما قلت فإن استكشاف ظاهرة تداخل يستلزم عادة وضع تفاعل صحيح بين كل المتغيرات التي هي مختلفة في العوامل التي تساهم أو تقوم بدور في التفاعل، وكلما تزايد التفاعل
بين العناصر المتصلة به، فإنه يصبح من الأصعب ميلها لتهديد تفاعلها ذات الذي
سيتمكن به التداخل - يعني نتيجة الحوسية - من بين الصعوبات التقنية الكثيرة في
العمل على مستوى ذرة واحدة أو إلكترون واحد، وهو من أهمها ويتواصل في منع تأثر
البيئة بالتداخلات المختلفة فيما قبل الحوسية. لأنه لو أن مجموعة ذرات تمارس ظاهرة
التداخل وتختلف تأثيراتها على ذرات أخرى في البيئة، فإنه لا يمكن حينئذ استكشافها
بمقاييس المجموعة الأولى وحدها، ولم تعد المجموعة قائمة بعملية حوسية كمية مفيدة،
وهي ما يسمى عدم الترابط de cohere.
ووجب أن أضيف أن هذه المشكلة عادة ما
يتم تقديمها على خلاف ما يتوحي به أو تعنيه، لقد طالما قيل لنا أن التداخل الكمي هو
عملية رقيقة، ويجب حجبها عن أي نفوذ أو تأثير خارجي، وهذا خطا، التأثير الخارجي
قد يسبب عدم انسجام صغير، ولكن هل تأثير الحوسية الكمية على العالم الخارجي هو
الذي يسبب في عدم الترابط.

وهكذا فإن السبب يكمن بسبيله لبناء منظمات ميكروسكوبية التي تتفاعل فيها
متغيرات حوامل المعلومات مع بعضها البعض، ولكنها تؤثر في بيئتها بأقل قدر ممكن.
وهكذا تتسبب جدلاً واستثنائياً بالنسبة لنظرية الحوسية الكمية، جزئياً يُلْوَي أو يغيب
بشكل مفاجئ الصعوبات التي يسببها عدم الترابط. إنه يشير هكذا، على غير الحوسية
التقليدية عندما يحتاج المرء لهندسة حوامل منطقية تقليدية مثل و...، فإن الشكل
المحدد للتفاعل يصبح أهميته صعبة في الحالة الكمية. فعلياً: أي نظام تفاعل مستوى
ذرئ ومقادير صغيرة، طالما أنه غير مترايب، فإنه يمكن أن يتم ليتم حوسية كمية
مفيدة.

ظاهرة التداخل التي تتضمن عدداً واسعاً من الجسيمات، مثل فرط (التصويلة)
التاليماسك، وفرط السيولة، مما معروفه أن يكون يربى أن أيهما لا يمكن استخدامهما، في
عمل حوسية مثيرة. من وقت كتابة هذا يمكن تحقيق بايت واحدة من الحوسية الكمية
في المعامل التجريبية على ثقة، مع ذلك، أنه في خلال السنوات القليلة القادمة سوف
ينشئون من البوابات الكمية ما لها أثاث أو أكثر من الباويات (الكم المعادل للحوامل

307
المتوقع أن بناءه هو مسألة وقت، ولن أنني أفضل أن أنتبا به في ذلك عبر عقود أو قرون.

حقيقة إن إعادة العرض في الكمبيوتر الكمي العالم تشمل بيئة تكون محاكاتها قابلة للتشكيل تقليديًا، وهي التي منها تستخدم مشاريع جديدة من الحوسبة الرياضية البحثية كنها قابلة للتشكيل بدورها. لأن قوانين الفيزياء، كما قال جاليليو، يتم التعبير عنها بلغة رياضية، وأن محاكاة أي بيئة معادل أو مساوئ تكوين وظائف رياضية معينة، وبالتالي، كثير من الأهداف الرياضية قد تم اكتشافها ويمكن تنفيذها عبر الحوسبة الكمية بكفاءة، بينما كثر الطرق المعروفة تقليديًا غير قابلة للتشكيل. معظم المشاهد المتصلة من هذه يتمثل في عملية تحليل الأرقام الكبيرة وهي الطريقة المعروفة باسم حساب شور (Shor algorithm).

(1) رولف لاندأوير (1947 - 1999) كان باحثًا بارزًا في نظرية الكهرباء الترسيبية وفيزياء المعلومات حيث كانت له نظرية اقتترحت بها على افتراض الإلكترون مرفأ في صفائح لاندأوير على أساس احتمالية أن الإلكترونات التي تدخل موصلًا ما سوف تظهر بعيدًا عند عنوانها نقطة الدخول. وكان قد تم إعمال فكرته تلك في البداية ثم أعيد اكتشافها عام 1980 وحظيت بالانتشار والانتشارالمشار إليه. (المترجم)
لا يبحث قوائم Grover's algorithm أكثر تتعلق بالحساب الكمى بما فيها حساب جروفر مطولة بسرعة كبيرة.

حساب "شور" يبنى بطريقة استثنائية أو رائعة ويطلب مزيدًا من الهايبرودير المتواضع أكثر مما يحتاجه كمبيوتر كمى عالي، وذلك سيتم بناء ماكينة تحليل كمى قبل زمن طويل قبل أن تكون تقنية مدى كامل من الخصائص الكمية في متناول اليد.

وهذا سيكون أمرًا له معنى كبير في علم النظم السري (علم تأمين الاتصالات وتكوين المعلومات أو جعلها موثوقة بها) وشبكات الاتصالات الواقعية ربما تكون عالمية، وتشمل بعض من النظم المتغيرة باستمرار من المشاركين وما هو غير متوقع من نماذج الاتصال. ومن غير المبلغ أن تلقى مقدماً مزاياه من كل زوج من المشاركين شخصيًا، يتغيير المفاتيح السرية التي تسمى له بالاتصال فيما بعد بدون خوف من استرخاء السمع. المحافظ السري العام هو أي طريقة لإرسال معلومات سرية بينما الرسائل والمتقبل لا يتداخلان بالفعل أي معلومات لها طابع السري. أكثر الوسائل أمناً مفتاح سري عام يعتمد على عدم القابلية للتشكل لمشكلة تحليل الأرقام الكبيرة. هذه الطريقة تعرف بالاختصار النظام السري RSA وهي الأحرف الأولى من أسماء كل من رونالد ريفست وآدي شامير ورايتش (Universal).

(المنشأ) الناجح (المخرجه) رونالد L. Rivest رونالد، ل. ريفست (1948) إسرائيلي مولود عام 1952 ومستشار في الشفرة، واصطخر مع رون Amos و Urd Feige و Adi Shamir و Ron Rivest في مجالات الشفرة وعلوم الحاسب. (المترجم)
للمثير للاهتمام، أدى لاحقًا لـ Leonard Adelmann إجراء رياضي يمكن فيه تحويل رسالة إلى شفرة باستخدام عدد كبير (مكون من 260 رقمًا مثلاً) كعدد مفتاح. المستقبل يستطيع بحرية أن يفعل هذا المفتاح عامًا لأن أي رسالة مشفرة من خلاله يمكن تشفيرها بمعاملات هذا الرقم. وهكذا أستطيع اختيار اثنين من 125 رقم أحادي من الأرقام الأولية وأحتفظ بها سراً، وإكمالهما إلى 250 رقم أحادي هو منتج عام. أي فرد يمكنه أن يرسل لي رسالة مستخدمة هذا الرقم كمفتاح، ولكن أنا الوحيد سأستطيع قراءة الرسالة فقط لأنني أعرف سر المعاملات.

كما قالت ليست هناك أيّة صيغة عملية لتجهيز الأعمدة بطرق التقليدية، ولكن التحليل الكمي بواسطة الآلات التي سترى عملية حساب شور سوف تقوم به باستخدام آلاف من العمليات الحسابية التي لن تستغرق سوى دقائق قليلة. وهكذا سيستطيع أي فرد لديه هذه الآلة أن يقرأ بسهولة أي رسالة واردة لها طابع سري من خلال استخدام نظام السري.

لن يكون جيدة بالنسبة للقائمين بعملية النظام السري (كالشيفر) أن يختاروا أعداد كبيرة كمفتاح لأن الوسائل التي يتطلبها حساب شور تتزايد بطريقة بطيئة تباعًا لحجم الأعداد التي يجري تحليلها. في النظرية الكمية الحسابية تصبح مهمة تحليل الأرقام عملية قابلة جداً للتكامل. من المظاهر أنه في حضور مستوي معين من عدم التماسك أو الترابط، سوف يكون هناك مرة ثانية حدود عملية على حجم الرقم الذي يمكن تحليله، ولكن ليس ثمة حد أدنى على درجة عدم التماسك الممكن تحقيقها تقنياً. وهكذا يجب أن نستطيع أن في يوم ما من المستقبل، في زمن لا يمكن التنبؤ به حالياً، ستصبح الطريقة السريّة RSA مهما كان طول المفتاح المستخدم، غير أمنة. بمعنى معين، قد يجعلها غير أمنة حتى في أيامنا هذه بالنسبة لأي فرد أو أيّة منظمة سجلت لديها طريقة سريّة RSA في يومنا هذا، وتنتظر حتى تستطيع شراء ماكينة تحليل كمية
بمستوى أقل تمامًا، وبالتالي سوف تكون قادرة على حل شفرة أي رسالة. لن يحدث هذا قبل قرون وربما عقود - وربما أقل من يستطيع أن يخبرنا، ولكن أرجحية هذا بالنسبة للوقت وطوله، فإن ما يبقى لنا هو الأمان التام السابق لنظام RSA.

عندما تقوم ماكينة التحليل الكمي بتحليل رقم من 500 رقم أحادي فإن عدد الأكواد المتداخلة سوف يكون في حدود 10^50 ياً واحد وبيانيه 250 صفراً وهذا الرقم المدهش في طوله هو الذي يجعل من حساب تورنجر في التحليل قابلاً للتشكيل. وقد قلت أن هذا الحساب يتطلب فقط عدة آلاف من عمليات الحساب. وأعني بالطبع عدة آلاف من العمليات التي تجري من كل مشارك في الإجابة. كل هذه الحوسبة تقع بالتوالي في أكوام مختلفة، وتشير في نتائجها من خلال التداخل.

ربما تتعجب كيف يمكننا حل نظائرنا في 10^50 من الأكوام المتدرجة لتشكل العمل في هذن التحليل. ألق نكون له أجيادتهم في استخدام كمبيوتراتهم؟ لا. كما ليس ثمة ضرورة لحثهم على ذلك. حساب شور يعتمد بديلياً على مجموعة من الأكوادر متشابهة مع بعضها البعض. وتنسب بالتالي إلى أن تصبح متمايزة مع حدود ماكينة التحليل. وهكذا فنحن الذين حددنا الرقم الذي سيجري تحليله والذي ننتظر حوسبة الإجابة عليه، نكون متشابهين في كل الأكواد المتداخلة. بلنا شك فتحة أكوادر أخرى برمجنا فيها أعدادًا مختلفًا والتي لم تتشئ أبداً بعد ماكينات التحليل على الإطلاق. ولكن هذه الأكوادر تختلف عن أكوادرنا في كثير من التغييرات، وربما أكثر بالتحديد في المتغيرات القابلة للتشكيل بالطريقة الصحيحة من خلال البرمجة طريقة حساب شور وبالتالي لا تتنازل مع أكوادرنا.

المناقشة التي جرت في الفصل الثاني إذا ما طبقت مع أي ظاهرة تداخل من شأنها أن تحطم الفكرة التقليدية بأن هناك كون واحد. منطقياً فإن إمكانية الحوسية الكمية المعقدة لم تضف شيئًا إلى حالة باقية عليها بدون إجابة. ولكنها تضيف تأثيرًا نفسيًّا. منذ حساب شور، أصبحت المناقشة متصلة بشكل واسع. ولهؤلاء التمسكين .

311
بفكرة الكون الواحد، اقترح عليهم نوع من التحدي: كيف يعمل حساب شور؟. أنا لست مجرد أعتني توقع أنه سيعمل، والتي هي مسألة حل معادلات غير مختلف عليها ولكن أعتني الإيماد بتفسير. عندما يحلل حساب شور رقما ما مستخدما 100 أو حولها من المرات فإن الوسائط الحوسبة التي يمكن أن نشاهدها: أي منهما الرقم الإجاري تحليله؟ هناك حوالي 10 من الذرات في كل الكون المنتج، وهو إذن متوسط صغير جدا بالمقارنة مع 10 وعليه فإن كان الكون المنتج هو استدامة للكمية الفيزيائية، فإنه الكمية الفيزيائية لا يمكن أن تشمل الوسائط المتطلبة لتحليل مثل هذا الرقم الكبير. من القائم بالتحليل إذن؟ كيف ومتى تحققت أو نفذت الحوسبة؟

لقد ناقشت الطرازات التقليدية ذات الأغراض الرياضية التي سوف تقوم بتقنياهم الكمبيوترات الكمية بشكل أسرع من المكابين الموجودة. ولكن يظل هناك مستوى إضافي جديد من المهام المفتوحة أمام الكمبيوترات الكمية والتي لن تستطيع الكمبيوترات التقليدية تنفيذها على الإطلاق. من خلال صدفة غريبة فإن أول هذه المهام التي اكتشفتها هي أيضاً تتعلق بالملف الخريطة للنظم السنية. وليس في هذه المرة لفكرة أن هناك نظام قائم أو اقتصاضه، ولكن يعزع نظام أفضل بشكل مطلق من النظام السري York townIBM بمرتفع مدينة يورك بنيويورك Charles Bennett Heights, Ny(2) الذي تم فيه بناء أول كمبيوتر كم، والذي كان من ذات الغرض الخاص ويشتمل على زوج من النظام

(2) تشارلز ه. بنتن (مواليد عام 1942) أمريكى حاصل على الدكتوراه في علوم الكمبيوتر من جامعة هارفارد، ويعمل باحثاً في IBM وتتركز بحوثه حالياً في إعادة بناء الأسس الفيزيائية للمعلومات حيث يلعب دوراً هاماً في وصل الفيزياء بالعلوم خاصة الفيزياء الكمية بالمشكلات التي تحدث بالتغييرات التي تتعلق بالعلومات كما لها اهتمام بالخليويات الأولميتية، والحوسبة المدمجة (المترجم)
السرية الكمية كمزايا له والصمم بمعرفة بينيت وجيلز براذرد
بجامعة مونتريال. لقد كانت أول ماكينة سبق تنفيذها. لتحقق ما لا تستطيع تنفيذه
ماكينات تورنج للحوسبة غير الفعالة.

في نظم بينت براذرد للشفرات الكمية يتم تشغيل الرسائل عبر حالات فوتونات
مستقلة يتم قذفها بواسطة الليزر. ولو أننا احتاجنا لعديد من الفوتونات لنقل رسالة
فوتون لكل بيت، فضلا عن مزيد من الفوتونات الضائعة بفعل الطاقة، فالماكينة يمكن
بناءها بالتقنيات القائمة لأنها تحتاج لتحقيق حسوبتها الكمية إلى فوتون واحد فقط للمرة
الواحدة. أمام النظام يقوم على عدم القابلية للتشكل ولا على التقلدية أو الكمية ولكن
مباشرة على نسبة التداخل الكمي، هو الذي يعطينا الأمان المطلقة الذي ليس في
متناول اليد. ليس هناك قدر للحوسبة المستقبلية في أي نوع من الكمبيوتر، لدى ملايين
أو تريليونات السنين سوف تساعده في إتاحة أو اختلاس النظر إلى النظم السرية
الكمية للرسائل، لأنها لو أن أحدًا اتصل من خلال وسيط يبدد تداخلًا، يمكن
استكشاف المسترق النظر: بالنسبة للفيزياء التقليدية ليس هناك ما يمكن مقتضباه له
التحام فيزيائي مع وسيط اتصالي، كخط تليفوني مثل، من تركيب ميزة استماعية
حساسة. ولكن، كما شرحت، إذا قام أمرؤ بأي قياس على نظام كمي يمكن أن يغير
بالتالي خواص التداخل، بروتوكول أو نظام الاتصال يعتمد على هذا التأثير. عضوي
الاتصال يستطيعان بكفاءة أن يقيما تجربة تداخل معادة، وإصالها بقناة اتصال
عامة. فإذا نجح التداخل في إيضاح عدم وجود مختص أو مقتصف فإنهما يستطيعان
الاستمرار إلى الخطوة التالية من البروتوكول، التي يستخدم فيها جزء من المعلومات

(*) Gilles Brassard

(مواليد 1955) كان دا حاصل على الدكتوراه من جامعة كورنيل عام
1979 في علوم الحاسب وأصبح أستاذًا لها وهو لم يعد الأكبر في كل من
فرنسا وأمريكا وأستراليا وبروكسل وأستراليا، وبما يعرف عنه نشاطاته في نظرية التعقيد والحساب
العشرية وبناء المعلومات كما أنه له ثلاثة مؤلفات تترجم إلى اثاث لغات. (الترجم)
المقلمة كمفتاح للنظام السري. وفي حالة أسوأ إذا استطاع المقتحم المصر على منع عملية الاتصال من أن تحدث على الإطلاق (ولو أنه من الأسهل تنفيذ ذلك هو قطع خط التليفون). ولكن لقراءة رساله فإن المستقبل المستهدف هو الذي يستطيع ذلك، وضمان ذلك يتمثل في قوانين الفيزياء. لأن النظم السرية الكمية التي تعتمد على التعامل مع الفوتونات المنفردة، تعاني من حدودية هامة أو رئيسية. كل فوتون يستطيع بنجاح حاملًا بايتًا واحدًا من الرسالة لا يُدعى نحو ما أن ينقل من الناقل إلى المُستقبل دون مساس به. ولكن كل وسيلة للنقل تشتمل على عناصر ضئيلة، وإذا كانت الرسائل ثقيلة جداً فلن تصل أبدا. إقامة محطات لمراقبة الصور التليفزيونية (ويعد العلاج لهذه المشكلة في نظام الاتصال القائم) ستكون بمثابة تسوية لعملية الأمن لأن المقتحم يستطيع دون أن يستكشف مراقبة ما يجري في هذه الحطات تليفزيونياً أيضًا. أحسن النظم السرية الكمية القائمة تستخدم كوابيل من النسيج البصري ولها مدى حوالي عشرة كيلومترات. وهذه ستكون كافة مثلاً لتغطية نظم المال لمدينة بنظام اتصال داخل نطاق الأمن. الأنظمة الخاصة بالأسواق لا تكون بعيدة جداً عن هذا، ولكن لحل معضلة المفتاح العام للنظام السري بشكل عام، مثل للمؤسسات العامة، فإنه من المطلوب مزيد من التقدم في النظم السرية الكمية.

البحث النظري والتجربية تتسارع على اتساع العالم والأكثر أنها واعدة بتقنية جديدة لتحقيق الكمبيوترات الكمية ومزيد من المكترات في هذا الشأن، كما أن نماذج من الحوسبة الكمية لها مزايا متعددة عن الحوسبة التقليدية يتم تحليلها واكتشافها باستمرار. أما أجد في هذه التطورات أموا مثيراً، وعلى يقين بأن بعضًاً منها سوف يأتي بثماره. ولكن لأبعد ما يهم به هذا الكتاب فإن ذلك يعد أموا جاينياً، ومن جهة نظر استشرافية فلا يهم لأي مدى تكون فائدة الحوسبة الكمية بما ستكون عليه، ولا يهم أنهما بينهما أول كمبيوتر كمي في الأسبوع القادم أو في مدى قرون من الآن أو لن يمكننا بناؤه أبداً. نظرية الحوسبة الكمية يجب أن تكون على أي حال متممة أو مكملة
كجزء من وجهة نظر أي شخص يسعى لمعرفة أصلية بالحقيقة، الذي تقول لنا الكمبيوترات الكمية عن العلاقات بين قوانين الفيزياء، العالية، وعدم العلاقة أو العلائقية بين أوتار أو خيوط تفسير نسيج الحقيقة. نستطيع أن نكتشفها، ونحن نكتشفها بالفعل، من خلال دراستها نظرياً.

<table>
<thead>
<tr>
<th>الاصطلحات:</th>
</tr>
</thead>
<tbody>
<tr>
<td>الحوسبة التي تتطلب عمليات ميكانيكية كمية، التداخل على وجه الخصوص، وبكلمات أخرى هي الحوسبة التي تتحقق بالتعاون بين الأكواب المتبادلة.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>الحوسبة الكمية:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantum computation</td>
</tr>
</tbody>
</table>

| الحوسبة التي تتطلب وسائلها (كما يتطلب الوقت) أن تتزايد بمعامل استمرار تكريبي مع كل رقم (أقل من عشرة) إضافي في مدخلاتها. |

<table>
<thead>
<tr>
<th>الحوسبة الأساسية:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponential computation</td>
</tr>
</tbody>
</table>

| قاعدة سهلة تقيريبية: - تعتبر الحوسبة قابلة للتشكيل إذا كانت وسائلها تتطلب لتحقيقها ألا تنزيل بمعدل أساسي مع الأرقام دون العشرة في مدخلاتها. |

<table>
<thead>
<tr>
<th>القابلية وعدم القابلية للتشكيل:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tractable/ Intractable</td>
</tr>
</tbody>
</table>

| عدم الاستقرار في حركة معظم النظم التقليدية. كل اختلاف بين حالتين مبدئيتين يعطينا بروزاً لنمو أساسي للاختلاف أو الانحراف بين الأمر المنحنى للناتج عنهما. ولكن الحقيقة تخضع لكم وليس للفيزياء التقليدية. عدم القابلية للتنبؤ الناتجة عن الفوضى هي في العموم |

<table>
<thead>
<tr>
<th>الفوضى (العشوائية):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaos</td>
</tr>
<tr>
<td>مغمرة بعدم الغائية الناتجة عن أن الأكواد المتشابهة تصبح مختلفة.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>الكمبيوتر الذي ينفذ أي حواسيب يستطيع أن ينفذها أو كمبيوتر كمي عالمي آخر، ويحاكي أي عدد نهائي للبيانات الممكّنة فيزيائياً في الحقيقة التقليدية.</td>
</tr>
<tr>
<td>أي شكل للنظم السرية يمكن تنفيذه من خلال الكمبيوترات الكميات وليس بالكمبيوترات التقليدية.</td>
</tr>
<tr>
<td>هو كمبيوتر كمي، مثل ميزة النظم السرية الكميتية أو ماكينة التحليل الكمية، والذان كليهما ليس كمبيوترًا كميًا.</td>
</tr>
<tr>
<td>إذا كانت ثمة أفرع للحوسبة الكمية، في الأكواد المختلفة، تؤثر على البيئة بشكل مختلف، وبالتالي يقل أو ينقص التداخل، وربما تفشل حينئذ عملية الحوسبة. عدم التماسك هو العنصر الرئيسي للتحقق العملي للكمبيوترات كمية أكثر قوة.</td>
</tr>
</tbody>
</table>
الخلاصة:

قوانين الفيزياء تسمح للكمبيوترات باستطاعة محاكاة كل بيئة ممكنة فيزيائية بدون استخدام غير عملي واسع من الوسائل وهكذا فإن الحوسبة العالمية ليس فقط مجرد ممكنة، كما يتطلب مبدأ تورنج، وإنما أيضاً قابلة للتشكيل. ظاهرة الكم ربما تشمل عدد واسع من الأكوان المتوازية، وبالتالي قد لا تكون قادرة على أن تصبح متشابهة بكفاءة مع عالم واحد. ومع هذا فهذا الشكل من العالما لا يزال يحمل في طياته الكثير، ويصبح أن الكمبيوترات الكمية يمكنها بكفاءة محاكاة أي بيئة فيزيائية كمية ممكنة، حتى ولو أن عدد كبيراً من الأكوان يتداخل مع بعضها البعض، والكمبيوترات الكمية يمكنها أن تحل بكفاءة بعض المعضلات الرياضية، مثل التحليل، والذي يعد تقليدياً غير قابل للتشكيل، ويمكنها أن تنمي طرازات من النظام السرية والتي تعد تقليدياً مستحيلة. الكمبيوترات الكمية هي طريقة نوعية جديدة لحفر همة أو استفزاز الطبيعة.

الفصل التالي ربما يغضب كثيرا من الرياضيين، وهذا لا يمكن تجنبه فالرياضيات ليست كما يظنون أنها كذلك. (القراء غير المعتادين على الفروض التقليدية عن يقين ووثوق بالمعرفة الرياضية، ربما يعتبرون أن النتيجة الرئيسية للفصل التالى بأن معرفتنا بالحقيقة أو الصدق الرياضي تعتمد على معرفتنا بالعالم الفيزيائي وبالتالي فهي ليست موثوقة بها أكثر من ذلك - لكي أكون واضحا، مثل هؤلاء القراء ربما يفضلون الانزلاق بسرعة من هذا الفصل والإسراع لمناقشة الزمن في الفصل 11).
الفصل العاشر

طبيعة الرياضيات
"نسيج الحقيقة" الذي شرع في وصفه حتى الآن هو نسيج الحقيقة أو الواقع الفيزيائي. لكن أيضاً أشرت بحرية إلى ما لا نجد، الآن و هنا، في العالم الفيزيائي من مجردات مثل الأعداد المتسلسلة الألفية من برامج الكمبيوتر. فقوانين الفيزياء نفسها ليست كيانات فيزيائية مثل الصخور والكواكب. كما قالت إن كتاب الطبيعة لجاليليو هو نوع من الاستعارة أو المجاز، ثم ما يكفي من قصص حول الحقيقة التقديرية أو البيئة غير الموجودة، التي تختلف قوانينها عن قوانين الفيزياء. فيما وراء
ذلك ما أسميه بيئة "الكانتانجو".

لقد قلت أنه يوجد بيئات عديدة لكل بيئة يمكن محاكاتها. ولكن ما الذي يعنيه القول بوجود مثل هذه البيئات؟ وإذا لم تكن موجودة في الواقع أو الحقيقة أو حتى في "الحقيقة التقديرية" فليست عسراً أن توجد؟

هل توجد التجريدية، أو الكيانات غير الفيزيائية؟ هل هي جزء من نسيج الحقيقة؟

أنا لا أميل هنا إلى مجرد إنشاء استخدام الكلمة. إنه من الواضح أن العديد من قوانين الفيزياء وما إليه توجد بمعنى الكلمة وليس في أي شيء آخر. السؤال الأساسي هنا هو: كيف لنا أن نفهم مثل هذه "الجوهر" ما هي الكلمة أو شكل الكلمة الكافية أو المقيدة لأي منها والتي تشير على نحو مطلق إلى أنها من بين الحقيقة الفيزيائية المألوفة وأنها من السمات التي تعتبر سريعة الزوال بالنسبة للثقافة؟ ويجب بعد تحكمي أو اعتباطياً كقواعد لعبة تنتمي بالتفاهة ولا تستحق النظر إليها?

وهل يمكن، إذا وجدت، تقسيمها أو شرحها بطريقة تتساير بشكل مستقل في مداها بالوجود؟ أم أن شيء من قبيل الطراز الأخير لا بد أن تكون جزءاً من نسيج الحقيقة كما تم تعريفه عبر هذا الكتاب لأنه من شأن فهمها ما يجعل المرء قابلاً لفهم كل ما يمكن فهمه.

هذا يدفعنا أو يقترح علينا استخدام معيار د. جونسون إذا ما أردنا معرفة أن أي " مجرد " معين يجوز صفة الوجود فعليا، لا بد أن نتساءل فيما إذا كان له رد فعل أو
يرد ما يصدم به بشكل ضخم ومعقد، على سبيل المثال يعرف الرياضيون الأرقام الطبيعية
الأولى، 1، 2، 3، 4، 5، 6، 7، 8، 9، 10، وأنه بالتالي هو أيضاً رقم طبيعي
بينما (1) ليس خليفة لأي رقم طبيعي، الرقمان الطبيعيان هما نفس الخليفة
يجتازان. مثل هذا التعريف يحاول أن يعبر تجريبياً عن الفكرة الفيزيائية الحديثة أو
البديئة عن أهمية الكميات المتميزة أو المنفصلة (وأكثر تحديداً على نحو ما شرح في
الفصل السابق)، هذه الفكرة هي فعلًا ميكانيكا الكم. عمليات الحساب مثل الجمع
والضرب ومفاهيم أخرى مثل تلك المتعلقة بالأعداد الأولية والتي يتم تعريفها بالإضافة
إلى الأرقام الطبيعية. ولكن بخلاف الأرقام الطبيعية عبر هذا التعريف وفهمهم من خلال
هذا الحدث، سيضمننا في مجال أن هناك الكثير مما يجب أن نفهمه عنه.
تعريف الرقم الأولي يضع بشكل نهائي مرة واحدة ولابد ما هو الرقم الأولي وما هو غير ذلك
من أرقام. ولكن فهم هذه الأرقام هو شيء أولي بدوره - ولو للحظة، كيف تتوزع
الأرقام الأولية على هذا المدى الواسع جداً، وكيف تتجمع أو تتكاثر ثم وما مدى
عشوائيتها وماذا - وله من الثراء الفكرى ما يستلزم وقفة من التبصرات ومزيد من
التفصيلات. وبالطبع فمن المعروف أن "نظرية الأعداد" هي عالم باكمله (عادة ما
يستخدم في ذلك التعبير ذاته) في حد ذاتها. ولكي نفهم الأرقام بشكل كامل لا بد أن
نقوم بتعريف كثير من مستويات الحدود المجردة، وأن نبحث أو نتأمل في أنببدة جديدة
والعلاقات التي تتوافد بين هذه الأنببة. سنجد أن بعض هذه الأنببدة المجردة على صلة
بحدود أخرى لدينا بالفعل، ولكن أيضاً يقع على رأسها ليست له علاقة بالأرقام مثل:
التماثل، التعابق، المتصل، المجموعات، اللانهاية والأكثر من ذلك بكثير. وهكذا تصبح
الحدود الرياضية المجردة التي نعتقد أنها مالفقة لدينا، هي مع ذلك كثيراً ما تدهشنا
أو تجفتنا. يمكن لها أن تشجعنا أو تعزينا بأربعة أو أسلوب جديد أو غير نمطي وذاك
في إطار من عدم التوقع، يمكنها أن تكون من المتاعب شرحها ومن ثم تحتاج بعد ذلك
إلى شروح جديدة تتوأم معها. وهكذا إلى هذا الحد هي مفيدة ومفيدة. وهكذا فإنه من

322
خلال معيار د. جونسون لا بد أن نخلص إلى أنها حقيقة. وطالما أننا لا نستطيع فهمها سواء على أنها أجزاء من ذواتنا أو على أنها أجزاء من شيء آخر نفهمه بالفعل، ولكننا نفهمها ككيانات مستقلة، لا بد أن نخلص إلى أنها كيانات حقيقية ومستقلة.

ومع ذلك فالحدثوس المجردة لا يمكن إدراكها عبر الحس. إنها لا تتمتع بصفة رد الفعل كما تزداد قدرة عند اصطدامها بحجر، وبالتالي فإن التجربة والمشاهدة لا يمكن لهما أن يلعبا الدور نفسه في الرياضيات على نحو ما يفعلان في العلم، والذى يلعب الدور في الرياضيات هو "البرهان". حجر د. جونسون يرتبط بقدمه عندما تصطدم به أي أن له طبيعة "رد الفعل". الأعداد الأولية أيضاً لهذا النوع من رد الفعل وذلك حينما يتبرهن على شيء غير متوقع عنها وصيغة خاصة إذا استرسلنا في شرحها هي ذاتها أيضاً. ويمكن الفرق الحاسم بين البرهان والتجربة من وجهة النظر التقليدية في أن البرهان ليست له مرجعية لشيء في العالم الفيزيائي. يمكننا إقامة برهان في الحيز الخاص لأدمغتنا، كما يمكننا إقامة برهان بعد تصديه عبر محاكاة يقوم بها مولد حقيقة تقديرية لفيزياء خاطئة أو غير صحيحة. وما دمنا نؤووننا بما يتعلناه من قواعد الاستدلال الرياضي فسوف نصل في النهاية إلى نفس الإجابة كما سيصل إليها أي شخص آخر. ومرة أخرى فالنظرية السائدة هي: أنه بعيدا عن إمكانية التخطيط أو الوقوع في أخطاء فاحشة، فإننا عندما نبرهن على شيء ما فعلياً أن نعرف أنه يقيني بصفة مطلقة.

والرياضيون عادة ما يكونون فخورين بهذا اليقين المطلق، بل ويحسدون عليه العلماء ولو قليلاً. لأن في العلم ليس ثمة وسيلة ليقين من أي افتراض. ومهمها كانت إحدى نظريات المر جيدة الشرح للملاحظات قائمة، ففي أي حصة يستطيع شخص آخر أن يصنع ملاحظات غير مشروعة تضع شكوكاً حول البناء الكامل للشرح السائد. والأسوأ من ذلك أن أي شخص يمكنه أن يصل إلى فهم أفضل مما سبق شرحه ليس فقط كل الملاحظات القائمة بل أيضاً كيف أن الشروح السالفة تبدو كأنها تعمل ولكنها 323
مع ذلك خاطئة تمامًا. جاليليو مثالًا، وجد تقسيمًا جدًا للملحوظة القديمة التي تقول بأن الأرض تحت أقدامنا ثابتة، وجد شرحًا يقول بأنها على العكس في حالة حركة.

الحقيقة التقديرية التي تجعل بيئة ما تبدو وكأنها بيئة أخرى أوضح بأنها عندما ما تكون الملاحظة هي الحكم المطلق الذي يفصل بين النظريات فليس ثمة يقين من أي ملاحظة قائمة، فهي كانت واضحة، بل وربما حتى تكون بعيدة عن الصحة. ولكن عندما يكون البرهان هو الحكم وهو الفيصل بين النظريات فمن المفترض أن يكون هناك شيء يقين.

لقد قيل أن قواعد المنطق قد تشكلت في البداية بأمر أنها ستمدنا بطريقة غير انحيازية ومعصومة من الخطأ، بل كل التحديات. هذا الأمر لا يمكن تحقيقه أبدا. دراسة المنطق ذاتها تكشف أن مدى الاستدلال المنطقي كوسائل لاكتشاف الصدق يعتبر محدودا بشكل حاد. إعطاء افتراض جوهرى عن العالم، يستطيع المرء معه أن يخلص إلى نتائج ولكن هذه النتائج ليست آمنة، بمعنى ما الافتراض نفسه غير أمين.

الإفتراض الوحيد بأن المنطق يمكنه أن ييرهن على شيء دون الاستعانة بالاقتراح ذاته هو مجرد حشو أو مزيد من الكلام الذي لا يضيف مزيدا من القوة على الإفتراض - جملة مثل كل الكواكب هي كواكب لا تؤكد شيئا. بصفة خاصة فإن كل الأسئلة الجوهرية في العلم تقع خارج الدائرة التي يستطيع فيها المنطق وحده أن يقدم تحديات.

ولكن، هكذا يفترض - الرياضيات وحدها هي التي تقع في هذه الدائرة. وهكذا تتم الرياضيات في إثر الصدق المطلق ولكن المجرد: بينما العلماء يواسون أنفسهم بفكرة أنهم يستطيعون الحصول على معرفة جوهرية ومفيدة عن العالم الفيزيائي. ولكن عليهم القبول بأن هذه المعرفة خالية من الضمانات. إنها دائما جوهرية أو أساسية وأيضا على الدوام قابلة للخطأ، فكرة أن العلم يتميز بالاستنتاج كوسيلة للتقوى أو الحكم بما هو قابل قليلا للخطأ، تتشابه مع فكرة الاستدلال المنطقي، وهي محاولة فهم أحسن ما يمكن من المعرفة العلمية كحالة من المستوى الثاني. بدلا من أن يكون

324
الاستنتاج حكماً للابقنينات، فربما نستطيع أن نفعل بشأن الاستقراءية كحكم لما هو قريب من القيم.

كما قلت، ليس ثمة طريقة مماثلة للتقديم والحكم مثل الاستقراء. فكرة التسبيب كطريقة للمرء للاقترب من القيم في العلم هي محض خرافية. كيف أثبت بما يقترب من القيم أن شئاً تتزامنا جديدة رائعة في الفيزياء تقلب أو تعكس معظم افتراضاتي التساؤلية حول الحقيقة سوف لن يتم طبعها غداً؟ أو أنت ليست داخل مولد حقيقة تقديرية؟ ولكن كل هذا ليس كالقول بأن المعرفة العلمية تتسم بأنها من "الدرجة الثانية". وبدورها فلكل أن الرياضيات تدعى أنها تؤمن القيم هي من قبيل الأسطورة أو الخرافية أيضًا.

منذ العصور القديمة، فإن فكرة أن المعرفة الرياضية تمتعة عن غيرها، كانت مشاركة مع فكرة أخرى تقول إن بعض الجواهر المجردة ليست مجرد جزء من نسبي Phytagoras الحقيقة بل إنها أكثر حقيقة من العالم الفيزيائي. لقد اعتقد فيثاغورس بأن النظام والتناسق في الطبيعة هو تعبير عن العلاقات الرياضية بين الأعداد الطبيعية، وكان الشعار المروف لكل الأشياء في أرقام ولم يكن مقصودًا بنفس المعنى الحرفي للأمر ولكن ذهب أقلاطون إلى ما هو أبعد من ذلك حيث أنكر أن العالم الفيزيائي حقيقي بالمرة. لقد لاحظ أو أخذ في اعتباره أن خبرتنا الواضحة لا تستحق الالتفات، كما أنها خادعة وناقش أن الموضوعات الفيزيائية والظواهر هي مجرد ظلال أو تقليد غير مكتوب كجوهرها أو كينونتها المتالية (الأثقل أو عالم الثالث) الذي يوجد في عالم آخر والذي يمثل الحقيقة الصادقة. إنها تعيش في ذلك العالم بين أشياء أخرى من الأرقام الخالصة مثل 3, 7, 11, 23, ... وشكل العمليات الرياضية مثل الجمع والضرب. bekommenه بعض ظلال هذه العمليات، مثلًا نضع تفاحة على المنضدة ثم نضع على نفس المائدة تفاحة ثانية، وحينئذ نرى أن هناك تفاهمًا على المائدة. ولكن التفاهمين تفرضان لنا "الأحادية" و "الثانية" (ومع هذا فيما تفرضان حالة "التفاحية") ولكن فقط بشكل

325
غير تام. إنها ليست متشابهتين تمامًا ومن ثم هما ليستا اثنتين حقيقة على المائدة ولا اثنتين من أي شيء، ربما يمكن جعل الأمر بأن العدد 2 يمثل في كونهما اثنتين على المائدة رغم اختلافهما. ولكن هذا التمثيل يظل غير مكتمل أو تام لأنهما لا بد من الاعتراف بأن ثمة خلايا قد سقطت من التفاعلات، والتراب، وتأثيره هو والهواء على المائدة ذاتها. وعلى عكس فيثاغورس لم يكن أفلاطون هدف بذاته يضطره للاجتهاد من أجله أو الكدح حوله. فيما يتعلق بالأرقام الطبيعية الحقيقية لديه تتكون من "مثال لكل المفاهيم الخاصة بـ "الدوائر" التي نحنها بينما هي ليست دائرة حقيقية. فهي ليست مستديرة بالكامل ولستوية بالكامل، فقط ذات سمك محدود، وهي على الجملة غير مكتملة أو تامة. وقد أشار أفلاطون إلى مشكلة. إعطاء صفة عدم التمام لكل ما هو (أرضي) وقد يضيف إعطاء صفة عدم التمام أيضا لتوجهنا إلى (الدوائر الأرضية) كيف يمكننا أن نعرف شيئاً عن الدوائر التامة أو المكتمة الحقيقية؟ إذا أننا نعرفها، ولكن كيف؟ عندما حصل إقليدس على المعرفة عن الهندسة والتي عبر عنها في بديهياته المعروفة والشهيرة، عندما لم تتح له دائرة كاملة أو تامة، أو نقطة، أو خط مستقيم من أي يأتينا البرهان الرياضي أو اليقين به، إذا المرء لم يستطع أن يفهم الجواهر المعروفة التي يشير إليها البرهان؟ كانت إجابة أفلاطون أننا لا نحصل على المعرفة بهذه الأشياء من عالم الظلال والموم، وإنما بدلا من ذلك يتم الحصول عليها مباشرة من عالم المثال نفسه. إننا نملك هذا اقتراح، لغة فضية بهذا العالم، ثم ننسابها في ميلادنا ثم تصبح غامضة مثل طبقات متراكمة من الخطأ ناتجة عن تفتتتنا بحاستنا. ولكن الحقيقة يمكن تذكرها عبر كننا واجتهادنا في تطبيقات العقل الذي يمكنه أن يمنحنا اليقين المطلق الذي لا تستطيع أبدا خبرتنا اليومية أن تمدنا به.

لى اعتقده إذا كان شخص ما قد صدق في وقت هذا الخيال الشعبي أو الواهن (بما فيهم أفلاطون نفسه الذي كان فيلسوفا كفؤا ومهاجما والذي صدق في إخبار الناس ببعض الكتبات) ومع ذلك فالشكلة التي وضعها عن كيف يمكننا معرفة.
دعنا ندرك أن الجوانب المجردة هي حقيقية بدرجة كافية - ويعتبر عوامل الحلم الذي تقدم به أصبع جزء من نظرية المعرفة الغالبة منذ ذلك الحين. وبشكل خاص، فإن الفكرة الأساسية في أن كلاً من المعرفة العلمية والمعرفة الرياضية بينان من مصدرين مختلفين وأن هذا المصدر الخاص المعرفة الرياضية يخلع عليها اليدين المطلق، وحتى هذا اليوم يُقبل هذا واقعًا من جميع الرياضيين بدون أي امتناعات. وفي أيامنا الحالية يسمون هذا بـ "الحس الرياضي"، والذي يلعب تمامًا نفس الدور بالنسبة لما يقول به أفلاطون من تذكره "المثل".

لقد كان شاكل محاولات قاسية أو مُرارة حول ما هي أنواع أو طرائق الاكتمال التي يمكن أن تعبير عنها الحدس الرياضي عن المعرفة الموثوق بها، ما الذي يمكن أن تكشف عنه. ويكشفات أخرى فإن الرياضيين يقبلون أن الحدس الرياضي هو من مصادر اليدين المطلق، ولكن لا يمكنهم الموافقة على ما تقوله لهم الحدس الرياضية من الواضح أنها صيغة أو طريقة إلى جدالات لا نهائية وغير قابلة للحل.

من المحتم أن معظم هذه الجدالات قد ركزت كذلك على طرائق مختلفة متعددة للبرهان. واحد من هذه الجدالات تركزت على ما يسمى الأرقام "الخليجية" وهي الجذر الثردي للإرقم السلبية. نظريات جديدة حول الأرقام العادية الحقيقية تتطلب البدائل منها من خلال إعداد مستويات توضيحية للبرهان، اعتمادًا على تخصص الأرقام الخليجية. على سبيل المثال كانت النظرية الأولى عن توزيع الأرقام الأولية، قد تم إثباتها بهذه الطريقة. ولكن بعض الرياضيين أشاروا إلى الأرقام الخليجية على أرضية أنها بذاتها جدية (المنظمات الخارجية ما زالت تركز الجدالات الشديدة، حتى ولو أننا الآن نعتقد أن الأرقام الخليجية حقيقية تمامًا شأنتها شأن الأرقام الحقيقية) أوقع أن مدرسيهم قد قالوا لهم إنه من غير المسموح لهم أن يقيموا أي جذر ثريي لسالب واحد، ونتيجة لذلك لم يروا أن أي أحد آخر يمكنه ذلك. لا شك أنهم سموا هذه الموجهة غير المعلقة أو غير البسيطة من التفكير بـ "الحس الرياضي". ولكن الرياضيين
بعضها كان لديهم حدود مختلفة. فقد فهموا متى وكيف تكون الأرقام التخيلية صالحة مع الأرقام الحقيقية. لماذا؟ اعتقدوا أن الأمر لا يستطيع أن يعرف خصائص مجردة جديدة لكى يحصل على الخصائص التي يريدها. بالتأكيد إسباب الأزمة الشرعية لمنع هذا يعني أن الخصائص المرغوبة ليست متراوحة أو متماسكة. (هذا هو الإجماع الأساسي الذي ذهب إليه الرياضي: جون هورتون كونويا)

عندما أشار بقوة وغيير صقل مناسب إلى "حركة تحرير الرياضيين ونحن نطر بأنه لا أحد قد برهن على أن نظام الأرقام التخيلية يعتبر ذاتي التماسك ولكن أيضا لم يقم أحد بالبرهنة على أن الحساب العادي للأرقام الطبيعية هو بدورة ذاتي التماسك.

هناك جدلات مشابهة حول مصداقية استخدام الأرقام الإلهانية، والمجموعات التي تشمل عوامل لا نهاية عديدة، والكميات المتناهية الصغر بلا حدود التي تستخدم في حساب التفاضل والتكامل. الرياضي الألماني الكبير دافيد هيبرت هو David Hilbert الذي برهن على البنية التحتية للنظرية العامة للتسبيبة وأيضا نظرية الكم، قد أشار إلى أنه لاحظ أن الأدبيات الرياضية متخصصة بالغرائب والتقاليد اللاتينية تجد مصدر لها في "الله الجامعة". بعض الرياضيين، كما صرّ، أنكروا مصداقية التسبيبة حول خصائص اللانهائي على الإطلاق، النجاح الهوليكي من هذه المشاكل الجدلية الذي حققه الرياضيين خلال القرن العشرين لم يفعل الكثير لهذه الجدلات. بل على العكس فقد كتب عنها وأظهر جدلات جديدة. وكما أصبح التسبيب الرياضي أكثر صقلًا، فقد تعذر عليه اجتناب أنه تقوم أكثر نحو حديث كل يوم وهي الفكرة التي تفتح الباب للتأثيرين هامين متناقضين الأول أن الرياضيين أصبحوا أكثر تشكيكًا أو وسوسة تجاه البراهين التي كانت موضوعًا مستويات قاسية أو دقيقة من الاستثمار قبل قبولها. ولكن الثاني أن ثمة طريقا قويا للبرهنة قد أُبتكرت والتي لا تنسى إحساسها المصداقية عبر الطرق القائمة. كما أنها عادة ما تثير شكوكًا مما إذا كانت طريقة معينة للبرهنة مهما كانت بديهية، هي مؤكدة النجاح بالكامل أو معصومة تمامًا.
وهيذا حول عام 1900 كانت هناك مشكلة عاصفة حول أسس الرياضيات. أعني أنها لا تحوز أي أساس. ولكن ما الذي حدث لقوانين المنطق الحنف؟ لم يكن مفترضاً أن تحل كل الجدلات حول عالم الرياضيات؟ الحقيقة الشاملة لذلك أن قوانين المنطق البحت التي يمكن أن تؤثر على جدلات الرياضيات هي كذلك الآن بالفعل. أرسلت (*) في القرن الرابع قبل الميلاد كان أول من نصبه مثل هذه القوانين، وبذلك كان Aristotle مؤسساً لما نسميه في يونانية هذا نظريه البرهان. لقد افترض أن البرهان لا بد أن يشتمل على جمل متشابهة تبدأ ببعض الفرضيات والتعريفات وتنتهي بالنتيجة المرغوب فيها. بالنسبة لأي جمل متشابهة لكي تصبح برهان صادقًا أو له صداقية، فإن كل جملة وحيدة زال القوافل في البدء، عليها أن تتبع أخرى طبقاً لنمذجة محدد من القياس المنطقي، والصورة التقليدية له كانت كما يلي:

- كل الرجال فانون
- سقراط هو رجل
-

(ولذلك) فإن سقراط فان

وكلمات أخرى، فإن هذه القاعدة تقول إن شكل أي جملة إذا كان من قبيل كل (أ) تحوز الخصائص B (كما في كل الرجال فانون) وظهر في برهان ما، وكانت جملة أخرى في شكل "أن (س) هي الفرد (أ)" (كما في سقراط هو رجل) وظهرت أيضاً في ذات البرهان، فإن الجملة "(س) أيضاً تحوز الخصائص B" (كما في الجملة "فان سقراط فان") كما يظهر فيما بعد في البرهان، وهو بالقطع نتيجة ذات صداقية.

(*) أرسلت Aristotle (274-332 م) فيلسوف يوناني ابتدأ المنطق الأرسطو الذي تسمى نزوة المنطق لعدة قرون. كما استشرف كل مبادئ المعرفة البشرية، لذا أثرى كتاباته طولاً وجيولاً على الفكر الغربي والغربي على السواء، ولكن لم بق لها الآن سوى الأمامية التاريخية. (الترجمة)
والقياس المنطقي يعبر عنه يمكن أن يسميه قواعد الاستدلال أعني القواعد التي تعرف الخطوات المسموح بها في البرهنة، مثل انتقال صدق المقدمات إلى النتائج. ونفس طريق الحديث فهي القواعد التي يمكن استخدامها لتحديد ما إذا كان مفاد أي برهان صادقًا من عدمه.

أعلن أرسطو أن كل البرهانين ذات المصداقية يمكن أن يعبر عنها عبر شكل القياس المنطقي. ولكنه لم يثبت ذلك！ ومشكلة الحقيقة البرهان أصبحت تعود إلى الرياضة الحديثة والتي تم التعبير عنها عبر القياس المنطقي. ولا استطاع كثير من الرياضيين إعادة صياغتها في شكل جديد من القياس المنطقي. وكثير من الرياضيين لم يتمكنوا ولا رغوا في التمسك أو الاتصال بحرفية قانون أرسطو، طالما أن البرهان الجديد بدت وكأنها ذاتية الدليل وحائزة للمصداقية مثلها مثل التسبب الأرسطي وتقدمت الرياضة إلى الأمام. ثمة أدوات جديدة مثل المنطق الرمزى ونظرية المجموعات سمحت للرياضيين أن يقيموا علاقة بين أبينية رياضية وأخرى بطرق جديدة. وهذا من شأنه إقامة حقوق ذاتية الدليل مستقلة بعيدا عن القواعد التقليدية للاستدلال والتي أصبحت بها تلك القواعد غير كافية أو ملائمة. ولكن أي من هذه الطرق الجديدة للبرهنة أصبح معصوماً من الخطأ على نحو دقيق أو عبقرى؟ وكيف كانت قواعد الاستدلال يجب التعامل معها بما يصلحها والتي أُعتبرت خطأ من جانب أرسطو؟ وكيف يمكن استعادة سلطة القواعد القديمة إذا لم يستطع الرياضيون الموقفة على ما هو بديهي وما هو عديم المعنى؟

وفي الوقت نفسه استمر الرياضيون في بناء قواعدتهم التجريدية في السماء. ولأسباب عملية فقد بدت كثير من تلك الأبينية على أنه ذو صدى. البعض منها أصبح لا مفر منه في مجال العلم والتقنية، وأغلبها ارتبط بابينية شروح جميلة ومشرة. ومع ذلك لا أحد يمكن أن يضمن أن البناء ككل، أو أي جزء جوهري منه لم يفض على تناقض منطقى قد يجعله في النهاية بلا معنى. وفي عام 1902 أثبت برتراند راسل

330
أن الطرقية أو المخططي الذي من شأنه التعرف بنظرية المجموعات بصرامة Russell Gottlob ودقة، وهي النظرية التي اقترحها قبل ذلك بقليل المنطقة الألمانية جولف فريجي، لم تكن متصلة أو متاحسة. ولم يكن يعني هذا أنها بالضرورة غير صالحة لاستخدام المجموعات في البرهنة. بالطبع، افترض فئة من الرياضيين بشكل جدي، أن أيًا من الطرق المتعددة لاستخدام المجموعات، أو الحساب أو أي من الأفرع الأساسية الرياضياتية، ربما تصبح في الأخر غير صاحبة. والذي كان صادماً في النتيجة التي توصل إليها رسل، كان كذلك فقط بالنسبة للرياضيين الذين اعتقدوا أن موضوعهم يقع في الدرجة الأولى أو المستوى الأول من الوسائل التي تعلق الإيقين المطلق عبر برهنة النظريات الرياضية. الجدول المكن حول مصداقية الطرق المختلفة للبرهان هي التي حددت الأمر برنتها والغرض منه (كما كان مفترضًا).

وعلى هذا شعر كثير من الرياضيين أن عليهم، وعلى وجه السرعة، أن يضعوا نظرية البرهان ومن ثم الرياضة ذاتها فوق أساس أمن. وبعد احتلالهم لمقدمة ما أعتبر تقدمًا في المجال، عليهم أن يعرّفوا تعريفًا لمصرح واحد ونهائي لآي نوع من البراهين التي يمكن أن تكون آمنة بمفردها، وأيها التي ليست كذلك. وأيما ما كانت منطقة الأمان الخارجية يمكن الالتفاف عنها وإسقاطها، وأيها تكون داخلية وتتمثل الأساس الروحي لكل رياضية مستقبلية.

Lützen
وعند هذه النهاية أعلن الرياضي الهولندي لوتزإن إجبرتوس جان برووير استراتيجية محافظة لنظرية البرهان، والمعرفة بـ "الحداثية" Egbertus Jan Brouwer والتي ما زالت موجودة حتى يومنا هذا. يحاول الحدسون تفسير "الحداث" بأشكال الطريق فهما، ويحتفظون فقط بما يعتبرونه غير قابل للتحديد من أوجه ذاتية الدليل. ثم يتصاددون بالحدس الرياضي، كما يعرفون، لحالة أكثر ارتفاعًا حتى مما أدعاه أفلتون. إنهم يرون أنه أوّل وسابق حتى عن المنطقة البحث. وهكذا يرون المنطق ذاته لا يستحق الاعتداد به إلا إذا تم تقويمه والحكم عليه من خلال الحدس الرياضي، فمثلًا

331
هم يتكون إمكانية الحصول على حدس مباشر عبر أي كيانة لا نهائية. وعلى ذلك ينكرن أية مجموعات لا نهائية مثل مجموعة الأرقام الطبيعية، ويرون أنها غير متميزة بالوجود على الإطلاق. والاقتراح القاتل بأنه توجد أعداد طبيعية كثيرة غير نهائية هم يعتبرون أن دليله الذاتي زائف. والاقتراح القاتل إن ثمة بيئة "كانتجوتو" أكثر من البيئات الفيزيائية الممكنة يعتبرونها اقتراحًا بلا معنى.

من الناحية التاريخية فقد لعبت "الحداثة" دوراً هاماً كما فعل الاستقراء. لقد جروء على التساؤل عما تتعلقه من يقينيات والتي كان بعضها بالطبع زائفًا. أما عن كونها نظرية إيجابية عما هو برهان رياضي صادق أو صالح من عدمه فإنها لا تستحق شيئاً. بالطبع تعبّر "الحداثة" في الرياضة عن نظرية "الآثارية" كلها ما تجرع عن فعلاً في فهف أكثر مما نعرفه عن العالم العريض.

كلناهما ترى أن الحل يمكن في التراجع لعالم داخلي والذي من المفترض أن نعرف عبره مباشرة ولذا (؟) يمكننا التتاكد من صدق ما نعرفه. في كلنا الحالتين يتعلق الحل بإدراك وجود - أو على الأقل التفسيرات الرائعة - ما هو موجود خارجنا. وفي كلتا الحالتين هذا الارتداد إلى الداخل يجعل من غير الممكن شرح الكثير مما يقع داخل المجال المعني. وعلى سبيل المثال لعل أنه بالطبع زائف، كما يرى الحدسيون، أنه يوجد العديد واللا نهائي من الأعداد الطبيعية، إذن يمكننا أن نستخرج أن من الضروري فقط وجود العديد منهم. إلى أي حد هذا البعيد؟ وإن لم كان عددهم ماذا لا نشكل حدسًا للرقم الطبيعي التالي لهذا العدد؟ سوف يشرح الحدسيون هذه الفضيلة بالإضافة إلى أن المناقشة التي ذكرتها تأوُّ تفترض صلاحية المنطق العادي. وقصيدة خاصة أنها تتعلق باستخراج من حقيقة أنه لا يوجد العديد اللا نهائي من الأرقام الطبيعية، أنه لا يوجد عدد خاص نهائي منهم. قاعدة الاستنتاج المتصلة بالموضوع تسمى: "قانون استبعاد الوسط". وتقول هذه الفكرة أن أي افتراض كما (مثل وجود العديد واللا نهائي من الأرقام الطبيعية) ليس هناك إمكانية ثالثة تقع بين صدق ف.
وعدم صدقها (يوجد العديد من الأعداد والإنهاق من الأرقام الطبيعية) لتكون صادقة.

الحسينيون ينكسون بشكل بارع قانون استبعاد الوسط.

طالما في عقول معظم الناس، أن قانون استبعاد الوسط نفسه يستند إلى حدس قوي، فإن رفضه يسبب طبيعياً لغير الحدسية قدراً من الاندهاش عمداً إذا كان حدس الحدسية صالحاً على الإطلاق. أو إذا اعتدنا أن قانون استبعاد الوسط ينتسب أو يتميز في حدس منطقى، فإن هذا يقودنا لإعادة فحص التساؤل، كما إذا كان الحدس المنطقى يبطل أو ينسخ المنطق. عند أي مستوى يكون ذلك ذاتي الدليل.

ولكن كل هذا كان فقط من أجل نقد الحدس من الخارج وهو ليس عدم برثة ولا أن الحدس لا يمكن البرثة عليه أبداً. إلا أصير بعضهم على أن أى افتراض متماسك ذاتياً، هو ذاتي الدليل أيضاً بالنسبة لهم. كما لو أصروا أنهم وجدوا الموجودين فإنه لا يمكن البرثة على خطأ الحدسية. وأيضاً ما كان الأمر، فمثل ما كان مع "الآئم" بشكل عام، فإن الخطأ الميث للحدس لا يكتشف عند مهاجمتها. وإنما عندما تؤخذ بجدية وعبر مصطلحاتها هي ذاتها. الحدسية يؤمنون بحقيقة وجود عدد نهائى من الأرقام الطبيعية 1, 2, 3, ... وحتى 10, 85, 769, 946. ولكن جدل الحدسية يقول إنه لأن كل رقم من هذه الأرقام لا يمكنه من الأرقام فإنها تخالف شكل متتابعة لا نهائية. ليس في وجهة نظر الحدسية شيء أكثر من الانحلال الذاتي أو الظاهرة أو التصنيع والذي حرفيًا لا يمكن الدفاع عنه. ولكن بإحياء الصلة بين وجهة نظرهم في الأرقام الطبيعية المجردة وبين الحدس بأن هذه الأرقام تمثل بشكل جذري إلى التشكيل، فقد أنكر الحدسية أنفسهم البناء التفسيري المتعدد الذي من خلاله يتم فهم هذه الأرقام. وهذا بدوره يبرز مشكلة أمام من يفضلون شرح التعقيدات غير المفسرة. بدلاً من حل هذه المشكلة بإمدادنا بديل أو بناء تفسيري أعمق للأرقام الطبيعية، تفعل الحدسية تماماً كما يفعل التحقيق والاستجواب. وكما تفعل "الآئم": تتراجع أكثر عن التفسير، إنها تقدم مزيداً من التعقيدات غير المفسرة (في هذه الحالة إنكار 333).
قانون استبعاد الوسط (المتعدد) الذي يستهدف فقط ما يسمح للحاصلين لأن يتصرفوا كما لو أن تفسيرات خصوصهم صحيحة، بينما لا يستخرجون منها أي نتيجة عن الحقيقة.

لم تتمحُّ كما بدأت "الاثانثة" بالرغبة في تبسيط تحول وعين غير يقيني، ولكن عندما نأخذهما بجدية تحول إلى شأة تعقيدات ضورية وناقصة الواقعية، وهكذا تنتهي "الحداثية" بأن تصبح من أكثر المذاهب معايدة للحداث سبب التصرح بها.

خطا أكثر اقتراحًا من الحس العام – وإن David Hilbert اقترح دافع هيلبرت، تمكِّن من التحقق من القواعد ذاتية الدلائل: نفهم نتائج قواعد مثبتة نعم، ولكن ذلك لا يعني اعتبارًا حاسمًا أو يستحق الانتظارات التي بالنسبة لبرامج ذاتية (نفعية) هيلبرت. سوف يكون راضيًا إذا كانت هذه القواعد المتوافقة فقط، ولكن الإتفاق مع الحكم، بالإضافة إلى إمكانية تقلبه من أنها ذاتية التماسك: بمعنى أنه لم يعد نشاط هذه القواعد على برنامج معين على أنه صالح، فسيريد أن يتذكر أنها لن تعني أبدًا على برنامج يقول بعكس النتيجة التي توصل إليها البقية الأول. كيف لان يتذكر من مثل هذين من هذه الكرة، سوف يتم البرهنة على التماسك باستخدام طريقة البناء تشايع هي نفسها نفس قواعد البقية. وعندها تمنى هيلبرت أن يتم إحياء البناء واليقين الأرستطى، وأن أي جملة رياضية صادقة يمكن من حيث المبدأ أن تكون قابلة للبرهنة في ظل هذه القواعد، بينما لان يمكن ذلك بالنسبة للجملة الزائفة أو غير الصادقة. في عام 1900 وقد بدأ القرن ينحسر نشر
هيلبرت قائمة مسائل أمل أن يقوم الرياضيون بحلها قبل انتهاء القرن. المسائل العشرة كانت لتشكل مجموعة من قواعد الاستنتاج لها الخصائص السالفة وبنفس مستوياتها للبرهنة على متساكنا.

كان هيلبرت سيصبح محبطا بالقطع. إذ بعد مورر واحد وثلاثين عاما أقام كبرت جودل نظرية ثورية للبرهان ذات جذور وفروع في رفض الهيكل البنائي الذي لا تزال تتعلق به الرياضيات والمنطق: لقد برهن على أن مسائل هيلبرت العشرة غير قابلة للحل. لقد أثبت أولًا أن أي مجموعة قواعد للاستنتاج قابلة لتصحيح صلاحية حتى براهين الحساب العادي لا يمكنها أبدًا تصحيح صلاحية برهان على تامسكاها هي نفسها. وبالتالي فليس ثمة مسألة في العثور على مجموعة قواعد متاماسكة للاستنتاج وقابلة للبرهنة عليها، وهي تلك التي تخيلها هيلبرت. أثبت جودل ثانياً أنه إذا وجدت مجموعة قواعد للاستدلال (ذات ثراء مقبول أو مثمرة بشكل مقبول) في فرع من فروع الرياضيات فلا بد أنه يوجد طرق صالحة لإثبات أن تلك القواعد غير قابلة للتخل. وهذا ما يسمى بـ "نظرية عدم الاستمام" لـ "جودل" "نظرية جودل" التي أشرت إليها في الفصل السادس. لقد بدأ بالأخذ في اعتباره أي مجموعة متاماسكة من قواعد الاستنتاج.

وبعد أن أوضح لنا كيفية إنشاء اقتراح غير ممكن للبرهنة أو عدم البرهنة عليه في ظل تلك القواعد ثم أثبت أن هذا المقترح صادق.

لو أن برنامج هيلبرت قد جرى العمل به، لكانت لديه أخيراً عن مفهوم الحقيقة الذي أقوم بتسويقه في هذا الكتاب، حيث كان سيجعل أهمية فهم الحكم على الأفكار الرياضية. أي واحد - أو أي مเคيلة غير ذات عقل - يمكنها تعلم قواعد هيلبرت الممولة للاستنتاج، وسوف يكون قادرًا على الحكم على الافتراضات الرياضية بجودة تكفل التي يحرزها أكثر الرياضيين براعة، حتى بدون الحاجة لبصيرة أو فهم الرياضيين، وحتى لو امتلكوا أكثر "المفاتيح" نهائيا، والتي دار حولها الاقتراح. من حيث
المبدأ صار ممكنًا الإتيان بمكتشفات الرياضية جديدة دون آية معرفة بالرياضيات على الإطلاق. على المرء أن يبحث - ببساطة - أو يراجع أي خذ من الأرقام أو الحروف أو الرموز الرياضية بترتيب أبجيدي حتى يستطيع واحد منهم أن يقترب اختبار صيروبته برهانًا على أو لا رهان لبعض الحدود المشهورة وغير المحولة - من حيث المبدأ يمكن للمرا أن يضع موقعة جدلية رياضية دون أن يتهمها هو إطلاعًا، ودون حتى أنهم الرموز التي احتوتها، دع عنك كيف يعمل البرهان، أو ما الذي تم إثباته، وما هي طريقة الإثبات، ولماذا يعتمد عليها.

ولكن يبدو أن إنجاز وحدة مستوى للبرهنة في مجال الرياضيات كان على الأقل سيساعدنا في الإطار العام تجاه نظرية "التوحيد" - بمعنى تعميق معرفتنا والتي أشرت إليها في الفصل الأول. ولكن الحالة على العكس. مثل نظرية "كل شيء التنبؤية في الفيزياء، فإن قواعد هيلبرت لم تخبرنا شيئاً بالكاد عن "تسجيل الحقيقة". إنهم وأينما تذهب الرياضية يحققون الإنصاق المطلق للرؤى، يبتينون بكل شيء (من حيث المبدأ)، إنما لا يشرحون أو يفسرون شيئاً. والأكثر من ذلك، أن الرياضية لم كانت قادرًا هكذا على "الإنقاذ" فان كل السمات غير المرغوبة التي ناقتشرها في الفصل الأول على أنها غائبة عن بناء المعرفة البشرية، سوف تكون حاضرة في الرياضيات: سوف تشكل الأفكار الرياضية هريترية أو طبقية تكون جذورها ممتلئة في قواعد هيبرت. والحقائق الرياضية التي كان التحقق منها معقدًا جدًا عبر القواعد المعروفة، سوف تكون موضوعيًا أقل أساسية عن تلك التي يمكن التحقق منها فوراً عبر القواعد. وطالما سيكون لدينا مداً دائماً ونهائية من تلك الحقائق الأساسية الصادقة، فمع مضى الوقت سوف تصبح الرياضيات مهمة بالمسائل الأقل أساسية وربما تصل الرياضيات إلى نهاية تتوقف بعدها، في ظل هذه البدائية الوحشة أو القابضة للصدر. إذا لم تفعل الرياضية فإنا سيتعذر عليها تجنب التشظى إلى ما هو أكثر من التخصصات اللغزة، مثل تعقيدات الأشياء "المنبثقة" التي انتشر أو تزايد.
إجبار الرياضيين على دراستها، ومثل العلاقات بين هذه الأشياء، وأسس الموضوعات التي أصبحت أكثر نأياً عنا.

وبفضل جودل، نحن نعرف أنه لن تكون هناك أبداً طريقة مؤكدة لتحديد ما إذا كان افتراض الرياضي ما صادقاً بأكثر من أن هناك طريقة مؤكدة لتحديد ما إذا كان افتراضًا علمياً صادقاً. ولن تكون هناك طريقة مؤكدة لتوليد معرفة رياضية جديدة، ولذلك سيعتمد التقدم في الرياضيات على خبرة الإبداع سيكون ممكنًا للرياضيين، وضرورة ابتكار طرادات جديدة من البرهان. سوف يجعلها صالحة من خلال جدلياتهم وطرق شرحهم الجديدة المعتمدة على تقديمهم في فهم الجوامع المجردة المتعلقة بها. نظريات جودل كانت على هذه الحالة: إثبات ذلك، كان عليه أن يبتكر طريقة جديدة في البرهان، لقد قلت أن طريقتة اعتمدت على "الجدلية القطرية"، ولكنه اجتمعت بهذه الجدالية على نحو جديد. إن شيئاً لم يتم إثباته على هذا النحو من قبل: لم يتم وضع قواعد استنتاج بعفوية أي واحد لم يرى أبداً طريقة جودل، وهكذا كافية كان يمكن أن يتصور أو يتحيل أن هذه القواعد صالحة، ولا من حيث أنها ذاتية الدليل. من أين تأتي ذاتية الدليل؟ هذه إنها تأتي من فهم جودل لطبيعة البرهان. يراهان جودل إيجابية كشأن أي من الرياضيات، ولكن فقط إذا المرء فهم أولاً الشروط المصاحبة لها.

وهكذا فإن الشروط، بعد كل شيء، تلعب نفس الدور الأساسي والعظيم في الرياضة البحتة كما تفعل في مجال العلم، تقسيم العالم، فهمه - العالم الفيزيائي وعالم التجريد الرياضي - كليهما موضوعات للتجربة. البرهان من ناحية واللاحظات من الناحية الأخرى هي مجرد وسائل نراحها تفسيراتنا وشروحننا.

واستطاع روجر بنروز Roger Penrose درس راديكيال وأفلاطون استقاء من النتائج التي توصل لها جودل. ومثل أفلاطون كان بنروز مفتوناً بقابلية العقل البشري للإنساس بالخصائص المجردة الرياضيات.

337
وعلى عكس أفلاطون لم يعتقد بنروز بالطبيعية الفائقة، وإنما اعتبر، وبشكل مضمون، أن العقل البشري جزء من العالم الطبيعي ولا ي�ول إلا به. ولذا كانت المسألة بالنسبة له أكثر لطفاً مما كانت بالنسبة لأفلاطون: كيف للعالم الفيزيائي الفضول وغير القابل للاعتماد عليه أن يقدم يقينيات لجزء منه هو أيضاً مشوشاً وغير قابل للاعتماد عليه كارئيذيين مثل؟ وبصفة خاصة فقد تعجب بنروز كيف يمكِّن إدراك العصمة من الخطأ في الأشكال الجديدة الصالحة من البراهين، والتي أكد جودل أنه سيكون لدينا منها مدد لا نهائي.

لا يزال بنروز يعمل على إجابة تفصيلية، ولكنه ادعى أن الوجود البالغ لهذا النوع غير المحدود للدس رياضي هو أساساً متعذر اقتراحه أو حمله على البناء القائم في الفيزياء، بصفة خاصة يتعذر اقتراحه مع مبدأ تورنج، وتلخيص مناقشته في الأمر تكون على النحو التالي. إذا كان مبدأ تورنج صادقاً، فمن الممكن اعتبار الدماغ (كأي موضوع آخر) ككمبيوتر ينفذ برامجاً معيناً. وتفاعلات الدماغ مع البيئة تمثل الدخات والمخرجات لهذا البرنامج. الآن اعتبار أن رياضياً ما في حالة اتخاذ قرار ما إذا كان طراز جديد مقترح من البرهان صالحًا من عدمه. صنع هذا القرار يعادل تنفيذ برمان تصريحي في برنامج الكمبيوتر في عقل أو دماغ الرياضي. مثل هذا البرنامج يتضمن مجموعة من قواعد خيبرية للاستنتاج، والتي تطبيق نظرية جودل، يصعب أن تكون تامة أو مكتملة. والأكثر من ذلك، كما قالت، أن جودل أمدنا بطريقة الإنشاء والبرهنة على مقترح صادق وهي ما لم تتعرف تلك القواعد عليها أبداً بوصفها مبرهناً عليها. ولذلك فإن الرياضيين، الذين تعمل أدغمتهم بكفاءة ككمبيوتر يطبق هذه القواعد لا يمكنهم التعرف أيضاً على أن مقترحًا ما قد تمب البرهنة عليه، وبعدد فإن مقترحات بنروز تشهدنا على أن مقترح جودل وطريقة البرهنة على أنه صادق، وذلك للرياضيين أنفسهم. الرياضيين يفهمون البرهان: إنه بعد كل شيء صالح من حيث إنه صالح الدلالة، ومن ثم من المفترض أن الرياضيين يرون أنه صالح. ولكن هذا يتعارض مع...
نظرية جودل. ومن ثم فهناك افتراض زائف في مكان ما من الجدلية. وقد اعتقد بنروز أن هذا الفرض الزائف أو الكاذب هو مبدأ تورنجر.

معظم علماء الكمبيوتر لا يوافقون بنروز على رأيه بأن مبدأ تورنجر هو الحلقة الأضعف في هذه القصة. سوف يقولون أن الرياضيات في هذه القصة بالطبع لن يكون قادراً على تمييز المقترحات التي قال بها جودل على أنه تم البرهنة عليها. ولعله يبدو سخفاً أن الرياضياً ما سيصبح فجأة غير قادر على فهم برهان ذاتي الدليل. ولكن انظر إلى الافتراض التالي:

`"دانيال دوفيس لا يستطيع الحكم بثبت على أن هذه الجملة صادقة."`

أنا أحلاق باقيي جهد لذى، ولكني غير مستطاع أن أحكم بدون تناقض على أنها صادقة. لأنني لو فعلت سيكون بمثابة الحكم بأنني لا أستطيع الحكم بأنها صادقة وكتانى أتناقض نفسي. ولكنك تستطيع أن ترى أنني صادقة، آلا يمكنني؟ وهذا يرينا كيف أن مفترضاً غير مفهوم من شخص ما بينما هو ذاكر الدليل وصادق بالنسبة لكل الآخرين.

وعلى أي حال فإن بنروز يأمل في نظرية أساسية للفيزياء تحل محل كل من النظريات العامة للنسبية ونظرية الكم. إنها قد تؤدي إلى تنوعات جديدة لها مذاق مقبول ولكنها بالطبع سوف تنتفق مع نظرية الكم والنظرية العامة للنسبية بالنسبة إلى كل المشاهدات القائمة (ليس ثمة تجاوب معروق تعارض مع هاتين النظريتين). ومع ذلك فإن عالم بنروز يختلف أساسياً وشيدها عما تصفه الفيزياء الموجودة. نسبي الحقيقة الرئيسى فيه هو ما تسميه عالم التجريبات الرياضية. وبهذا المعنى فإن بنروز الذي تشمل الحقيقة لديه كل التجريبات الرياضية، ولكن ربما ليس كلها (مثل الشرف والعدل)، فإنه يقع في مكان ما وسط بين أفلاطون وفيثاغورث. ما نسيبه العالم الفيزيائي هو حقيقي بالكامل بالنسبة إليه (اختلاف آخر عن أفلاطون) ولكنه على نحو فإن جزءاً منه ينطبق على الرياضيات نفسها. والأكثر من ذلك ليس ثمة عالمية، وبصفة
خاصة، ليس ثمة ماكينة يمكنها أن تحاكي عمليات التفكير البشرى المكثمة، ومع ذلك، فإن العالم (خاصة بالطبع، مادته الرياضية المُنْخَرَة) يظل مفهومًا. وقابلية ذلك للفهم ليست مؤكدة بسبع عالمية الكمبيوترات ولكن من خلال ظاهرة جديدة على الفيزياء (ولو أنها ليست كذلك لأقلاطون) وهي الخصائص الرياضية التي تتفجر بشكل مباشر في العقل البشري، عن طريق عمليات فيزيائية حتى يمكن اكتشافها والتعرف عليها. وبهذه الطريقة، طبقاً لنبروز، فإن الدماغ لا يقوم بعمليات الرياضية بحسب بالرجل لا نسميه عادة بالعالم الفيزيائي، إن له توجه مباشر للحقيقة عند أقلاطون والمرتبطة بالمثل الرياضية ويمكنه فهم الحقائق الرياضية هناك (ولضح قابلية الخطا جانا)، ببعين مطلق.

ما يقترح عادة أن الدماغ ربما يكون كمبيوتر كمي، وأن قابليات: حدوسه، والوعي، وحل المشكلات كلها تعتمد على الحوسبة الكمية. ربما يكون الأمر كذلك، ولكننا لا أعرف دليلًا عليه ولا مناقشة مقنعة على أنه كذلك. ورهانه الحق على الدماغ باعتباره كمبيوتر، هو من الطراز القديم (الوجود حاليًا)، ولكن هذا الموضوع مستقل عن أفكار بنروز. إنه لا يناش أن الدماغ كمبيوتر عالمي جديد، مختلف عن الكمبيوتر الكم، العادي عن طريق امتلاكه لخاصية إعادة إعلان أكثر انسجاماً للحوسبة التي يمكن أن يحويها الجديد من الفيزياء قبل الكمية. إنه يناظر أن أليفة في ظل نظريه لن يكون مكتملاً تقدير بعض أنشطة الدماغ على أنها حوسية على الإطلاق.

لا بد أن أعتبر بعد استطاعته فهم مثل هذه النظرية ومع ذلك ما دام التقدم المفاجئ في العلم يعد أساسياً أن يصبح ArgumentException أن يتم أي فهم له قبل أن يقع بالفعل. ومن الصعب الحكم على نظرية بنروز قبل أن يشكلها بشكل كامل. وإذا كانت ثم نظرية لها الخصائص التي يأملها من شئها، أخيرًا أن تظل أو تتسد نظرية الكم أو النسبية العامة، أو كليهما، سواء باحثي الاستجابات التجريبي أو بمثابة أعمق
من التفسير، إذن فإن أي شخص عاقل سوف يتبناها. وحينئذ سوف نقبل مغامرة فهم وجهة النظر الجديدة عن العالم التي سيجرينا على تبنيها البناء التفسيري للنظرية. إن الأمر يشبه كما لو أننا وجهة نظر عن العالم مختلفة عن التي أقدمها في هذا الكتاب. ومع ذلك لو استطعنا تمرير كل ذلك، فاننا، رغم أن ذلك، سناخسر رؤية الدافع الأصلي وراء ذلك، وهو تفسير قابلتينا للإمساك ببرهان رياضية جديدة، وهو الأمر الذي يكشف مهيبة المقدمة الداعمة في: الآن. وعبر التاريخ كانت ثمة مصاعب بين كبار الرياضيين حول الطرق المختلفة للبرهان. وهكذا فلو أنه صحيح أن هناك حقيقة تفسيرية - رياضية - مطلقة تغذى صدقيتها أو صلاحيتها مباشرة في أمثلتنا لقناعي حدودًا رياضية، فإن الرياضيين لم يكونوا قابلين دوماً على تميز هذه الحدود عن الأخرى النافذة والأفكار الخارجية. ولسوء الحظ ليس ثمة أجراس لتدق أو أضواء لتبغ عندما نفهم برهمان صادقاً وصالحاً. ربما نشعر أننا بهذا الضوء، في لحظة تيقظ، ومع ذلك يكون خاطئًا، وحتى لو تنبات النظرية بأن هناك بعض المؤشرات الفيزيائية السابقة تصاحب الحدود الصادقة (أصبح هذا الآن غير قابل للتصديق) فلربما سيكون ذلك مفيداً، ولكن كيف نتعامل أو نتساوي مع برهمان يؤكد أن المؤشر يعمل. لا شيء يعكس البرهنة على أن نظرية فيزيائية أحسن سوف تطلب نظرية بنروز يومًا ما، ويتضح أن هذا المؤشر لا يمكن الاعتماد عليه بعد كل شيء. وأنه يوجد مؤشر آخر أفضل منه.

وهكذا حتى لو قمنا كل ما هو ممكن من تنازلات لاقتراح بنروز. لو تخيلنا أنه صادق واستخدمنا مصطلحات تماماً في التعبير عن وجهة نظرنا عن العالم، كل ذلك لن يعفيتنا أو يساعدنا في تفسير اليقين المزعوم في المعرفة التي نحصل عليها من الرياضيات.

لقد قدمت فقط رسمًا تصويريًا لشبكة الجدل بين بنروز وبين الناونيين له. ولا يد أثر في القارئ سيفهم من ذلك آثري ابتعد المعاونين. ومع ذلك لو تم استنتاج أن جدل بنروز - جدول قد فشل في إثبات ما كان ينبغي إثباته، واقتراحه بنظرية فيزيائية.
جديدة يبدو أنه يشبه تفسيرًا لما كان يزعج تفسيره. ومع ذلك فقد كان بنروز محققًا في
أن أي وجهة نظر عن العالم تقوم على المفهوم القائم بأن العقلانية العلمية تنشئ مشكلة للأسس المقبولة في الرياضيات (أو كما يمكن أن يقوله بنروز: أي الوضع
العكسي). تلك هي المشكلة القديمة التي أقامها أو أبرزها أفلاطون، المشكلة التي أشار
إليها بنروز، والتي أصبحت أكثر لطفًا في ظل نظرية جولد ومبدأ تورنجر، وهي: في
الواقع الحقيقى الكون من الفيزياء والمفهوم عبر الطرق العلمية، من أجل يأتي اليدين في
الرياضيات؟ بينما يعتبر معظم الرياضيين وعلماء الكمبيوتر أن اليدين المتحصل عن
الحدس الرياضى من قبيل المضمون، فإنهم لم يأخذوا مشكلة التوافق بينه وبين وجهة
النظر العلمية عن العالم، فالبنروز فعلاً نهض ذاك، واقترح خلا تصويرة عالمي
مفهموه، رافضا القوى فوق الطبيعية، معترفا بالإبداع كمساكن مركزية في الرياضيات،
وأصلح الحقائق الموضوعية لكل من العالم الفيزيائي والخصوصية التجريبي، ملحقة به
توحيدا بين أسس الرياضة والفيزياء، فيما يتعلق بكل هذا لنا في جانبه.

ولذا أن محاولات هيبرت وبنروز لمواجهة تحدى أفلاطون لا يبدو أنها نجحت.
فالامر يستاهل النظر مرة أخرى للتحدي الظاهر أو الواضح من أفلاطون لفكرة أن
الحقيقة الرياضية يمكن الحصول عليها بأساليب العلم.

أول كل شيء، ذكر لنا أفلاطون أنه طالما وجِّهنا أنفسنا فقط للدوات غير التامة أو
الصحيفة (مثلًا) فإننا إذن لن نحصل على أي معرفة عن الدوائر الصحيحة. ولكن لماذا
ليستdateTime؛ وبالإجمال يمكن للمرء أن يقول بعدم استطاعة اكتشاف قوانين الكواكب لأننا
لم توجه إلى الكواكب الحقيقة وإنما فقط تخينا الكواكب (البحث قال هذا، وقد شرحت
ماذا كان ذلك من قبل الخطا). وبالإجمال يمكن للمرء أن يقول إنه يستحب بناء أدوات
دقيقة لماكينة لأن هذه الأدوات سوف تبنى بناءات غير دقيقة. وبالاستفادة بالإدراك
المتأخر، يمكننا رؤية أن هذا الخط من الانتقاد يعتمد على صورة مشوهة لكيف يعمل
العلم - شيء مثل الاستقراء - هو ما يدهشنا بشدة طالما أن أفلاطون قد عاش قبل

342
ما يمكن تمييزه كعلم. ومثالاً، لو قلنا إن الطريقة الوحيدة لتعلم شيء عن الدوائر من التجربة تمثل في فحص أو تجربة آلاف من الدوائر الفيزيائية وبعدها، ومن المعلومات المتراكبة نحاول استنتاج شيء عن تجريدية نظراتها الإقليدية. فإن أفلاطون سينتكر له نقطة في جانب أو صالحه هذا. ولكن لو نحن شكلنا بديهية بأن الدوائر الحقيقية تشبه الدوائر المجردة في نواحٍ معينة، وحدث أننا كتبنا على حق، فإننا ربما نكون قد تعلمنا شيئاً عن الدوائر المجردة بالنظر إلى الدوائر الحقيقية. إن الهندسة الإقليدية من المعتاد أن يستخدم المرء الرسوم البيانية لتحديد مشكلة هندسية أو حلها. ثمة إمكانية للخطأ في مثل هذه الطريقة الوصف، لكن عدم كمال الدوائر المرسومة أطغى انطباعًا مخادعًا، على سبيل المثال. لو لدنا دائرتين يمتزجان بينما هما ليستان كذلك، ولكن لو فهم المرء العلاقة بين الدوائر الحقيقية والدوائر الكامنة، فإن المرء يمكنه من خلال العلاقة الكافية أن يستبعد مثل هذه الأخطاء، وإذا لم يفهم المرء تلك العلاقة يصبح من المستحيل عملياً فهم الهندسة الإقليدية على الإطلاق.

الضمان لتعريفنا بالدائرة الكاملة أو التامة التي يحصل عليها المرء من رسم تخطيطي يتوقف كلياً على صحة الفرضية القائلة بأن مشابهة كل منهما للآخر. نسبية. مثل هذه الفرضية تشير إلي موضوع فيزيائي (الرسم التخطيطي) يمثل نظرية فيزيائية ولا يمكن أن يعرف أبداً كافيًا. ولكن هذا، كما سيكون عند أفلاطون، لا يحل دون إمكانية دراسة الدوائر الكاملة من الخبرة، إنها فقط تمنع أو تحول دون اليقين. وهذا لا يقلق أحداً يبحث عن التفسيرات - وليس اليقين.

هندسة إقليدس يمكنها أن تتشكل بالكامل تجريبياً بدون رسوم ولكن الطريقة التي تستخدم بها الأعداد والخرائط الرياضية في برهمة رمزًا يمكنها أن تثير قليلاً بأكثر مما تفعله الرسوم التخطيطية ولنفس السبب. الرسوم أيضاً هي موضوعات فيزيائية - نموذج من حب على ورقة مثلاً - والتي تدل على موضوعات فيزيائية أو ترمز إليها. ومرة أخرى نحن نعتمد كلية على الفرضية بأن سلوك الرموز المجردة ستتواصل.
مع سلوك المجردات التي تشير إليها ومن هنا فإن اعتمادية ما نتعلمها بالتعامل مع هذه الرموز يتوقف كلية على دقة نظرياتها عن سلوكها الفيزيائي، وعن سلوك أيديتنا وعيوننا .. وهكذا .. وعن تعاملنا وما نلاحظه على الرموز والتكيد فهذا يسبب فيها مصادفة التفسير في مظهر الرمز في وقت لا ننظر فيها إليه - ربما مع ظروف التحكم في الجهاز معين على التقنية - وهو ما يمكن أن يخدعنا فيما remote control عن بعد بـ

نعرفه على سبيل اليقين.

دعنا الآن نختبر افتراضًا آخر قال به أفلاطون، وهو الافتراض بأننا لا نتوجه للكمال أو التمام في العالم الفيزيائي، ربما يكون على حق في أننا لن نجد شجاعة أو عدالة كاملاً، وبالمثل هو على حق بأننا لن نجد قوانين الفيزياء وكل مجموعة الأرقام الطبيعية، ولكننا يمكن إيجاد سيطرة كاملاً على كوريب وأقنع على حركة تامة أو كاملاً في وضع ما للشطرنج، ويمكننا أن نجد موسم فيزيائي أو عملية فيزيائية تتوافق لنا الخصائص المحددة للجريء. إننا نستطيع تعلم الشطرنج من خلال مجموعة شطرنج حقيقية كما نستطيع تعلمه عبر شكل تام أو كامل لمجموعة شطرنج. إن كل فيل في الشطرنج لا يعني أن الملك مات، وإنما يعطينا أكثر من نهاية المباراة.

كما يحدث فإن الدائرة الإقليدية الكاملة أو التامة يمكن جعلها في تناول حواسنا. أفلاطون لم يميز ذلك لأنه لم يعرف شيئاً عن الحقيقة التقديرية، لن يكون ذلك صعباً بصفة خاصة لبرنامج في مولد حقيقة تقديرية، والذي تخليثه أو تصوريه في الفصل الخامس، مع قواعد الهندسة الإقليدية بطريقة تجعل المستخدم يُخبر بنفسه التفاعل مع دائرة كاملة. وإذا لم تكن لها تخانة ستكون الدائرة غير ملحوظة ما لم نتعامل مع قوانين البصريات، وفي مثل هذه الحالة ربما يغطيها بريق أو توجيه ما لكي نجعل المستخدم يعرف أين مكانها. (البساطة ربما تكون مفيدة بدلاً من هذا القدر من الزواق أو التزوير). ويمكن أن نجعل الدائرة معتمة وغير شفافة، ويمكن للمستخدم أن

344
يختار خصائصها باستخدام أدوات قياس صارمة وغير قابلة للاختراق. أدوات قياس السماكة أو النحافة في الحقيقة التجريبية لا بد أن تكون ثابتة إلى مستوى حد السكين، كما يقال، لدرجة أن تقيس السماكة صفر بدقة. ويسمح للمستخدم أن يستخرج مزيد من الدوائر وأشكال من الهندسة الإقليدية طبقا لقواعد هندسة إقليدس. وحجم الأدوات كما حجم المستخدم نفسه يمكن تهيئتها حسب الرغبة مما يسمح بتنبؤات النظرية الهندسية بأن تراجع على أي مستوى أي ما كانت جودتها. في كل طريقة فإن الدائرة المحاكية يمكن أن تتواصلا تحديدا مع الدائرة كما وصفتها بديهيات إقليدس. وهكذا بناء على العلم في هذه الأيام لا بد أن نخلص أن أفلاطون ربما ارتأىها للخلف. إننا يمكننا أن ندرك دورات في العالم الفيزيائي (مثل الحقيقة التقريبية)؛ ولكن لا يمكن أبدًا أن ندركها في مجال أو عالم مثل بسبب أنه لم يحدث أن قيل إن هذا العالم موجود فلن ندرك منه شيئًا على الإطلاق.

وبالصدفة فإن فكرة أفلاطون عن الحقيقة الفيزيائية واحتياجات على تقليد غير كامل للمجردات، ليس من غير الضروري أن تكون متماثلة مع ما نعتقد في أيامنا الحالية. مثل أفلاطون نحن لم نزل ندرس التجريدات في ذاتها ولذاتها. ولكن في العلم ما قبل جاليليو، وفي نظرية الحقيقة التقريبية نحن أيضاً ننظر للمجردات كوسائل لفهم الخصائص الفيزيائية الحقيقية أو الاصطناعية. وهنا نحن نأخذ الأمر كضمان بأن التجريدات هي دائما تقريبات للمواقف الفيزيائية الحقيقية. وهكذا عندما فكر أفلاطون في الدوائر الأرضية فوق الرمال على أنها تقرب للدوائر الحقيقية الرياضية، فهو يماثل ما فعله العالم الحديث في النظر للدوائر الرياضية كتقريب للشكل الحقيقي لمدار الكواكب، والزارات والأشياء الفيزيائية الأخرى.

وإذا قيل بأن هناك دائما إمكانية أن تكون في مولد الحقيقة – التقريبية أو السطح البيئي ليستخدمه سوف يكون خاطئين، فهل للحقيقة التقريبية أن تحاكي دائرة إقليدية، هل يقال ذلك فعلا لتحقيق الكمال إلى حد مستويات اليقين الرياضي؟ بالفعل
يمكنها. لم يدع أحد أن الرياضيات نفسها خالية من هذا النوع من عدم اليقين.

الرياضيون قد يقيمون حساباً خاطئاً، لا يتذكرون بديهيات، يصنعون أخطاء مطبعية في حساباتهم. إلا أن المسألة هي، وبعدًا عن المعوق، أن تكون نتائجهم مراوغة.

وبالتالي يكون مولد الحقائق التقديرية، عندما ي🙏ل بدقة طبقًا لواصفات تصميمه، سوف يحاكي دائرة إقليدية كاملاً على نحو تام أو دقيق.

وшибه ذلك أننا لا يمكننا القول أبداً على سبيل التأكيد أن مولد الحقائق التقديرية سيسلك سلوكًا طبيعيًا وهو تحت هيئة برنامج معين لأن هذا سيتوقف على الظروف المصممة الأتات من أجلها، وبصفة كلية سيعتمد ذلك على قوانين الفيزياء. وطحالنا أننا لا نعرف قوانين الطبيعة بصورة محددة، فإننا لا نستطيع أن نعرف بشكل مدقق أن الآلة ستتاحك الهندسة الإقليدية بدقة. ولكن مرة أخرى لا أحد ينك أن ظاهرة فزيائية ما قبل إدراكها - سواء كان ذلك بسبب قوانين فيزيائية غير معروفة، أو بسبب مجرد مرض عقلي، أو خذوبة حبر - كل ذلك قد يخدع أو يراؤي أي رياضي. ولكن إذا كانت قوانين الفيزياء متصلة بالمسالة كما نعتقد فيها، فإن مولد الحقائق التقديرية سوف يقوم بتنظيمه بشكل تام حتى ولو لم يمكننا التيقن من ذلك. لا بد أن نكون جددنا هذا في التفرقة بين موضوعين: بين إمكان معرفتنا بأن آلة الحقائق التقديرية تحاكي دائرة كاملاً، وبين أنها تحاكي دائرة ما. لا يمكننا أبدا أن نعرف على وجه التأكيد، ولكن هذا لا يحتاج بأن ينقص مقدار نظر من كمال الدائرة التي تحاكيها الآلة فعلاً. سوف أعود إلى هذه المناقشة المرجة - بين المعربة التامة (التيقين) لخاصة ما وبين أن تكون هذه الخاصية كاملاً في ذاتها - بعد قليل.

افترض أننا أصلحنا عمداً برنامج الهندسة الإقليدية بحيث يستمر مولد الحقائق التقديرية في محاكاة الدوائر بشكل جيد ولكن بالقليل من التماثل، هل سنكون غير قادرين على استخلاص أي شيء عن الدوائر التامة من خلال المحاكاة غير التامة؟ هذا سيتوقف كلية عمدا إذا كنا قد عرفنا ما يتعلق بما غيرناه في البرنامج إذا كنا نعرف 346
يمكننا أن نعمل في إطار اليقين (بعيداً عن العوائق ... إلخ ...) أي من أوجه الخبرات مع الآلة التي سوف تعرضها بأمانة عن الدوائر التامة، وأيضاً ليس كذلك. وفي هذه الحالة المعرفة التي سنحصل عليها يمكن الاعتماد عليها مثل تلك التي سنحصل عليها باستخدام البرنامج الصحيح.

عندما نتحلي الدوائر فإننا بالضبط نفعل نفس ما تفعله المحاكاة في الحقيقة التقريبية في أدمغتنا. والسبب في أنها طريقة غير مفيدة في التفكير بشأن الدوائر التامة هو أننا قد نرى على تشكيك نظريات سليمة عن الخصائص تشارك فيها أو لا تشارك خواص الدوائر المتحلّلة مع خواص الدوائر الحقيقية.

استخدام مرجعية الحقيقة التقريبية، يمكننا أن نجد ستة من الدوائر المتصلة تتلاصق مع حافة دائرة أخرى متصلة معهم داخل طائرة دون أن تتشابك مع بعضها البعض. هذه الخبرة وفي ظل هذه الظروف ستتأثر برهاننا صارماً على أن نموذجاً ما يمكن، لأن الخواص الهندسية للأشكال التي تم محاكاتها سوف تكون مثلًا تماماً مع تلك الأشكال التجريدية. ولكن هذا النوع من الوكالات التفاعلية مع الأشكال التامة ليس بمقدوره تحمل كل نوع من المعرفة عن الهندسة الإقليدية. معظم النظريات المهتمة بالأمر لا تشير إلى نموذج بينه ولكن إلى مستويات لا نهائية من النمذجة. على سبيل المثال فإن مجموع زوايا أي مثلث إقليدي تساوي 180 درجة. نحن نستطيع قياس مثلثات معينة في الحقيقة التقريبية بدقة تامة، ولكن لا نستطيع حتى في الحقيقة التقريبية، قياس كل المثلثات؛ ومن ثم لا نستطيع تصحيح النظرية.

كيف نصححها؟ بان نبرهن عليها. البرهان يتم تعريفه تقليدياً بأنه تتتابع من الجمل تتوافق مع قواعد الدليل الذاتي للاستدلال. ولكن إلى أي مدى تتشابه عملية البرهنة فيزيائيّاً؟ للبرهنة على جملة عن عدد من المثلثات الإقليدية، على الفور سوف نختبر موضوعات فيزيائيّة معينة - الرموز في هذه الحالة - لها خصائص معروفة مع كل مستويات المثلثات على سبيل المثال، وفي ظل ظروف صحية، عندما نلاحظ في
الرموز: $A \Rightarrow D$ (أي أن المثلث أب ج متطابق مع المثلث د ح ت) فنحن نخوض أن كل مثلثات مستوى معين عرفناه بطريقة معينة له نفس الشكل الذي يستجيب للمثلثات في مستوى آخر قمنا بتعريفه على نحو مختلف. الظروف الصحيحة التي تعطى هذه النتيجة من حالة البرهان، هي ومن خلال مصطلحات فيزيائية، أن الرموز تظهر على صفحتها تحت رموز أخرى (بعضها منها تمثل بديهيات إقليدس الهندسية)، وأن النموذج الذي تظهر فيه الرموز يتطابق مع قواعد معينة، أعني قواعد الاستدلال.

ولكن أي من قواعد الاستدلال التي يجب استخدامها؟ وكذا مثل التساؤل عن كيف نبرمج موارد الحقيقة التقديرية لمحاكاة الهندسية الإقليدية. وتمثل الإجابة في أننا يجب استخدام قواعد الاستدلال التي، وإلى أقصى حدود فهما، ستستنا في أن تجعل رموزنا تسلق بطرق لها علاقة بالخواص المجردة التي تشير إليها. إننا لا يمكن أن نتجذب لهيمنة أرسطو وأفلاطون، ولا يمكننا البرهان على أن قواعتنا للاستدلال زائفة (بعيدًا تمامًا عن نظرية جودل، فإن هذا سيقودنا إلى ندم بالغ، ذلك أننا يجب أن نثبت أولا أن طريقة البرهان التي نستخدمها هي في ذاتها صالحة). ولنستطيع أن نذكر بعجرة الانتقادات القاتلة بأن هناك شيئا خاطئًا في حدسهم: لأن حديثنا تقول بأن الرموز سوف تشابة الخواص المجردة بدقة. كل ما نستطيع هو أن نشرح. لا بد أن نفسر لماذا نعتقد بذلك، أنه في نفس الظروف سوف تسلك الرموز بالطريقة الأمولة، في ظل قواعنا المفترضة. وعلى الانتقادات أن تشرح لما إذا يفضل الناقلون نظرية منافسة.

عدم الموافقة على أي من هاتين النظريتين هو جزئيًا عدم موافقة على السلوك المحظوظ للموضوعات الفيزيائية. مثل هذا الرفض يمكن إبداؤه بالطرق العلمية العادية. أحيانا يمكن حله بسهولة، وأحيانا لا يمكن. وسبب آخر لمثل هذا الرفض أنه يمكن أن يكون راجعا لصدام مفاهيمي حول طبيعة الخواص التجريبية ذاتها. وحينئذ ومرة أخرى، إنها مسألة تفسيرات متناقضة وهذه المرة هي حول التجريد أكثر من كونها بشأن.
الموضوعات الفيزيائية - سواء استطعنا الوصول إلى فهم مشترك مع نقادنا أو وافقنا على أننا كنا نناقش أمرين مجردين مختلفين، أو فشلنا في الموافقة على ذلك، ليس ثمة ضمانات. وهكذا فهو عكس المعتقد التقليدي، إنها ليست الحالة أن النزاعات في الرياضيات يمكن دائما أن تحل بواسطة الوسائل الإجرائية.

البرهان الرمزي اصطلاحاً يبدو للوهلة الأولى أن له سمة مختلفة عن النوع من البرهان الذي تؤكل به الحقيقة التقديرية. ولكننا نرى الآن أنه يتصل بطريقة هوسبية في التجربة الفيزيائية. كل تجربة فيزيائية يمكن النظر إليها على أنها هوسبية، وكل هوسبية على أنها تجربة فيزيائية. في كل النوعين من البرهان نحن نتعامل مع الخواص الفيزيائية (سواء في الحقيقة التقديرية أو لا) طبقاً للقواعد. في كل الحالات تمثل الخواص الفيزيائية الخواص المجردة المتعلقة بالأمر. وفي كل الحالات فإن اعتمادية البرهان تتوقف على صدق النظرية القائلة إن الخصائص الفيزيائية والمجردة تشاركان بالفعل معاً في الخواص الصحيحة.

ويمكننا أن نرى أيضاً من المناقشة السابقة أن البرهان هو نتاج عملية فيزيائية. البرهان على مقترح ما هي في الواقع تعني أداء هوسببي، والذي إذا أجراه المرء بشكل صحيح، يؤسس صحة المقترح. عندما نستخدم الكلمة “برهان” للدلالة على موضوع، مثل “حبر على ورقة كتاب” فنحن نعني أنه يمكن استخدام الموضوع كبرنامج لإعادة إنشاء هوسبية من النوع الصحيح.

ويتبع ذلك أنه لا نظريات الرياضة، ولا عمليات البرهان الرياضية، ولا خبرة الحدوس الرياضية، يمكن أن نستخلص منها جميعاً أي يقين. ولا شيء آخر كذلك نحصل منه على يقين. ومعرفتنا الرياضية كمعرفة عالمية ربما تكون عمليتين متسعتين تشرحان بحذق وروعة، ربما يتم قبولهما بدون تمسك بالأعراف القديمة.

ولكنهما لا يقدمان الورق. لا أحد يمكنه أن يضمن أن برهانًا كان يُعتقد بصلاحيته في السابق سوف لن يتوصل أحد في يوم ما على احتوائه على مفهوم خاطئ على نحو
لا يتجلى عن الالتماس السابق عن فرضية "الدليل الذاتي" أو حول العالم الفيزيائي، أو العالم المجرد أو حول الطرق التي تصل بها الخواص الفيزيائية والمجردة مع بعضها البعض.

لقد كان من قبيل الخطا، افتراض الدليل الذاتي، الذي تسبب في أن تكون الهندسة نفسها فرعًا من الرياضيات طوال ألفي عام. منذ ٣٠٠ قبل الميلاد عندما كتب إقليدس كتابه "العناصر" حتى القرن ١٩ (وبالطبع في كل القواميس والكتب المدرسية حتى يومنا الحالي)، شكلت الهندسة الإقليدية جزءًا من حدس كل رياضي، ومؤخرًا بدأ بعض الرياضيين الشك في واحدة من بديهيات إقليدس على أنها غير ذاتية الدليل (وهي المسماة"البديهية المتوازية"). في البداية لم يشك في أن البديهية صادقة. الرائيسي الألماني الكبير كارل فريدريش جس هو من قال إنه أول من وضعها على مدخل الاختبار. البديهية المتوازية تُطلَب في إثبات أن مجموع زوايا المثلث تساوي ١٨٠ درجة وقد صار ذلك أشبه بالاسطورة (خوضًا من إقليدس).

وضع جس بعض مساعدته ومع كل منهم (آداة لقياس الزوايا) على قمة ثلاثة من التلال بحيث تمثل الثلاث زوايا أكبر مثلث يمكن قياسه قديما. ولم يستكشف أي انحراف في تنبؤ إقليدس. ولكننا نرى الآن جميعا أن ذلك بسبب أن الأدوات التي استخدمها لم تكن حساسة بدرجة كافية (المنطقة المجاورة للأرض) حيث أنها منطقة أكثر وداعة وألفية من الناحية الهندسية. النظرية العامة للنسبية لألبنشتاين تضمنت نظرية جديدة للهندسة تتناقش مع نظرية إقليدس وأثبتتها التجربة. زوايا المثلث الحقيقي ليس بالضرورة أن

(١٠) Karl Friedrich Gauss (١٧٤٥ – ١٧٧٧) رياضي ألماني، كان أشبه بالمجزرة في الرياضيات حيث أدرك أهم مكتشفاته فيها وهو في سن ٢٧ وحصل على الدكتوراه في سن ٢٢، والتي قدم فيها مفهومًا جديدًا عن "الأقمار المتعددة". ويعتبر أن الأقمار المتعددة من أهم إنجازات الرياضة في تاريخها. ومن بين أشياء أخرى خاصة في الفلك، له نظرية جعلته اسمه عن تنبؤات الكهرباء والمغناطيسية. (الترجمة)
يكون مجموعهما مساواً 180 درجة، المجموع الحقيقي يعتمد على حقل الجاذبية الذي يتواجد فيه المثلث.

مثل ذلك وقعت في التصنيف الخاطئ الذي تسبب منه الخطأ الأساسي الذي وقع فيه الرياضيون عندما اعتربوا منذ العصور القديمة أن الرياضيات أكثر يقيناً عن أي شكل آخر للمعرفة. ومنذ الوقوع في مثل هذا الخطأ فليس لدى الرجل اختيار إلا أن يصنف نظرية البرهان كجزء من الرياضيات، لأن النظرية الرياضية لا يمكنها أن تكون بقياسية، إذا كانت النظرية التي تعني بتقويمها والحكم على طرحها في البرهان في نفسها غير قياسية. ولكن كما رأينا توا نظرية البرهان ليست فرحا من الرياضيات، وإنما هي علم البراهين ليست من قبيل المجردات. ليس ثمة ما هو من قبيل ذلك يمكن أن يثبت أو يبرهن عليه شيء كما أن لا شيء أيضًا من هذا القبيل التجريد يمكن أن يجري عمليات حسابية أو عمليات حسابية. المرء يمكنه بالطبع أن يعرف مستوى معين من الجواهر المجردة ويسميها “براهين” ولكن هذه البراهين لا يمكنها التحقق من جملة رياضية أو يؤكد صحتها لأنه لا أحد يمكنه أن يراها رأياً الذين لا يمكنهم أن تستخت أحداً على صدق افتراض، أو أكثر مما يفعل مؤثر حقيقية تقديرية مجرد الذي هو غير موجود فيزيائيًا، ويبحثون عن فهم بيئة مختلفة، أو ما يفعله كمبيوتر مجرد يمكن أن يحلل لنا رقم ما. نظرية الرياضية للبراهين لا يمكنها أن تحمل كون الحقائق الرياضية يمكن أن لا يمكن البرهنة عليها في الحقيقة الواقعة، كما أيضاً نظرية عن الحوسبة تجريبيًا لا يمكن أن تتحمل في طياتها كون الرياضيين أو أي من الآخرين لا يمكنهم في الحقيقة القيام بالعمليات الحسابية، ما لم يكن هناك سببًا تجريبيًا يمكن مهه تدقيق أن الحوسبة المجردة في النظرية تشبه الحوسبة الحقيقية. الحوسبة بما فيها ما صنف على أنه براهين هي من قبيل العمليات الفيزيائية. نظرية البرهان تدور حول تأكيد أن تلك العمليات تشبه بدقة الجواهر أو الكينونات المجردة المزمن مشابهتها.
نظريات جولد اعتُبرت أول نظريات عن المنطقة البحرية منذ ألفي عام، والآمر ليس كذلك: نظريات جولد تدور حول ما يمكن وما لا يمكن البرهنة عليه، وأن البرهان هو عملية فيزيائية. ليس في نظرية البرهان ما يدل على أن المنطقة البحرية المعني وحده.

الطريقة الجديدة التي استطاع جولد أن يأتى بإثبات عام حول البراهين تعتمد على افتراضات معينة حول أي من العمليات الفيزيائية يمكنها أو لا يمكنها أن تمتح حقيقة مجرد بأسلوب يُمكن الملاحظ من الاستكشاف ومن ثم الاقتناع بما استكشفه. ركز جولد على هذه الافتراضات واحتفظ بها إلى أن قام بتقويم واضح وصامت أيضاً للنتائج، وهو قرَّم هذه النتائج التي توصل إليها على أساس ذاتية الدليل، وليس على أنها منطقية بحتة ويسبع ذلك وجدوا الافتراضات ذاتية الدليل.

واحدة من افتراضات جولد كانت تلك المعروفة تقليدياً والتي تقول بأن للبرهان عدد نهائي من الخطوات. التقييم الحدسى لهذه الفرضية يتمثل في أننا كائنات نهائية، وأن جولد يستطيع أن ينسخ حرفياً بأعداد لا نهائية من التأكيدات. هذا الحدس بالنسبية، تسبب في كثير من قلق عدد من الرياضيين عندما استخدم كينيث أبل(3) كمبيوتر البرهنة على الحدس Wolfgang Haken وولفجانج ماكن(4) Kenneth Appel

(3) كينيث أبل (1942 - ...) رياضي أمريكي قام بحث واحدة من أشهر المشاكل الرياضية: "نظريه الألوان الأربعة", حين أثبت أن أي خريطة ثنائية الالوان يمكن أن تغطي بأربعة ألوان دون أن تشارك أي ألوان متاخمة في اللون الالوان لها، وهو البرهان الذي يحظى بجلد كبير في الرياضة الحديثة لاستخدام الكتيف على "الأرقام المنسحبة Numbers Crunching" في علم الكمبيوتر وتصنيفها بين المكتات. رغم اعتراض الشهير بأن البرهان تنقصه الأثاثة كما لا يؤدي إلى بصرية ما يمكن أن تقوى مستقبل الرياضة، إلا أن البعض يرون أن البرهان يمكن أن يحدث نفيماً في مجريات الرياضة في مجال علم الكمبيوتر.

(4) لوفجانج ماكن Wolgang Haken (مواليد 1948) رياضي أمريكي تخصص في الطبوغرافيا واستطاع مع زميله كينيث أبل بجامعة البنيني أن يصل إلى نظرية الألوان الأربعة المشاها dados في =
الشهير الآلوان الأربعة (أي أنه باستخدام أربعة آلوان فقط ومختلفة عن بعضها البعض في خريطة يتم رسمها في طائرة، يمكن أن تكون ملونة دون أن تكون أي منطقة متاخمة بنفس لون المنطقة المجاورة). تطلب البرنامج م المال من ساعات العمل الكمبيوتر، والذي يعني أن الخطوات التي استغرقها البرهان أو تم تدوينها كتابة، فإنه لن يتضمن لأمر أن يقرأها، ناهيك عن ملاحظة ذاتية الدليل فيها، على مدى عمره لو تعدد هذا العمر. هل نأخذ كلمة الكمبيوتر على محمل أنه قد تمت البرهنة على الحدس؟ هذا سيتساءل المشتككون في تعبج، ولو أنه لم يحدث أنهم صنفوا جميع الإشارات التي ترسلها كل الخلايا العصبية (العصبيونات) "neurons" في أدغمتهم عندما يتقدون برهانًا بسيطًا أو طول.

نفس القلق يبدو أنه بحاجة لزيادة من التقوى عندما يطبق الأمر على برهان مزوع له عدد لا نهائي من الخطوات، ولكن ما هي "الخطوة" وما هو "الإنهىي"؟ في القرن الخامس قبل الميلاد انتهى زينون الألبي (6) بناء على حدس مماثل، Zeno of Elea لـيصبح أبدًا السلحفاة ما دامت قد بدأت السباق قبله. وبعد Achille (7) لـيصبح أبدًا السباق قبله. وبعد

= الفترة السابقة، وهو كريستوفر محترف تعرف على مشكلات المجال الثلاثي الأبعد. الأكثر سرعة في حل هذه المشكلة من خلال طرق اتسمت بالذينية وغير السليقة، والتي أدت إلى حل كثرة لموضوع القرار، كما أن له أفقًا أخري ذات أهمية مثل ما يعرف بتشيحات هاكن، وتشيحات هاكن، وأيضًا

أنشا نظرية عن السطوح العادية "المثالية" لعمل زميل له آخر. (المترجم)

(6) Zeno of Elea (495 - 430 ق.م.) فيلسوف ورياضي إغريقي يعتبر من السابقين على

(7) سقراط، وأطلق عليه أرسطو "خبير الجدل" منطق الديس ورياضيات وكان قد استمر على ممن لازمن بارمنيديس، وعندما كان قد استمر على ممن لازمن بارمنيديس

لأطروحات الجدلية والتحليلية، ورافض لها من خلال البرهان غير المباشر، والمنطق والرياضيات، وانما قد استمر على ممن بارمنيديس

redutio ad absurdum وهو صاحب مناقضة أخيل الشهيرة. (المترجم)

(8) مناقضة "أخيل" Paradox Achilles وهو فرض وضعه الفيلسوف الإغريقي الصوفي زينون الألبي

تصور فيه أن شبه مسابقة تجري بين أخيل المعروف بسرعة على الجري 10 أقدام في الثانية الواحدة، وبين سلاحفاة لا يستطيع سوى أن تقطع 5 أقدام فقط في الثانية ولكن أخيل تطور لها بأن نسبة

353
كل شيء ويبمر الوقت وصل أخيل للنقطة التي وصلت إليها السلكافاة الآن، ثم تحرك قليلاً، ومع الوقت وصل للنقطة الجديدة، تحرك هي أكثر ومع الوقت وصل للنقطة التالية وهكذا إلى ما لا نهاية.

محاولات أخيل المتواصلة في الوصول للنقطة التي تصل إليها السلكافاة من جديد، تطلبت معه عدد لا نهائي من خطوات الوصول، ومن ثم فهو كائن نهائي (منته أو فان) من المفترض أنه لا يستطيعها، ولكن الذي يستطيع أن يفعله أخيل لا يتسمى اكتشافه من خلال المنطق البحث. إنه يعتمد كلية على قوانين الفيزياء الحاكمة لا يستطيعها. وإذا كانت هذه القوانين تقول بأنه سيستطيع الفوز على السلكافاة، فإن سيفوز عليها. طبقاً للفيزياء القديمة فإن الفوز أو الفشل بشيء يتطلب عددًا نهائيًا أي محدودًا من الخطوات للشكل تحرك إلى الموقع الحالي للسلوك — بنفس معنى أنها عمليات حوسبة لا نهائية — مؤخرًا أادر أن كمية مجردة تصبح أكثر من غيرها، عندما يتم استخدام مجموعة معينة من العمليات، إنه يهتان له عدد لا نهائي من الخطوات ولكن القوانين المتصلة به تدل بوضوح على أنها عمليات فيزيائية نهائية — وهذا هو كل ما يهم.

حسد جودل عن الخطوات والنهائية، وفي حدود ما نعرف، قد وضع اليد على قيود فيزيائية حقيقية على عمليات البرهنة. نظرية الكم تتطلب خطوات متميزة غير متزامنة، وليس هناك واحدة من الطرق المعروفة التي من خلالها يمكن استكشاف موضوعات فيزيائية تسمح بخطوات لا نهائية لتحقيق نتيجة منطقية مقاسة. (ويمع ذلك ربما يصبح من الممكن لعدد لا نهائي من الخطوات أن يتم في كل تاريخ عمر الكون — كما ساشر في الفصل 14) الفيزياء التقليدية لم تعمل وفق مثل هذه الحدود إذا كان

= أقدم تقديراً لضعفها ويرى زينون أن أخيل لن يلحق أبداً بالسلكافة لأنه كلما وصل أقدامه للموقع التي كانت عليه السلكافة ستكون بدورها قد سبقته إلى موقع متقدم عنه. (الترجمة)
من غير الممكن أن تكون صادقة. على سبيل المثال الحركة المستمرة للنظم التقليدية سوف تسمح بمشابهة الحوسبة التي لن تستمر في الخطوات والتي لديها إعادة عرض جوهرية أو فعلية ومختلفة عن ماكينة تورنج العالمية. وشدة آملاً معروفة ابتكرتها القوانين التقليدية التي يمكن من خلالها لكمية لا نهائية من الحوسبة (لا نهائية بمعنى مستويات ماكينة تورنج أو الكمبيوتر الكمي) أن تتم بواسطة طرق فيزيائية نهائية. من الطبيعي أن الفيزياء التقليدية لا مفر لها أو لا يمكنها تجربة النتائج التجارب غير المحدودة، حتى أنه يبدو مصطنعًا الإعلان بما كانت ستكون عليه قوانين الفيزياء التقليدية، ولكن ما تظهر هذه الأمثلة أن المرء لا يستطيع البرهنة، مستقلاً أو بعيدا عن أي معرفة بالفيزياء، على أن البرهان لا بد أن يكون من عدد نهائي من الخطوات - ونفس الاعتبار يطبق في الحدس بأن ثمة عددًا نهائياً من قواعد الاستدلال وأن هذه القواعد قابلة للتطبيق دوماً. وليس من بين هذه المتطلبات ما له معنى في مجال التجريد: إنها متطلبات فيزيائية. في مقالة المؤرخ حول اللانهائية، إذ درى هيلبرت وتناول بسخرية فكرة "عدد نهائي من الخطوات" على أنها فكرة غير جوهرية أو فعلية. ولكن مقولته تلك أبرزت أنه كان على خطأ: إنها جوهرية وفعالة، وهي تأتي من حدسه وحدود الرياضيين الآخرين الفيزيائيين.

وعلى الأقل فإن واحدة من حواس جوهرية عن البرهان ظهر أنها خاطئة، ولحسن الحظ أنها لم تؤثر على برامج نظرياتها. لقد وردت هذه الحواس في الرياضيات اليونانية المبكرة، وظلت بدون تساؤل أو بحث من كل الأجيال التي تلت ذلك من الرياضيين، إلى أن تم البرهنة على زيفها في شمانيين القرن الماضي مع توالى الاكتشافات في نظرية الحوسبة الكمية. وهي الحواس القائل بأن البرهان هو طرائ متميزة وفريد من الموضوعات، بمعنى أنه تتالي من التحليل الذي تتبع قواعد الاستنتاج.

وقد ناقشت فيما سبق أن البرهان من المفضل النظر إليه كعملية وليس كموضوع، نوع من الحوسبة. ولكن في النظرية التقليدية لبرهنة أو للحوسبة، فإن هذا لا يشكل فرفاً
أساسيا، وذلك للسبب التالي: إذا مضينا في عملية البرهان فإنا من خلال قدر متوسط من الجهد الإضافي، نستطيع أن نحتفظ بسجل لكل ما له صلة ويحدث خلال العملية.

هذا السجل وهو موضوع فيزيائي سوف يشمل برهان يحمل معنى للعمل المتتالية.

وعلى سبيل الحديث إذا كان لدينا هذا السجل فإنا نستطيع قراءته، وراجعه ما إذا كان متفقاً مع قواعد الاستنتاج، ومن خلال فعلنا ذلك سنبرهن على النتيجة. وبكلمات أخرى ففي الحالة التقليدية فإن التحول بين عمليات البرهان وبين موضوعات البرهنة

تمثل هدفاً قابلاً للتشكيل.

والآن اعتبر أن بعض الحساب الرياضي قابل للتشكل من كل الكمبيوترات التقليدية، ولكن افترض أن كمبيوتر كمبيوت يمكن أن يحقق ذلك بسهولة مستخدم

التدخل بين مثال 500 من الأكوان، ولكي يكون ما أعنيه واضح، دع هذا الحساب

تكون له نتيجة أو إجابة (على غير نتيجة التحليل) لا يمكن أن تشكّل تأكيداً أو

تصحيحًا ساعة أن حصلنا عليها. عملية برمجة الكمبيوتر كم ليؤدي مثل هذه الحوسية.

تشغيل البرنامج والحصول على نتيجة، تؤسس برهانا على أن الحساب الرياضي لديه

هذا النتيجة المتفردة. ولكن الآن لا يجد طريقة لحفظ سجل لكل ما حدث خلال عملية

البرهنة، لأن معظم ما حدث قد وقع في أكوام أخرى، وقياس حالة الحوسبة سوف تغير

من خصائص التدخل ومن ثم تجعل البرهان غير صالح. بذلك إنشاء برهان بطرقية

التقليدية، على أنه موضوع، سوف يكون أمراً مخادعاً، وأكثر من ذلك، فكا نعرف أنه

ليست شبه مادة قريبة في الأكوان لتصنع مثل هذا الشيء، طالما سيكون هناك مزيد من

الخطوات العديدة في البرهان أكثر من الهرات الموجودة في الكون الذي نعرفه. هذا

المثال يظهر أنه بسبب إمكانية الحوسبة الكمية، فإن الفكرتين المتعلقتين بالبرهان

(موضوع - عملية) لا علاقة لإحداها بالآخر، الحدس بأن البرهان ما هو إلا

موضوعاً، لا يمكنه الإمساك بكل الطرق التي من خلالها يمكن البرهنة على جملة

رياضية في الحقيقة.
وعمرة أخرى، لقد رأينا عدم ملاءمة الرياضيات التقليدية وطرقها في استخلاص اليقين بمحاولة تنقية كل وسيلة ممكنة من الفوضى أو الخطأ في حدودنا حتى تبقى فقط الحقيقة أو الصدق ذاتي الدليل. وهذا ما فعله جولد. وهو ما فعله كل من تشر وصوفية خاصة تورنج في محاولة حذل نماذجهم العالمية للحوسبة. لقد كان أول تورنج أن شريطة الورقي المجرد سيكون بسيطا وشفافا، ومُعرفًا بشكل جيد، ولا يعتمد على أي فرض بشأن الفيزياء، حتى لا يتم إفساد إدراكه. وبالتالي هذا من شأنه أن يصبح أساسا لنظرية مجردة في الحوسبة مستقلة عن الفيزياء التي تعرفها. وكما وضعها فاينمان مرة أخرى أنه فهم الورقي ولكن كان مختلفًا. ورقة الميكانيكا الكمية الحقيقية تختلف كثيرا عن المادة الخام المستخدمة في ماكينة تورنج. ماكينة تورنج تقليدية بالكامل ولا تسمح بإمكانية احتواء الورقة لرموز مختلفة مكتوبة في أكوان مختلفة، وأنه من الممكن أن تتفاعل فيما بينها. وبالطبع ليس من قبل الأسلوب العلمي استكشاف تداخل بين حالات مختلفة لشريط ورقي. ولكن المسألة هنا هي أن حدس تورنج، وبسبب احتوائه على فروض من الفيزياء التقليدية، تسبب هذا الحدس في أن يجد بعضًا من خصائص ماكينته البديهية، وهي الخصائص التي انتهت أن يحتفظ بها. وهذا هو السبب في أن طراحه في الحوسبة الذي انتهى إليه لم يكن كاملاً.

من الأمور الطبيعية أن يظن الفيزيائيون بأن الأجيال يمكن أن ينجم عنها أخطاء حول مادة البرمان والبيتون وآخرين. فالملاحظات الحالية تقودنا إلى توقع أن وجهة النظر السائدة لن تبقى إلى الأبد. ولكن الثقة في أن الرياضيين قد عوشت ذلك الأخطاء وأن إمكانية형 التعرف على الخطا في هذه الأشياء هي، في اعتقادي، تتعلق في ما ترد، قدماً وظل انتشار من خط بين طرق الرياضيين وبين المادة - الموضوع.

دعني أشرح: كما لا تشبه العلاقات بين الخواص الفيزيائية والعلاقات بين الخواص المجردة في كونها مستقلة عن أي ظروف طارئة أو مشروطة أو أي قوانين للفيزياء، إنها
مهمة، كلية وموضوعية تمامًا بخلاف كمية هائلة من الخواص المجردة نفسها.
والرياضيات كدراسة تلك الخواص المجردة ذاتها، هي لذلك دراسة عن الصدق
الضروري لها. وفي كلما أاذن فين الصدق أو الحقائق التي يدرسها الرياضيون هي
متعلقة اليقين. ولكن هذا لا يعني أن معرفتنا لهذا الحقائق الضرورية هي نفسها يقينية,
ولا تعني أن الطرق التي يستخدمها الرياضيون تستطيع الصدق الضروري في النتائج
التي يتوصلون إليها. وبعد كل شيء فالرياضية تدرس أيضا التناقضات والمسائل
الخاضعة.

الصديق الضروري هو مجرد "المادة - الموضوع" الرياضيات وليس المكافحة التي
نتأتي عن ممارستنا الرياضية. موضوع الرياضيات ليس اليقين الرياضي، ولا يمكن أن
يكون وليس حتى الصدق الرياضي، أو اليقين أو أي شيء آخر. إنه، ولا بد أن يكون,
التفسير الرياضي.

لماذا إذن لا تعمل الرياضيات بهذه الكفاءة لماذا تدفق إلى نتائج، يمكن قبولها
وتطبيقها بدون مشاكل فيها لألاف السنين على الأقل على الرغم من عدم قيمتها. العقل,
بشكل مطلق، هو جزء من معرفتنا للعالم الفيزيائي، هو أيضا يمكن الأعتماد عليه كما
أنه ليس محل خلاف. وعندما نفهم العالم الفيزيائي بشكل جيد وكافٍ فإننا أيضًا نفهم
ما هي الموضوعات الفيزيائية التي لها خواص مشتركة مع الخواص المجردة ولكن
بشكل مبدئي فإن اعتمادنا على المعينة الرياضية يظل ثانويًا بالنسبة لمعرفتنا للحقيقة
الفيزيائية. كل برهان رياضي يعتمد على صلاحيته في أن يكون على حق بالنسبة
للمواضع التي تحكم سلوك بعض الموضوعات الفيزيائية، سواء أكانت الحقيقة التقديرية،
أو حبر على ورق، أو حتى أنفسنا ذاتها. الحدس الفيزيائي، هو مجموعة قواعد مبدئية،
ربما ورثنا بعضها، وكثير منها تم بناؤه خلال مرحلة الطفولة، حول كيف يتصرف
العالم الفيزيائي. وعلى سبيل المثال: لدينا حدس بأن بعض الموضوعات الفيزيائية لها
مساهمات هندسية مثل الشكل واللون والوزن ووضع في الفرات، وبعضها يوجد حتى لو
358
لم تكن هذه الموضوعات ملموسة. وهناك أشياء أخرى منظمة فيزيائيًا مثل ما يعنيه الوقت الذي يساهم فيه التغيير. مع ذلك تحتفظ الأشياء بهويتها عبر الزمن. ثم هناك أن هذه الأشياء تتداخل وهذا التفاعل قد يثير بعض مساهماتها التي أشارنا إلى أمثلتها. الحدس الرياضي يتعلق بالطريقة التي يمكن بها العالم الفيزيائي أن يؤدي الخصائص المجردة. واحد من هذا القبيل هو القانون الجبريدي، أو على الأقل التفسير لما هو وراء السلوكي البادي من أي موضوع. الحدس بأن الغباء يسمى للسماح المقلقة التي تفصل بين ما هو داخل وما هو خارجي، ربما يتم تهذيبه إلى حدس رياضي من مجموعة تفصل كل شيء كأعضاء وغير أعضاء في هذه المجموعة ولكن تهذيبات Freg ونتيجة أجزاء أجراء الرياضيون بدأ برسيل ورفضه لنظرة فريج للمجموعات.

قد أبرز أن مثل هذا الحدس يمكن أن يكون أكثر دقة عندما تحتوي المجموعة محل التساؤل أو البحث على الكثير من الأعضاء (عدد كبير من أعضاء لا نهائيين).

حتى لو كان ثمة حدس فيزيائي أو رياضي قد تحصلنا عليه باليلاد فإن هذا لا يعطي أي أشياء أو سلطة. الحدس المروث لا يمكن أن يؤخذ على أنه بديل أو موكل به "المذكر" عند أفلاتون لعالم "الأثر". لأنه من الملاحظات المألوفة أن كثيرا من الحدوس التي تنشأ داخل الكائن الحي وقائع التطور عادة ما تكون بسيطة وغير صادقة.

على سبيل المثال: العين البشرية وهيمنتها على المواد المعدة الرؤية، والتي تتضمن النظرية الخادعة بأن الضوء الأصفر يتكون من خليط من اللونين الأحمر والأخضر (بمعنى أن الضوء الأصفر يعطيتنا نفس الإحساس الذي يعطيتنا إياه خليط من اللونين الأحمر والأخضر). في الحقيقة كل طراز من تلك الأضواء له ترددياته الخاصة ولا يمكن إنشاؤه من خليط من التردديات المختلفة. الحقيقة أن خليط من الضوء الأحمر والأخضر يبدو لنا كما لو أنه أصفر وأن هذا لا صلة له بخواص الضوء ولكن بخواص العين. إنه نتيجة لتسوية مصممة حدثت في وقت ما لدى أسلافنا الأولئ عبر مراحل التطور. إنها فقط من الممكن (ولو أنني لا أعتقد في ذلك) أن تكون الهندسة الإقليدية أو
المنطقة الأرسطوية كلاهما مبنيًا بطريقة ما داخل أدمغتنا، كما اعتقد الفيلسوف إيمانويل كنعان (6) وذلك لا يدعو منطقياً إلى أنها صادقة. وحتى مع بقاء الواقعة المفرطة في عدم قابليتها للتصديق بأن لدينا حدسًا موروثًا وآناً مؤسسين على عدم إمكانية هزها أو قلقلتها أو إعادة تنظيمها، فإنه يبقى أن تلك الحدس ليست بالضرورة صادقة.

إذن فإن نسيج الحقيقة له بناء موحد أكثر مما كان ممكنًا أو أن المعرفة الرياضية قابلة للتحقيق بالطرق والعناصر المرتبة على درجات كما كان مفترضاً تقليدياً. الخواص الرياضية هي جزء من نسيج الحقيقة لأنها هائلة ومعقدة. ونوع الحقيقة التي تشكلها تشبه إلى حد ما عالم التجريد الذي تصوره أفلاطون وبروز رغم أنها، بالتعريف، غير ملحوظة أو ملموسية، إنها موجودة موضوعًا ولها خواص مستقلة عن قوانين الفيزياء. ومع ذلك فإنها الفيزياء هي التي تسمح لنا بالحصول على معرفتنا بهذا المجال. وهي تفترض قيوداً صارمة. كما كان سهلاً أن يكون كل شيء في الحقيقة الفيزيائية معروفًا، فإن فهم الحقائق الرياضية هو بالتحديد الأقلية البالغة الصغر التي يحدث أن تتطابق تماماً مع بعض الحقائق الفيزيائية - مثل حقيقة أن رمزًا مبينًا مصنوعاً من نقطة عبر على ورقة يمكن التعامل معه يدوياً فتشير رموز معينة أخرى. يعني أنها الحقائق التي لا يمكن محاكاتها في الحقيقة التقديرية. وليس لدينا خيار سوى افتراض أن الخصائص الرياضية غير المفهومة حقيقية هي الأخرى؛ لأنها تبدو كأنها لا مربوتها في تفسيرنا لها هو المفهوم منها.

(*) إيمانويل كنعان (1724-1804) فيلسوف ميتافيزيقياً ألماني يعرف بابلي الماثالية المطلقة (شديد الانضباط حتى يقال إن الناس كانت تمتلأ ساعاتها على لحظة خروجه من منزله للتربيذ اليومي). عرف بشمول أعماله وبقيماته فيما يتعلق بمنظورات العرفة والأخلاق والجمال. وفي ستينيات القرن 19 أصبح نائباً رئيسياً للفلسفة ليبنيزي والتي كانت سائدة في ألمانيا، وقامت وهاجم أفكاراً رئيسيًا وطرقها الرياضية من أهم مؤلفاته "نقد المثل الخلاص" في 1781 (ميتافيزيقاً) و"نقد المثل العالمي" في 1788 (أخلاق) و"نقد الحكم" في 1790 (ملحق للكتاب). (المترجم)
نمونجها تلك الموضوعات المجردة المعينة. بهذه الطريقة فإن نسيج الحقيقة الفيزيائية يمتدنا بشباك نظره على عالم التجريد. إنه شباك ضيق جدًا ولا نرى منه سوى مستوى محدود من المشهد. وبعض البناءات التي نراها هناك مثل الأرقام الطبيعية أو قواعد الاستنتاج في المنطق التقليدي، تبدو كأنها مهمة أو أساسية بالنسبة للعالم التجريدي، بنفس الطريقة التي تبدو قوانين الطبيعة العميقة أساسية بالنسبة للعالم الفيزيائي ولكن هذا قد يكون مظهرا مخادعا. لأن ما نراه فعلًا أن بعض البناءات التجريدية هي أساسية لفهمنا التجريد. ليس ثمة سببًا للافتراض أن تلك البناءات هي موضوعا ذات معنى في عالم التجريد. إنها مجرد أن بعض الخواص التجريدية هي قريبة ومنظورة لعيننا بسهولة عبر النافذة عن غيرها.
<table>
<thead>
<tr>
<th>الأصطلحات:</th>
<th>الرياضيات: Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>طريقة إنشاء الصدق للفروض الرياضية.</td>
<td>البرهان: Proof</td>
</tr>
<tr>
<td>تعريف تقليدي: مستندة من الجمل تبدأ بمقدمات وتنتهي بنتائج مرغوبة، وتنطلق مع قواعد معينة للاستنتاج.</td>
<td>تعريف أفضل: هو حواسبة تتم زج خواص جوهر مجرد ما وتنشئ مخرجاتها أن هذا الجوهر له خاصية معينة.</td>
</tr>
<tr>
<td>حدس رياضي: Mathematical Intuition</td>
<td></td>
</tr>
<tr>
<td>(تقليديا) هو وسيلة مطلقة ذاتية الدليل للحكم على التسبب الرياضي.</td>
<td>(فعليا) مجموعة من النظريات (بالمعنى أو بدونه) حول سلوك موضوعات فزيائية معينة التي ينمزج سلوكها تلك الجواهر المجردة بما فيها من إثارة.</td>
</tr>
<tr>
<td>المذهب القائل بأن تسبب الجوهر المجردة لا يكون صحيحًا إلا إذا كان قائمًا مباشرة على حدس ذاتي الدليل. وهي الوجه الرياضي لنظرية "الانطاح".</td>
<td>الحدسية: Intuitionism</td>
</tr>
<tr>
<td>إقامة، مرة واحدة وأخيرًا، يقين في الطرق الرياضية من خلال العثور على مجموعة من قواعد الاستنتاج ملائمة لكل البراهين الصادقة، ثم إثبات أن تلك القواعد متينة ومتماسكة بمستوياتها ذاتها.</td>
<td>مسألة هيلبرت العاشرة</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berhans على أن مسألة هيلبرت العاشرة لا يمكن حلها. لأن في كل مجموعة من القواعد للاستنتاج، ثمة قواعد صالحة لا يمكن تصور صلاحها عبر تلك القواعد.</td>
<td>Godel incompleteness theorem</td>
</tr>
</tbody>
</table>

الخلاصة:

الجوهر المجردة معقدة وهائلة وتوجد موضوعيا كجزء من نسبية الحقيقة. توجد حقائق ضرورية ومنطقية حول هذه الجوهر وهذا يشكل تسوية للموضوع - المادة في الرياضيات. ومع ذلك مثل هذه الحقائق لا يمكن أن تعرف على أنها يقينيات. البراهين لا تستنتج أي يقين في نتائجها. صلاحية أي شكل لبرهان معين تعتمد على صدق نظرية تنا سلوك الموضوعات والتي تشكل بها البرهان. ولذا فإن معرفتنا الرياضية هي بصفة أصلية ثانية وتعتمد كلية على معرفتنا للفيزياء. فهم الحقائق الرياضية هو بالتحديد الأقلية البالغة الصغر التي يمكن محاكاتها في الحقيقة التقديرية. ولكن الجوهر الرياضية غير المفهومة (مثل نينات الكانتجوتو) توجد أيضًا لأنها تبدو أنها لا مفر منها في تفسير الجوهر المفهوم.

363
لقد ذكرت أن الحوسبة هي دائماً مفهوم كمي؛ لأن الفيزياء التقليدية كان متعنراً حملها للحدس الذي يشكل الأساس للنظرية التقليدية للحوسبة. نفس الشيء يصدق على الزمن. عصور سلفت قبل اكتشاف نظرية ميكانيكا الكم، كان الزمن هو أول مفهوم كمي.
الفصل الحادي عشر
الزمن: أول مفهومٕ كَمِيّ
كما تتدفق الأمواج نحو الشاطئ: الصغير يتعمل
البقاق إلى نهاية كل منها تسرع للحلول محل
سابقتها تدرك دائمة وعلى نحو متتابع لتؤكد تنافسيتها.

ويلىام شكسبير (5)
William Shakespeare

القصيدة رقم 100

ولو أن الزمن بعد ولد واحدًا من أكثر ما ناقله في مساهمات فيزية العالم حولنا، فإنه يشتهر بأنه عميق الغموض أو الإلغاز. الإلغاز جزء من مفهوم الزمن الذي تنشأ معه.

وقد قال القديس أوغسطين (6)

وإذن ما هو الزمن؟ إذا لم يسألي أحد، فأنا أعرف، وإذا أردت شرحه لهذا الذي سيسألني فاننا لا أعرف شيئاً (الاعترافات).

(5) ويليام شكسبير (1564 - 1616) شاعر إنجليزي ومؤلف درامي مسرحي فضلاً عن قراءته الشاملة أيضاً، وتعتبره البعض (ربما الغالبية من الثقافة) أعظم مؤلف مسرحي في كل العصور، ومسرحياته التي ألقي في أخريات القرن الـ16 وبدايات القرن 17 ما زالت يستعد وتستدعي وتعبر عن أنتم هي تقام عليها عدد من الأفلام السينمائية، وذلك في كل العالم تقريباً أكثر من أي مسرحيات أخرى.

(6) القديس أوغسطين (314 - 430) تزفت فلسفة على ذروة الفلسفة المسيحية في العصر الإسكندر حيث كان السائد هو الدفاع عن المسيحية ضد التهديدات الفنون والدينات البابوية، بها من قبل مفكري اليونان بأنها ضد العقل - وتعتبر محاربة المذهب من أبرز ما تسجلي في أفكاره الأساسية حيث اعتذر اللغة الباحثة في النفس دوماً على وجود الله ولكن ليس بالضرورة وإمضاء بثبات داخلي. هو الله العلم وهو لا تكتشفه كما لا يمكننا بالتأمل والخوف على الذات فيما يعرف بالنظرية الإرشادية. والعقل لا يعمل ولكنه ما بمساعدة اللغة كما تقوله الشهيرة آلفونسي أليونة أننا يمكننا تعقل:

ارتباط في براكيره بالمادية ثم خرج عليهم مؤثراً منهم الشك واستقر على المسيحية عام 1867.

(المترجم)

367
قلة من الناس التي تعرف أن المسافة غامضة، ولكن الكل يعرف أن الغامض هو الزمن. وكل غامض الزمن ترجع إلى مساهمة الحس العام الذي يعني أن اللحظة الحالية التي تتعلق عليها "الآن" ليست ثابتة ولكنها تتحرك باستمرار في اتجاه المستقبل. هذه الحركة الدائمة تسمى "تدفق" الزمن.

سوف نرى أنه لا يوجد مثل هذا الشيء السمي "تدفق". مع أن هذه الفكرة هي حياءً عام محض. ونحن نأخذها على اعتبار أنها حقيقة مضمونة حتى أنها دخلت في Comprehensive Grammer of the English Language والمؤلف المشاركون Randolph Quirk وذهب راندلوفر كويرك(4) معه إلى تفسير مفهوم الحس العام عن الزمن بمساعدة الرسم التخطيطي الموضوع بالشكل (11 - 1) كل نقطة في الخط تمثل لحظة ثابتة. المثل يشير إلى النقطة المستمرة في الحركة، اللحظة الحالية تأخذ موضوعها على الخط. ومن المفترض أن حركتها تتجه من اليسار إلى اليمين. بعض الناس مثل شكسبير في المقطعة الشعرية التي اقتبستها في الصدر من هذا الفصل يظنون أن أحداثاً معينة يمكن أن تكون ثابتة وأن الخط نفسه يتحرك للخلف (من اليمين إلى اليسار في الشكل). 11 - 1 حتى أن اللحظات المستقبلية تكتسب أو تكن الالحظات الحالية لتصبح لحظات الماضي.

ما الذي تعنيه بقولنا إن الزمن يمكن التفكير فيه كما لو كان خطًا؟ إننا نعني أن الخط يمكن اعتباره كمثبتة من النقاط في مواقف مختلفة، ومن ثم فاي موضوع

(4) راندلوفر كويرك (مواليد عام 1920) لغوي إنجليزي أسس مع زملائه في بواكير Survey of English Usage(5) تصنيف اللغة متشابهًا أصبح يعرف الآن بـ "الاستعمال اللغة الإنجليزية الأكاديمية" وهو تصنيف اللغة ينتمي إلى مليون كلمة تستخدم في الحياة اليومية مؤسسة English Language Institute وذلك بنحوًا جديدًا للغة الإنجليزية ومع مرورًا لها على مستوى العالم، كما كان رئيسًا للأكاديمية البريطانية في الفترة من 1985 إلى 1989 (الترجمة).
يتحرك أو يتغير يمكن التفكير فيه على أنه متتابعة من اللقطات الثابتة (غير المتحركة) كل لقطة تمثل وجه من وجه هذا الموضوع، واحدا في كل لحظة. أن نقول إن كل نقطة على الخط تمثل لحظة معينة، هو كقولنا إذا يمكننا تخيل أن كل اللقطات تتراكم مع بعضها على الخط، كما في الشكل (١١ - ٢) بعضا منها يظهر لنا دوره أو تعاقب السهم، كما في الماضي وبعضها يظهره كما سيكون في المستقبل، وواحدة منها تلك التي يشير إليها المتحرك باستمرار فهي اللقطة التي عليها السهم الآن، ولو أنه في اللحظة التالية فهذه اللقطة بالذات ستتصبح من الماضي لأن سوف يستمر في الحركة إلى الأمام. تلك الأوجه المرحلية موضوع تعبئ في مجموعة المتحرك تماما كما تظل متتابعة صور ثابتة داخل آلة عرض سينمائي حين يمثل مجموعة صورة متحركة على شاشة العرض. ليس شبه تغيير يحدث في أي من الصور المنفردة. التغير يتكون من إظهارها في متتابعة من خلال المتتحرك (آلة العرض السينمائية) بحيث يبدو واحدة منها قد أخذت دورها في أن تكون اللحظة الحالية.

في أيامنا الحالية لا يحاول النحويون إعطاء حكم قيمي على كيفية استخدام اللغة، يحاولون فقط التسجيل والتحليل.

(٩) الزمن يمكن التفكير فيه كخط (نظرية له طول لا نهائي) الذي يتضمن عليه نقطة متحركة باستمرار والتي تمثل اللحظة الحالية. وأي شيء أمام هذه النقطة هو في المستقبل، وأي شيء خلفها هو في الماضي.

(شكل ١١ - ٢) مفهوم الحس العام عن الزمن والذي تفترضه نحويات اللغة الإنجليزية (وفقًا لما قرره كوريك وزملائه في كتابهم "النحو الشامل للغة الإنجليزية").

369
مفهوم الحس العام عن الزمن تفترضه نحويات اللغة الإنجليزية (وفقًا لما قرره كوركن وزميله في كتابهما "النحو الشامل للغة الإنجليزية والفهم للغة"). ولهذا فإن كوركن وشريكه لم يolgوا اهتمامًا لإلقاء اللوم على قيمة نظرية الزمن التي يصفانها. لم يدعوا أنها نظرية جيدة. ادعوا فقط، واعتقد بصحة ذلك تمامًا، إنها "نظريتنا". وللأسف فهي ليست نظرية جيدة. ولكي أضع المسألة على نحو جاف أو فط: السبب في أنه أصبح من الموروث في الحس العام أن الزمن غامض هو أنه من قبل الإرهاء الموروث وسوف نرى أنها لا تعني شيئا حتى بنفس مصطلحاتهم.

ربما يبدو هذا مدهشًا، فقد اعتقدنا إجراء إصلاحات على حسن حساب ليتوافق مع الاكتشافات العلمية. حيث كثيرًا ما يصبح الحس العام غامضًا، وحتى لدرجة صعبة. ولكن الحس العام يصبح بلا معنى بالنسبة لخبرتنا اليومية. وهذا مثل ما يحدث على موضوعنا هذا.

ضع في اعتبارك الشكل (11-2): إنه يوضح حركة موضوعين. واحد منها هو السهم المتتابع باديًا في لقطات تتابعية. والآخر هو اللحظة الآنية في حالة حركة في الصورة من اليسار إلى اليمين. ولكن حركة اللحظة الآنية لا تظهر في الصورة كتتابع من اللقطات. وبدلاً من ذلك فإن اللحظة المعينة قد أصبحت واحدة منفردة بواسطة وضح في الخطوط الأفقية والتي تساهل "الآن". وهكذا فإنه حتى إذا قيل إن "الآن" هو عنوان للحركة في الصورة، فإن لقطة واحدة. فيه. وفي لحظة معينة هي التي تظهر.

370
شيء متحرك كل لقطات متباعدة، التي تصبح اللحظة الحالية واحدة بعد واحدة لماذا؟ بعد كل شيء فإن الأمر كله في هذه الصورة هو إظهار ما يحدث في فترة ممتدة، وليس في لحظة واحدة. وإذا كنت ترغب في أن تظهر الصورة لحظة واحدة، فلسنا بحاجة للإهتمام بإظهار أكثر من لقطة واحدة للسهم الزمني في دورته أو تفاعله أيضاً. من المفترض في الصورة أن توضح نظرية الحسن العام فإن أي موضوع متحرك أو متغير هو تتبع من اللقطات واحدة لكل لحظة ولذا فإنه إذا كان متحركاً فيما إذا لا يظهر تتبع من اللقطات له أيضاً؛ اللقطة المتفردة الظاهرة لا بد أن تكون واحدة من اللقطات المتعددة الموجودة إذا كان ذلك وصفاً حقيقياً لكيف يعمل الزمن.
والحقيقة أن الصورة كما هي عليه تصبح خادعة: لأنها تظهر فهو لا يتحرك، بل ولا يكون له وجود إلا في هذه اللحظة المعينة والتي فوراً نراها وهو في حالة ثبات. وإذا كان الأمر كذلك فإنه يجعل من "الآن" لحظة ثابته. ولن يكون ثمة فرق لو وضعت بطاقة حركة على اللحظة الحالية، وسهمًا ممتلئاً بها لإشارة إلى يتحرك من الشمال للليمين. الذي تظهره الصورة وما يظهره الرسم التخطيطي لكورك وشريكه (الشكل 11)

١ - أن لا يصل لأي لحظة سوى تلك التي هو عندها بالصورة.
وفي أحسن الأحوال يمكننا القول بأن الشكل (11 - 2) هو صورة "هجين" توضح
- على نحو مرضي - الحركة بطريقة مرفضة، في نظرية الحس العام للزمن، ولكنها تقرر فقط أن اللحظة الحالية تتحرك، بينما تصورها
على أنها لا تتحرك. كيف نوح الصورة لكي تظهر نظرية الحس العام للزمن بالنظر
لحركة اللحظة الحالية في الوقت الذي يتحرك فيه السهم؟ يتضمنها مزيدًا من اللقطات
لا، واحدة لكل لحظة، بحيث تشير إلى أن "الآن" في تلك اللحظة، وتظل قيد هذا من
الواضح، أنه في كل لحظة "الآن" هو تلك اللحظة. على سبيل المثال: عند منتصف الليل
فإن "الآن" يشير إلى اللقطة التي تلتقط السهم في منتصف الليل، ولذا فإن الصورة يجب
أن تكون على نحو ما هو في الشكل (11 - 2).

هذه الصورة المعدلة توضح لنا الحركة بطريقة مرفضة، ولكنها تتركنا مع مفهوم
عابر للزمن. إن فكرة الحس العام بأن الشيء المتحرك هو تتبع مستمر لأوجه هذا
الشيء، هذه الفكرة تظل باقية، ولكن ذهب الفكرة الأخرى لدى الحس العام الخاصة
بتدفق الزمن. في هذه الصورة ليس شمس نقطة متحركة باستمرار، اللحظة الحالية
تكتسب أو تكسب اللحظات الثابتة الواحدة بعد الأخرى. ليس شمس عملية من خلالها تبدأ
اللحظة الثابتة في المستقبل ثم تصبح الحاضر بعد أن تنطوي إلى الماضي أو مجموعة
اللقطات المرمون لها بالرموز في "الآن" لم تعد أي منها تميز لحظة ما من الأطراف،
وبالتالي فقد أصبحت زائدة أو غير ضرورية. وتوضح الصورة حركة السهم في دورته
المتعاقبة كما لو أننا رفعناهم عنها.

وهكذا لا يوجد لحظة آنية منفردة، إلا بشكل شخصي، من وجهة نظر ملاحظة في
لحظة معينة، وهذه اللحظات بالطبع تكون منفردة وبما على نحو منفرد أيضًا - تسمى
"الآن" بمعرفة الملاحظ، لذا يمكن تسمية أي موضع في الفضاء بمعرفة الملاحظ "هنا"،
ليس لقاء لحظة أفضلية عن غيرها في كونها "الآن" ولا لأي موضع من غيره في كونه
"هنا". هذه "الآن" الذاتية ربما تتحرك في الفضاء حين يتحرك الملاحظ، هل تتحرك

372
الآن الالاتية هذه أيضا خلال الزمن؟ هل الشكلان (11 - 2) و (11 - 1) يظهران، بعد كل شيء، إيضاح الزمن من وجهة نظر الملاحظ في لحظة معينة؟ بالتأكيد لا يفعلان. حتى الآن الالاتية لا تتحرك خلال الزمن. يقال عادة إن الحاضر يبدو أنه يتحرك في الزمن لأن الحاضر يتم تعريفه بالرجوع إلى وعيينا، ووعينا يكتسب للأمام عبر اللحظات. ولكن وعيينا لا يفعل ولا يجب أن يفعل. عندما نقول إن ديكنا يبدو أنه يعبر من لحظة إلى الالاتية التالية فإننا مجرد نمط صياغة نظرية الحس العام عن تدفق الزمن. ولكنها - الجملة - لا تضيف أي معنى للتفكير في أي لحظة تلك التي نعيها كمتحركة من لحظة إلى الأخرى. عند التفكير في أن لحظة حالية، أو أي شيء آخر، يفعل ذلك. لا شيء يستطيع التحرك من لحظة إلى أخرى. لكي توجد على الإطلاق في لحظة معينة معنا أنة توجد فيها إلى الأبد. إن وعيينا يوجد في كل لحظتنا (المتحركة).

(شكل 11-2) في كل لحظة "الآن" هو هذه اللحظة يجب أن نعترف أن كل لحظة صورها الملاحظ في لحظات مختلفة يمكن اعتبارها على أنها "الآن" ولكن هذا لا يعني أن وعي الملاحظ أو أي كينونات أخرى متحركة أو متحركة...
متغيرات - تتحرك من خلال الزمن كما يفترض أن تتحرك الحالة الحالية. اللحظات المتوضعة بالنسبة للملاحظ لا تتحول إلى لحظات حالية وأن يعيها على هذا النحو. إنها كلها في الوعي، وذاتيًا جمياعها حالة. موضوعيا لا يوجد "حاضر".

إذا لا يمكننا اختبار الزمن وهو يتدفق أو يمر، كل ما نختبره هو الفروق بين المذكرات الحسية وحظائنا الحالية عن مذكرتنا الحسية السابقة (في الماضي). إننا نفسر هذه الفروق بشكل صحيح، كدليل على أن الكن يتعذر مع الزمن. ونحن أيضًا نفسرها بشكل غير صحيح كدليل على أن وعينا أو الحاضر، أو أي شيء، يتحرك عبر الزمن.

إذا أصابت هذا الحاضر المتحرك نزوة التوقف عن الحركة ليوم أو أثين ثم بدأ الحركة مرة أخرى ببعضها أضعاف سرعته السابقة. ما الذي سنعيد من ذلك؟ لا شيء على وجه الخصوص أو أن السؤال نفسه يغير ذات معنى. ليس هناك شيء يستطيع التحرك أو التوقف أو التدفق، كما أن لا شيء يمكن أن تتعينه "سرعة" الزمن - كل ما يوجد في الزمن - من المفترض أن يأخذ شكل لحظات متغيرات مصنفة على خط الزمن. وهذا يتضمن خبرة الوعي لدى كل الملاحظين المتضمنة أيضًا جيدًا منهم الخاطئ بأن الزمن "يتدفق" ربما يتخيلون "حاضرًا متحركًا" مرتحلا على الخط، متوثقًا وأبدى، أو حتى ذاهبا إلى الوراء أو حارين للوجود في كل هذه الأحوال معًا. ولكن التخيل لا يجعل الأمر يحدث على هذا النحو أن الزمن لا يستطيع التدفق.

فكرة تدفق الزمن أعيد فعلا افتراض وجود نوعا آخر من الزمن، خارج فكرة العامة عن الزمن المكون من لحظات متتالية. إذا كان "الآن" يتحرك فعلا في لحظة من اللحظات إلى أخرى، فسيكون ذلك بالقياس إلى هذا الزمن الخارجي. ولكن عندما نأخذ ذلك بجدية سيقودنا إلى متوالية لا نهائية. ذلك أن علينا حينئذ أن نتخيل الزمن الخارجي ذاته كناتب للحظات منها لحظاتها الحاضرة التي تتحرك بدورها بالنسبة إلى زمن أكثر خارجية، وهلم جرا. وفي كل مرحلة فإن تدفق الزمن لا يعني شيئًا إلا إذا...
أشركتنا معه زمن خارجي بالنسبة لهذه المرحلة، هكذا إلى ما لا نهاية، وفي كل مرحلة لن يكون لدينا مفهوما لا معنى، وكل المراحل المتواجدة لتنكذ ذات معنى أيضاً.

وأصل هذا النوع من الخطأ يرجع إلى اعتيادنا على أن يكون الزمن هو الإطار الخارجي لأي كينونة فيزيائية لقد اعتيادنا تخيل أن أي موضوع فيزيائي على أنه ممكن التغيير، متخذاً أوجه متكونة لذاته في لحظات مختلفة. ولكن تتبع اللحظات ذاته في صور مثل الشكلين (11-1) و (11-2) هو كينونة استثنائية. إنه لا يوجد إلا في منظور عام للزمن. إنه هو المنظور العام للزمن، وطالما لا يوجد زمن خارجي عنه، فإن تخيل أنه يتغير أو يوجد في أكثر من وجه واحد متعاصب ومترابط منطقياً، هو من قبيل التفكير الشواع وغير المتماسك. وهذا يجعل من الصعب الإمساك بالصورة. الصورة ذاتها، شأنها شأن أي موضوع فيزيائي آخر، تكون موجودة عبر فترة من الزمن وتكون مكونة من عدد من أوجه وجودها ذاته، ولكن ما الذي نصوره أو نصفانا الصورة - والذي يعني تتبع أوجه شيء ما - سوياً أن يوجد فقط في وجه واحد منها. ليس لأي صورة صحيحة أو دقيقة للمنظور العام للزمن يمكنها أن تكون صورة متحركة أو للتغيير. ولقدنا هنا نواجه صعوبة نفسية مروعة عندما نضع هذا على السطح من الأمر (static) فلا يمكن أن نفهمها إلا على أنها كذلك. إنها تظهر لنا تتبع من اللحظات المتزامنة على صفحتها، ولكني تصنع صلة بينها وبين خيرتنا لا بد أن يتحرك تركيز انتباهنا إلى هذا التتابع. على سبيل المثال ربما ننظر إلى لحظة واحقة على أنها تمثل "الآن". وفي لحظة تالية ننظر إلى لحظة إلى ميمناً على أنها تمثل "الآن" الجديد. وحينذا نميل إلى إحياء الحركة الحقيقية لحركة تركيز انتباهنا عبر مجرد الصورة، بواسطة الفكرة المستحيلة أن شيئاً يتخلل اللحظات الفعلية. إن هذا يحدث بسهولة.

ولكن هناك ما هو أكثر من هذه المشكلة. وهو صعوبة تبيان أو توضيح نظرية الحس العام عن الزمن. النظرية نفسها تشمل على التباض حقيقى وجوهري مستقل
ومع ذلك، إنها لا تستطيع أن تستمر على رأى فيما إذا كان الحاضر هو موضوعيًا لحظة واحدة أو كثير من اللحظات، على سبيل المثال الشكل (11-1) يكشف عن لحظة واحدة أو عديد منها. الحس العام يبدو الحاضر أن يكون لحظة منفردة لكي تsumer بتدفق الزمن، أي يsumer للحاضر أن ينصرف من لحظات الماضي إلى المستقبل. ولكن أيضًا يرغب الحس العام للزمٍن أن يكون تتابعًا للحظات مع كل الحركة والتغيير الذين يشملان الاختلافات بين أوجه أية كائنات في اللحظات المختلفة. وهذا يعني أن اللحظات نفسها غير متغيرة وعلى هذا فاً لحظة معينة لا يمكنها أن تصبح الحاضر أو يمكن الإمساك بها على أنها كذلك، لأن هذا سيكون من قبيل التغيير، وعلى هذا النحو فالحاضر لا يمكنه أن يكون موضوعيًا لحظة واحدة.

لسبب في أننا نتمسك بهذين المفهومين المتعذر حملهما معًا - الحاضر المتحرك وتتابع اللحظات غير المتغيرة - هو أننا نحتاج إلى كل منهما - أو نظن أننا كذلك. إننا نعبر عنهما باستمرار في حياتنا اليومية. عندما نصف أحداثًا وقعت، إذ حين نتكلم عن مثى حدث فنحن نفكر في مصطلحات تتبع لحظات غير متغيرة، وحين نشرح الأحداث من حيث أسبابها وتأثيرات كل منها فنحن نفكر في مصطلحات الحاضر المتحرك.

قد اكتشف مسألة Faraday الكهرومغناطيسية عام 1831 فإننا ننسب هذه الواقعة لمستوى معين من اللحظات أي أننا نوجه تخصصنا لأية مجموعة من اللحظات من بين حزمة لحظات تاريخ العالم، والتي ننظر فيها على هذا الاكتشاف. ليس نية تدفق الزمن له صلة بالأمر عندما نقول مثى حدث شيء ما باكثر مما لو قلنا إن مثى تدفق للمسافة له صلة بقولنا أين وقع هذا الشيء. ولكن حالنا نقول مثى حدث هذا الشيء، نحن نستشهد بتدفق الزمن. إذا قلنا إننا ندين جزئيًا بموتوراتنا الكهربائية والمولدات الكهربائية لفاراداي، وإننا نشعر بصدى اكتشافه حتى نعمنا هذا، فإن صورة نجدها في عقولنا لهذا الصدى بدأت عام 1831.
في اكتساب متتابع لكل لحظات ما بقي من القرن التاسع عشر، وكل لحظات القرن العشرين حتى وصلت إلى أن تكون سبباً في أي شيء مثل محطات القوى التي تواجد.
إذا لم نكن حذرين كفاية، سنظن أن القرن العشرين في البداية لم يكن قد تأثر بعد بالحادث الخطير لعام 1831، وأنه بعد ذلك تغير تجوع الصدي ويعكس الماضي في طريقه للقرن 19 وما بعده. ولكن نحن في العادة نكون حذرين بحيث نتجنب هذه الفكرة غير المرتبطة عن طريق عدم استخدام النذر في النذر - نظرية الحساس العام عن التزامن. فقط عندما نفتك في الزمن نفسه هل نفعل ذلك، ومن ثمن نتهمب من اللغة فيه كله! ربما تكون كلمة "تناقض أكثر" مواجهة من "اللغز"، لأننا نجد هنا صراعاً شديد الوضوح بين فكرتين واضحتي الدليل الذاتي، لا يمكن أن يكون كليهما صحيحًا.
وسنرى أن أيهما ليس صحيحًا.

نظريتنا الفيزيائية، على غير الحساس العام، والتماسك تحقق ذلك بإسقاط فكرة تدفق الزمن. أعرف أن العلماء يستخدمون تعبير "تدفق الزمن" كما يفعل أي شخص آخر. على سبيل المثال: في كتابه "المبادئ" الذي وضع فيه مبادئ الميكانيكا الفيزيائية يقول: "الزمن الرياضي المطلق والحقيقي يتدفق بذاته Newton والجانبية، كتب نيوتن والنيوتن موسوعة بلوغها لم يُجرِ أي محاولة لترجمة تأكيد ذلك بأن الزمن تتدفق بشكله الرياضي أو يستخرج أي نتيجة من ذلك. ولا يوجد إلا نظريات نيوتن في الفيزياء أشارت إلى تدفق الزمن، ولا إشارات أي من النظريات التالية توحيت مع تدفق الزمن.

إذن لماذا نفكر نيوتن في أنه من الضروري بأن الزمن يتدفق "بانتظام"؟ ليس ثمة خطأ في الانتظام. الأمر يستطيع أن يستثني أن هذا يعني أن قياس الوقت سيكون نفسه بالنسبة للملاحظ في مواقع مختلفة وحالات مختلفة من الحركة. هذا تأكيد حقيقي ووجوه (طالما أننا نعرف من أينشتاين أن هذا لم يكن دقيقًا)، ولكن كان من السهل وضع الأمر كما وضعته أنا تأو، دون القول بأن الزمن يتدفق. أعتقد أن
نيوتن قد استخدم عمدا اللغة المألوفة في زمنه دون الرغبة في أن يعنى بها حرفيًا، كما ربما تحدث بهذا بشكل غير رسمى عن شروق الشمس. كان محتاجاً لأن يمرر للقارئ أن يباشر دخوله في عمله الثوري على أن لا شيء جديد أو مميز في المفهوم النيوتنية عن الزمن. كتاب "المبادئ" نسب العديد من الكلمات مثل "القوة" و "الكتلة" معان تكنولوجية معينة والتي تختلف على نحو ما من منظماها في الحس العام. ولكن عدد مرات الإشارة للزمن كان ببساطة زمن الحس العام والذي نجد في "الإنساحات أو الساعات" و "الوقائع التاريخ السنوي أو الساعات" (النتائج أو الروزنامات). إذن فمفهوم الزمن في "المبادئ" هو مفهوم الحس العام عن الزمن.

فقط هو لا يتفق. الزمن والحركة في فيزياء نيوتن يبدوان كبيرًا كما في الشكل (11 - 2) الفرق الوحيد الصغير يتمثل في أنى رسمت اللحظات المتتالية وكان كل منها منفصل عن الأخرى، ولكن في كل الفيزياء قبل الكمية هذا تقريب لأن الزمن متصل (سلسلة متصلة). لا بد أن نتخيل عددًا كبيرًا بشكل لا نهائي من اللقطات الرفيعة تنحدر باستمرار بين تلك التي رسمتها. إذا كانت كل منها تمثل كل شيء في المكان الذي يتحرك فيها ففيزيائيا في حصة معينة، إذن يمكننا النظر في هذه اللقطات متصلة مع بعضها من وجه كل منها مُشغولة لحظة مستمرة، بشكل غير متغير في تشغيل ضم كل ما يحدث في الزمان والمكان (شكل 11 - 4) بما يعني كل ما تعنيه الفيزياء الفعلية أو الحقيقية. والنقاش الحقيقي في مثل هذا النوع من الرسوم التخطيطية يتمثل في أن لقطات المكان في كل حصة تجعله يبدو كأنه ثنائي الأبعاد بينما في الواقع هو ثلاثي الأبعاد. وهكذا نتعامل مع الزمن كأنه بعد رابع متماثل مع الأبعاد الثلاثة للمكان في الهندسة التقليدية. الزمن والمكان يعتبران معا مثل الوجود الرباعي الأبعاد، وسميت "الزمن".
الزمنك باعتباره لحظات متعاقدة

هذا الوجود الهندسي رباعي الأبعاد لم يكن إيجابيًا في فيزياء نيوتن، ولكن مع نظرية آينشتاين النسبية أصبح جزءًا لا مفر منه للنظرية. وهذا يرجع، طبقاً للنسبية، إلى أن الملاححين المتحركين بسرعات مختلفة لا يتفقون على أن الأحداث هي التي ستظهر في نفس اللحظة. وهكذا كل منهم سيصور الزمنك كما أنه قطع بطريقة مختلفة إلى "الحظات". ومع ذلك فلز أن كل منهم كوم أو راكم لقطاته بطريقة الشكل (11 - 4). فإن الزمنك الذي ينشئه سيكون متماثلاً. ولذلك، طبقاً للنسبية، فإن اللحظات الظاهرة في شكل (11 - 4) ليست سمات موضوعية للزمنك. ملاحظ آخر يمكن أن يرسم شريحة "الآن" من زاوية مختلفة. ومن ثم فإن الحقيقة الموضوعية وراء الشكل (11 - 4) يعني الزمنك ومحتوياته الفيزيائية، يمكن إظهاره كما في الشكل (11 - 5).

الزمنك يشير أحيانًا إلى مثل عمارة العالم "أن فيها كل الحقيقة الفيزيائية - الماضى والحاضر والمستقبل - موضوعية هناك مرة واحدة ولأبد، مجتمعة في عمارة واحدة رباعية الأبعاد. واتصالًا بالزمنك لا شيء يتحرك أبداً. ما نسميه "الحظات" هي شريائح معينة خلال الزمنك، وعندما تختلف محتويات هذه الشريائح عن بعضها البعض، ذلك ما نسميه "التغير" أو "الحركة" خلال المكان.

379
وجهة نظر الزمن بالنسبة لشيء متحرك

كما قلنا، نحن نفكر في تدفق الزمن بوصفه بالأسباب والتأثيرات. نحن نفكر في الأسباب على أنها سابقة على مؤثراتها، نحن نتخيل أن الحاضر المتحرك يسهل للأسباب وصوله لتاثيراتها، ونتخيل التأثيرات تتدفق للأمام مع اللحظة الحالية. من الناحية الفلسفية فإن أهم عمليات السبب/ الأثر هي قرارات وعينا والتصرفات المتتابعة بعدها. وجهة نظر الحض الاعلامي بجانبنا إزاحة حرية: بما يعني أننا أحياناً نكون في وضع التأثير على أحداث المستقبل (مثل حركة أجهزة نفاكس الخاصة) بأمر من الطرق المتعددة الممكنة، ونختار أيهما الذي سيحدث، بينما نحن في وضع التأثير على الماضي أبداً. (سوف أناقش الإدارة الحرية في الفصل 12). الماضي قد ثبت، أما المستقبل فهو مفتوح. بالنسبة لكثير من الفلاسفة فإن عملية تدفق الزمن هي تلك التي يصبح فيها المستقبل المفتوح لحظة بلحظة ذلك الماضي الذي ثبت. أخبرون يقولون إن الأحداث البديلة في كل لحظة من المستقبل هي "احتمالات" أو "ممكنات" وأن عملية تدفق الزمن هي التي تصبح فيها واحدة من تلك الممكنات فعلياً خلال اللحظات وحدها بعد الأخرى (حتى أنه، طبقاً لهذه النظرية، المستقبل لا يوجد حتى يضربه مجرى الزمن ويحوله إلى ماضي). لكن إذا كان المستقبل مفتوحاً (وهو كذلك!), فإنه لا يمكن أن تكون له صلة
بتدفق الزمن، لأنه لا يوجد تدفق للزمن. في فيزياء الزمكان (التي هي كل ما قبل الفيزياء الكمية، وبدأها من نيوتن) لم يكن المستقبل مفتوحاً. إنه هناك بمحتوى نهائي وثابت، تماما مثل الماضي والحاضر. إذا كانت لحظة معينة في الزمكان "مفتوحة" (بمعنى) فمن الضروري أن تبقى مفتوحة عندما تصبح "حاضرة" وماضية؛ لأن اللحظات لا يمكنها التغيير.

على نحو شخصي أو ذاتي يمكن القول إن المستقبل للاختيار معين يكون مفتوحاً من وجهة نظر هذا الملاحظ لأن المرء لا يستطيع قياس أو ملاحظة مستقبله هو (المرء).

لكن "الانفتاح" بهذا المعنى الذاتي لا تسمح بالاختيارات. لو أن لديه تذكرة في يانصيب الأسبوع الماضي ولكنه لم يعرف بعد ما إذا كنت قد ربحت فإن النتيجة ستكون مفتوحة من وجهة نظرك حتى لو نسيت. ولكنك لن تستطيع تغييرها شخصيًا أو موضوعيًا. ليس ثمة أسباب تؤثر بالفعل في فعل ذلك في أي وقت مهما طال. نظرية الحس العام في الإدارة الحرة تقول إن الأسبوع الماضي، عندما كان لديك خيار سواء في شراء تذكرة أو عدمه، فإن المستقبل لم يزل مفتوحًا موضوعيًا، وأنه يمكنك بالفعل الاختيار بين خيارين أو أكثر. ولكن هذا يعني أنه يتضارب مع الزمكان. وعلى ذلك فإن انفتاح المستقبل مع الزمكان هي وهم، ومن ثم فإن التسبب والإدارة الحرة كليهما وهم أيضا. لنح بحاجة إليه، ونتمسك به، ونحن بحاجة إلى الاعتقاد بأن المستقبل يمكن التأثير فيه بالأحداث الحالية، وخصوصا باختياراتنا، ولكن ربما يكون ذلك انعكاس لحقيقة أننا لا نعرف المستقبل. فنحن لا نصنع أيّة اختيارات حتى لو اعتقنا أنها نفع، لأن نتيجة اختياراتنا هي هناك، في الشريحة الصحيحة أو المناسبة من الزمكان، غير متغيرة ككل شيء آخر في الزمكان، ممتنعة عن التأثير بما نتمده. يبدو أن هذه التعمدات نفسها غير متغيرة وموجودة بالفعل ومخصصة للحظاتها قبل أن نعرف بها.
لكي تكون "أثرًا" لسبب ما يعني أن تكون تأثرت بهذا السبب، حتى تتغير عبره.
وहكذا عندما تنكر فيزياء الزمان حقيقيًا تدقق الزمن، فإنها منطقيًا لا يمكنها أيضًا استيعاب أو استضافة أفكار الحص العام عن السبب والتأثير. لأنه في كتلة الكون لا شيء متغيّر: لا جزء من الزمان يغير جزءاً آخر بأكثر مما يستطيع أن يغير جزء من جسم ثلاثي الأبعاد جزءاً آخر فيه.

هكذا حدد أن كل النظريات الأساسية في عصر فيزياء الزمكان، لها خاصة إعطاء كل شيء وقع في الماضي لحظة معينة، قوانين الفيزياء هي التي تحدد ما الذي وقع في اللحظات المتباعدة. خاصة أن اللحظات تحدد عبر لقطات أخرى تسمى "الجريئة" أو "الجميلة" في الفيزياء النيوتنية، على سبيل المثال، لو في أى لحظة عرف المرء موضوع وسرعة كل الكتل في نظام مغلق، مثل النظام الشمسي، يمكن للمرء أن يحسب (بينما) أين كانت كل هذه الكتل في كل الأوقات السابقة.

قوانين الفيزياء هي التي تميز لقطة عن غيرها وتمثل "الفراء" الذي يجمع كل القطات مع بعضها البعض كزمان، دعنا نتخيل أنفسنا على نحو سحرى ومستحسن، خارج الزمكان (أى في زمن خارج عن زمننا، ومستقل عن ذاك الزمكان) دعنا تقوم بتقطيع الزمكان إلى شرائح من المكان في كل لحظة كما فهمها ملاحظ معين في الزمكان، ثم قمنا بخلط هذه القطات من غير ترتيب ثم إضافتها ببعض مرة أخرى على نحو جديد. هل يمكننا من الخارج القول أن هذا ليس هو الزمكان الحقيقي؟ تقريباً بالتأكيد أو بالكاد. لسبب واحد: في العمليات الفيزيائية لهذا الزمن غير المرتب سوف لا يوجد شيء واحد مستمر، الأشياء ستوجد لحظياً في نقطة ما ثم تعاون الظهور في نقطة أخرى، وسبب ثان وأكثر أهمية: إن قوانين الفيزياء لم تعد قائمة. على الأقل (ه) الحتمية أو الجبرية هي النظرية القائمة بأن سلك المرد أفعاله ترجع للقضية والقدر ولا يدل له فيها (المترجم)
القوانين الحقيقية للفيزياء لم تعد قائمة، سوف توجد مجموعة مختلفة من القوانين التي ستاخذ "عدد الترتيب" في اعتبارها، وكذلك معان جديدة للوضوح وعده، ثم تُصف عدد الترتيب في الزمكان بشكل صحيح.

وهكذا سيكون الفرق - بالنسبة لنا - بين الزمكان غير المرتب والزمكان الحقيقي فادحاً. ولكن ماذا عن السكان؟ هل يمكنهم أن يخبرونا بشيء عن الفرق؟ نحن نقترب هنا على نحو خطير من "اللامعنى" - اللامعنى المعتاد لنظرية الحس العام عن الزمن. ولكن تحمل معنى وسوف تكون بنجاح من هذا اللامعنى. بالطبع لن يكون ممكنًا للسكان أن يخبرونا عن الفرق. لو استطاعوا لفعلوا، سوف يعلقون مثال على عدم الاستمرارية في عالمهم، ويبطرون أبحاثًا علمية عنه. هذا إن استطاعوا البقاء أصلاً في الزمكان غير المرتب (اللخبط). ولكن من وجهة نظر موقعنا السحري وما له من أفضلية تستطيع أن نرى أنهم تمكنوا من البقاء وأيضاً بحوثهم العلمية. تستطيع أن نقرأ تلك البحوث ورؤية أنها لا تزال تحتوى فقط على ملاحظات عن الزمكان الأصلي. كل تسجيلات العمليات الفيزيائية للزمكان متضمنة ذكريات وكل ما هو مفهوم لوعي الملاحظ، ستكون متطابقة مع تلك التي لزمكان الأصلي. نحن فقط قمنا بعدم ترتيب اللقطات على غير وضعها الصحيح، ولم نغيرها في الداخل حتى أن السكان سيظلون مدركين لها بشكلها الأصلي.

ووهذا يحدث بظروفات الفيزياء الحقيقية، الفيزياء كما يفهمها سكان الزمكان ستكون أن كل هذا التقطيع وإعادة الإصشاب لزمكان هو من قبل "اللامعنى". ليس فقط الزمكان غير المرتب، بل حتى تجميع اللقطات غير المصغرة، جميعها تتطابق فيزيائيًا مع الزمكان الأصلي. نحن نصور كل اللقطات المصغرة لبعضها البعض على النحو الصحيح لأن هذا يمثل العلاقة بينها والتي تحدثت بمرة قوانين الفيزياء. بصورة لهم تصلة بينهم في شكل مختلف سوف يمثل نفس الأحداث الفيزيائية، نفس التاريخ، ولكن على نحو ما لن تمثل العلاقات بين هذه الأحداث. وهكذا فإن اللقطات لها نظام
جوهرى نابع من طبيعتها، ويتم تعريفه عبر محتوياتها وعبر القوانين الحقيقية الفيزيائية وأية واحدة من اللقطات مع قوانين الطبيعة، لا تحدث فقط كيف ستكون كل الأدراض وإنما تحدد أيضا نظامها وتحدد أين مكانها في التتابع. وبكلمات أخرى فإن كل لقطة لديها "ختم زمني" مشفر في محتويات الفيزياء.

هكذا يجب أن يكون الأمر بالنسبة لفهوم الزمن، أن يحرر من خطأ الإعلان عن منظور عام يبالغ في الإحاطة بالزمن وخارجي عن الحقيقة الفيزيائية. ختم الزمن على كل لقطة هو ما يُقرأ على أي منبه موجود في هذا الكون. في بعض اللقطات - تلك التي تشتمل على التمثيل البشري أو الحضارات البشرية على سبيل المثال - هناك منبهات فعلية. في بعضها الآخر هناك متغيرات فيزيائية مثل التكوين الكيميائي للشمس أو في كل مادة الفضاء - والتي يمكن اعتبارها كمنبهات لأن لها قيمة نهاية ومتميزة في كل لقطاتها المختلفة، على الأقل فوق منطقة معينة من الديمان. يمكننا أن نوجد القياس فيها أو نحدد عيارها ونفحصها بدقة لكي نتوافق مع بعضها الآخر حين تداخل مع بعضها أو تتراكب فوق بعضها البعض.

يمكننا إعادة إنشاء الزمكان باستخدام النظام الجوهرى الذي تحدد بواسطة قوانين الفيزياء، إننا نبدأ بوحدة من اللقطات أيا كانت. وبعدها نحسب أيها التي تسبقها وأيها التي ستتلاوها وكيف سيبعدان، ونضعها مع المجموعات الباقيات ثم نتصفحون في أي من جوانب اللقطات الأصلية. وبتكرار العملية سوف ينبني كل الزمكان.

هذة الحسابات معقدة لإجراءها في الحياة الفعلية ولكنها صحيحة وفعالة ومنطقية في تجربة ظنية تخيلنا خلالاها أنتمنا وقد أفسدها عن العالم الفيزيائي الحقيقي. (وأيضًا) وعلى نحو صريح، فيما قبل الفيزياء الكمية ستكون هناك لقطات مستمرة بشكل لا نهائي حتى أن العملية التي وصفناها على التوسيع محلها عدد نهائي من العمليات، ولكن المبدأ سيظل واحدا أو هو نفسه.
قابلية أي حدث للتنبؤ بدلالة حدث آخر لا تعني أن هذين الحدثين هما سبب
ونتيجة. على سبيل المثال فإن نظرية الديناميكا الكهربية تقول بأن كل الإلكترونات
تحمل نفس الشحنة وعليه فإننا باستخدام هذه النظرية نستطيع كثيرا ما نفعل
التنبؤ بنتيجة قياس يخص إلكترون ما من خلال قياس إلكترون آخر. ولكن أي من
النتيجة لا يمكن بسبي النتيجة الأخرى. وفي الواقع، وفي حدود أبعد ما نعرفه، فإن
شحنة أي إلكترون لا يمكن السبب فيها أي عملية فيزيائية. ربما تسببت فيها قوانين
الفيزياء ذاتها (ولو أن قوانين الفيزياء هي نفسها وكما اعتقدنا أن نعرفها على ما هي
عليه لا تنتبا بشحنة الإلكترونات هي مجرد تقول أن كل إلكترون شحنته تتساوى مع
شحنته أي إلكترون آخر). ولكن على أي حال، هنا مثال على الأحداث (نتائج ما نجريه
من قياسات على الإلكترونات) التي يمكن التنبؤ بها من خلال غيرها، ولكن لا نجعل أي
منها سببا للآخر، ليست هناك أي مساهمة سببية بينها.

فهذا مثال آخر، إذا لاحظنا مكان قطعة واحدة في لعبة "البازل" (3)، وهي
مرتبة بشكل معقد ومثير تماما، ونحن نعرف شكل كل القطع الأخرى وأدائها متشابكة
أو مشغقة بشكل جيد يمكننا بذلك أن ننتبأ بمكان القطع الأخرى أين ستكون. ولكن
هذا لا يعني أن القطع الأخرى قد تسببت في وجود القطعة الأولى حيث هي والتي
لا تحتاجن في البدء أي شيء. أي، أي كان للسبيبة علاقة بالأمر فهو سيتعتمد على كيف جات
الأحجامية لكل إلى هنا. إذا كانت القطعة التي لاحظناها في البداية قد وضعنا منذ البدء
وتحديها فا شكل أنها ستكون بالطبع من بين أسباب وجود باقي القطع في مكانها. وإذا
كانت أي قطعة أخرى قد وضعت في مكانها في البدء فإن القطعة التي لاحظناها في
البدء ستكون أثرًا لذلك التي وضعنا قبلها وليس سببا لها. ولكن لو أن اللعبة قد بنت

(3) لعبة إبارة عن لوحة مرسمة أو منظور طبيعي ولكنها مقطعة بواسطة منشار اخرافي (أركيت) إلى قطع
خشبية صغيرة ذات أشكال متعددة وذات زوايا تعديل لتحديد على اللعب بعد بعثة أنها ستستخدم
ذكاء في إعادة تشغيلها على نحو سليم لتشكل الصورة أو الرسم الأصلي. (الترجم)
من خلال ضرفة واحدة لانتشار منحنينات (أركيتيت) ولم يتم تجميعها أبدا فإن أي من أمكنه القطب لكي يكون سببا للقطع الأخرى أو أكثر من تأثيراتها. كما لم يتم تجميعها بأي نظام ولكن أنشت على نحو متزامن، وفي أوضاع حيث انضمام الأموار فيها لقواعد اللعبة التي جعلت من هذه الأمكنة يمكن التنبؤ بها على نحو تبادلي. ومع ذلك فأي منها لم يكن سبباً للآخر.

حتمية القوانين الفيزيائية للأحداث التي تقع في الزمكان تشبه القابلية للتنبؤ في الأحذية (اللعبة) ذات القطب المعشقة جيدا أو بشكل صحيح. قوانين الفيزياء تحدد ما يحدث في لحظة ما عما يحدث في غيرها من اللحظات، تماما مثلا تحدد قواعد اللعبة مكان بعض القطع عن مكان بعضها الآخر. ولكن تماما مثل مع اللعبة فقا يكانت الأحداث في لحظة مختلفة سببا في غيرها أم لا. تعتزم على كيف وصلت اللحظة إليها.

إحنا لا نستطيع القول بالنظر إلى اللعبة الأحذية إذا كانت اللحظة قد وصلت إليها عند وضع كل قطعة منها في كل مرة. ولكن مع الزمكان نحن نعرف أنه لا معنى للحظة واحدة ما إذا كانت قد وضعت بعد الأخرى، لأن هذا من شأنه أن يكون تدققا للزمن.

ولهذا نحن نعرف حتى لو كانت بعض الأحداث يمكن التنبؤ بها من أحداث أخرى فإن أحداثا في الزمكان ليست سببا لأحداث أخرى. دعنا أؤكد مرة أخرى بأن كل ذلك كان طبيعا الفيزياء قبل الكمية، والتي فيها تقع كل الأحداث في الزمكان وكل ما نراه في هذا الزمكان يتنافر مع السبب والأثر. وليس أن الناس يخطؤون بالقول إن ثمة أحداثا فيزيائية معينة هي أسباب وأثار لغيرها. إنه فقط يكمن في أن هدفهم لا يتواجد ولا يمكن تحميله بقوانين فيزياء الزمكان. ولكن لا شيء مع هذا لأن فيزياء الزمكان هي ذاتها مراوية وغير صادقة.

لقد قالت في الفصل الثاني أن هناك شرطين لزمن لأي كينونة لتكون سببا في إعادة نسخ ذاتها. أولها أن هذه الكينونة في ذاتها هي في الواقع "معيدة نسخ"، وثانيهما أن معظم التغييرات فيها في نفس الحالة، لن يعاد نسخها. هذا التعريف
يتضمن فكرة أن السبب هو شيء من شأنه أن يحدث فرقاً في آثاره، وأنه يعمل من أجل السببية بصفة عامة. لأنه لكي تكون X سبباً في Y فيجب توافر شرطين، أولهما أن X يذهب أن يقع؛ والثاني، أن X لم تكن لتقع إذا لم تقع Y أيضًا. على سبيل المثال: ضوء الشمس كان سبباً للحياة على الأرض، لأن كلاً من ضوء الشمس والحياة حدثاً على الأرض، وبسبب أن الحياة ليس لها أن تستلزم وتؤثر في غياب ضوء الشمس.

وهكذا فإن المعقلانية بشأن السبب والأثر يتعرّض اجتثاثاً أيضاً مع متغيرات الأسباب والأثر. المرء يقول دائماً ما الذي يمكن أن يحدث له في حالة تساوي الأشياء الأخرى، لو أن كذا وكذا فإنه حادثة ما يمكن أن تقع على نحو مختلف. يستطيع مؤرخ ما أن يصدر حكماً مثل "لو أن فاراداي قد وافته المنيا عام 1830 لتنظرت التكنولوجيا أو التقنية ليلة عشرين عاماً". يبدو معنى هذا الحكم صادقاً وواضحًا. وطالما أن فاراداي لم تواجه المنيا عام 1830 وإنما اكتشف الحد الكهرومغناطيسي عام 1831، فإن معنى الحكم يبدو جديداً بالتصديق أيضاً ولو ظاهرياً. يتساوي القول إن التقدم التقني الذي حدث يرجع جزئياً إلى اكتشاف فاراداي، والقول بأنه يرجع إلى بقائه. ولكن ماذا يعني في مفهوم فيزياء الزمكان التعلق على المستقبل وعن أحداث لم توجد بعد؟ إذا لم تكن حادثة كهذة في الزمكان، مثل موت فاراداي عام 1830، فإن تكون هناك ثمة أحداث ناجمة عنها. من الطبيعي أنه يمكننا تخيل زمكان يحتوي على مثل هذه الواقعة، ولكن حينئذ طالما أننا نتخيله، فإنه يمكننا أيضاً تخيل أيّة نتيجة أو آثار ترغب فيها. يمكن أن نتخيل مثل أن موت فاراداي أعقابه تقدم تقني متسارع. ربما نحاول تجنب هذا الغموض عن طريق تصوير زمكانات تكون فيها قوانين الفيزياء هي نفسها حتى و لو أن الحدث محل البحث فيها يختلف عن الحدث الواقع في الزمكان الفعلي، إذ ليس واضحاً ما الذي يحكم القيود على تخليلتنا على هذا النحو، ولكن على أي الأحوال، أي لو أن قوانين الفيزياء كانت.
هي نفسها، فإن الحدث موضوع البحث لم يكن ليختلف، لأن القوانين هي التي جددهه بدون غموض أو الابتس من التاريخ السابق. وبالتالي فإنه ليس ثمة ما يدعو إلى تخيل التاريخ المسبق مختلفًا أيضًا. كيف يختلف؟ تأثير المفهومات المختللة في التاريخ تعتمد تقنياً على ما نعنيه بالتساوي بين الأشياء. وهذا ما يبدو من الغموض إنقاصه، لأن هناك عدد لا نهائي لتخيل حالة الأشياء قبل عام 1860 والتي كانت من الممكن أن تقدّر إلى موت فاراداي في هذا العام وبعضا منها كان يمكن بدون شك أن يؤدي إلى تقدم تقني أسرع وبعضها قد يؤدي إلى التباطؤ فيه. أي منها هو الذي نشير إليه باستخدام عبارة: لو إِنَّمَا يَنَبِّئُونَ بِالقَدْرِ ۚ وَهُوَ الْكُلُّ ﷺ؟ تساوي الأشياء الأخرى؟ حاول، كما ربما تفعل، إننا لننجز في إدراك هذا الغموض في ظل فيزياء الزمكان، ليس ثمة تجنب لحقيقة أن شيئا واحدا فقط يحدث في الواقع في ظل الزمكان، وكل ما عدا محض خيال.

ومن خبراء استخباراته أنه في ظل فيزياء الزمكان فإن الجمل الشرطية التي تكون مقدماتها غير صادقة (إذا كان فاراداي قد قام مشهورا عام 1830 ...) لا تكون لها معنى. المنطقة يمكن أن تستوعب هذه العبارات "الشرطية التناقصية" (أو "الملغة لله") والشراط تنتمي إلى أنها متناقضات تقليدية. نحن نعرف ما الذي يعنيه من هذه العبارات، وبعد فحصنا نحاول تأكيدها ووضعها تبدو كأنها تتخب أو تتبخر، ومصدر هذا التناقض ليس في المناطق أو اللغويات وإنما في الفيزياء، في الفيزياء الزائفة للزمكان. حقيقة الفيزياء ليست هي الزمكان. إنها شيء أكبر بكثير، وأكثر من كنبة متغيرة ومتنوعة إنها تعدد الأكواك إذا أن متساعد الأكواك في أول تقريبي للمساحة يشبه أن تكون عدد كبار من الزمكان تشارك في الوجود وتفاعل قليلا أو بخفية. إذا كان الزمكان يشبه تراكم من القطع، وكل لقطة منها هي كل الفروع في لحظة واحدة، إذن يكون متعدد الأكواك مثل مجموعة واحدة من مثل هذه التراكبات.

وحتى هذا (كما سنرى) لا يمثل صورة دقيقة، ولكن يمكننا، ولو قليلا، أن تستضيف
الأسباب والآثار: لأن متعدد الأكوان يضم ثمة بالتأكيد، ولد بالكاد، بعض الأكوان التي توفي فيها فاراداي عام 1820، وعلى وجه الحقيقة (لا تثبت حقيقة ملحوحة ومع ذلك فهي حقيقة موضوعية) فإن التقدم في تلك الأكوان تأخر أو لم يتأخر بالتناسب مع التقدم في كوننا، وليس ثمة شيئا إجبانيا بشأن التنوعات في كوننا كالعبيرات المضادة للواقع إذا كان فاراداي قد مات عام 1820 ومتى تشير إليه، إنها تشير إلى التنوعات التي وقعت بالفعل في مكان ما في متعدد الأكوان، وهذا هو ما يحل الغموض ينده، الإرغاء بتخيل أكوان أخرى لائب وراءه، لأنه يمكننا تخيل العوالم التي نحبها، وأي مقاطع منها نرغب فيها، ولكن في التعددية تكون الأكوان في مقاطع محددة، ولذلك من قبل العبيرة ذات المعنى القبول بأن أحدا ما "نادرة" أو "شائعة" في ظل التعددية، وأن أحداث تلت أخرى في معظم الأحوال، معظم الأكوان الممكنة منطقياً غير ممثلة على الإطلاق - فليس ثمة، مثل، أكوان تختلف فيها شحنة الإلكترون عن مثيلتها في كوننا، أو التي لا تتحقق فيها قوانين فيزياء الكم، وقوانين الفيزياء التي تشير ضمنياً إلى أنه في مضادات الواقعة تكون القوانين السائدة الطبيعة في أكوان أخرى، أي قوانين ميكانيكا الكم ولذلك فإن عبارة من مثل "أو ...
إذن ..." يمكن أخذها دون غموض على أنها تنتمي في معظم الأكوان التي توفي فيها فاراداي عام 1820 تأخرت التقنية بالقياس إلى تقنيتنا نحن، ويشار عام فإنه يمكننا القول بأن الواقعة X قد تسببت في الواقعة Y في كوننا إذا كانتا كلاهما قد وقعتا في كوننا ولكن في معظم تنوعات كوننا التي لم تقع فيها X فإن 2 لم تحدث أيضاً.

إذا كان متعدد الأكوان حرفياً، هو تجميع للزماتان، فسيكون المفهوم الكمي للزمن هو نفسه المفهوم التقليدي. في الشكل 11 - 6 يظهر أن الزمن هو تعاون من اللحظات، والفرق الوحيد سيكون أن في لحظة معينة من التجدد ستكون أكوان عديدة في حالة وجود بدلا من كوني واحد، الحقيقة الفيزيائية في لحظة معينة ستكون، من حيث التأثير، لقطة فائقة تشمل على قطاعات لعدد من الأوجه المختلفة للفضاء، وكل

389
الحقيقة لكل الزمن سوف تكون كومة تراكمية لكل اللقطات الفائقة، تماماً كما كانت تقليدياً كومة من لقطات الفضاء. لأنه بسبب التداخل الكمي فكل لقطة لن تكون بعد محددة كليّةً باللقطة السابقة عليها في نفس الزمكان (ولأنها ستكون تقريبًا، لأن الفيزياء التقليدية عادةً ما تكون تقريبًا جيدًا للفيزياء الكم). ولكن اللقطات الفائقة بدورًا من اللحظة المعينة ستكون بالضبط وعلى نحو كلّي محددة بواسطة اللقطة الفائقة التي سبقتها. هذا التحديد الكامل لن يسمح بنشوء التنبؤ الكامل، حتى من حيث المبدأ، لأن إقامة تنبؤ سيتطلب معرفة ما حدث في كل الأكوان، وكل نقشه منها يمكنها أن تفهم أو تدرك مباشرة كونًا واحدًا. ومع ذلك، إذا نحن معنيين بمفهوم الزمن، فإن الصورة مثل زمكان من لحظات متعاقبة ولها علاقة بقوانين جبرية، فقط مع حدوث الكثير في لحظة ما، ولكن أكثرها يstoff على أي نسخة واحدة من أي ملاحظة.

(الشكل 11–6)

إذا كان متعدد الأكوان هو مجموعة من الزمكانات المفقاعة فسيظل الزمن عبارة عن لحظات متعاقبة

390
ومع ذلك، فهذا ليس حال متعدد الأكوان، إن نظرية كمية للزمن قابلة للعمل - والتي لا بد أن تكون أيضاً نظرية كمية للجاذبية - قد صارت مهماً كاملاً وإن ظل بعيدًا عن متناول يد الفيزياء النظرية لعدة عقود مضت. ولكننا الآن نعرف أنها ما يكفي عن: إلى مدى نعرف فيه أنه لو أن قوانين فيزياء الكم هي جبرية تماماً على مستوى التجدیدة، فإنها لا تجزئ متعدد الأكوان إلى زمكانات منفصلة بالطرقة الموضحة في الشكل (11 - 1) ولا إلى لقفات فائقة تتحدد كل منها بالكامل بواسطة الأخريات. وهكذا نحن نعرف أن الفهم التقليدي عن الزمن من أنه تتبع لحظات ليس صحيحاً على الرغم من أنه يمكننا بتقريب جيد في كثير من الأحوال بمعنى مناطق عديدة في التجدیدة.

إيضاح وشرح المفهوم الكمي للزمن، دعنا نتخيل قيامتنا بتطبيق متعدد الأكوان ذاك إلى شرائح من اللقفات، وجعلنا من هذه الشرائح كومة منها. والذي نستطيع به أن ننصب كل شريحة منها إلى جوار الأخرى لجمعهم معًا مرة أخرى؟ كما في السابق ليس أمامنا سوى قوانين الفيزياء، وما هو حقيقي وجوهري من قطرات اللقفات، وحدها هي المقبلة هنا كمادة غراء نستخدمها في اللصق. لو كان الزمن في متعدد الأكوان هو يتتابع من اللقفات، فسيكون ممكنًا تعريف كل لقفة الفضاء في لحظة معيينة لكي نجعل منها لقفة فائقة. ليس مدهشاً أننا لن نجد طريقة لفعل ذلك. في التجدیدة لا يملك الزمن خاتم زمن: ليس هناك ما هو مثل ذلك، بحيث تكون كل لقفة في كون آخر قد وقعت في نفس اللحظة التي وقعت فيها في كون غيره، لكحظة معيينة في كوننا نحن، لأن هذا سيكون من شأنه أن يكون هناك مخطط عام للزمن يحيط به كله، خارج التجدیدة، ولها صلة بالذات حواتم تقع في متعدد الأكوان. ليس هناك مثل هذا المخطط العام.

ليس ثمة تكافؤ أساسي بين لقفات من أزمة أخرى وبين لقفات من أكوان أخرى، وهذا يمثل القلب المميز للمفهوم الكمي للزمن:
الإزمة الأخرى هي بالضبط حالات خاصة من الأكوان الأخرى.

هذا الفهم يبرز في البداية من بحث مبكر عن الجاذبية الكمية في سينتنتي القرن الماضي، وبالذات البحث الذي أجريه برانس دو ويت وويليام ووترز - Wilam Wooters - في العام 1982. اللقطات التي تتعلق عليها "أزمة أخرى في كوننا" تميز عن تلك التي في "أكوان أخرى" ولكن فقط من وجهة نظر ما نشاهده نحن، وفقط من ناحية أنها قريبة الصلة على نحو خاص علينا من خلال قوانين الفيزياء، ولذلك فهي تمثل تلك اللقطات التي يعتبر وجودها دليل ما تشتهر عليه لقطاتنا. ولذا السبب فقد اكتشفناها لعدة آلاف من السنين قبل أن تكتشف التعددية، والتي ترسخ بها على نحو خفيف من خلال المقارنة وعبر تأثيرات التداخل. وقد أقنعنا بنا من نقطة خاصة (الماضي والمستقبل في تصريفات الأفعال) للتعبير عنها. وأيضا بنايات أخرى (مثل عبارات "أين... والتشكلات الشرطية والدائمة للأفعال) للحديث عن طرازات أخرى من اللقطات، دون حتى معرفة هل هي موجودة أم لا. وقد اعتقدنا أن نصف وندس في حديثنا نعيم من طراز اللقطات - إزمة أخرى، وأكوان أخرى - في مستويات مفاهيمية مختلفة كلية. الآن نرى أن مثل هذا التماس ليس ضروريا.

لمعنا الآن نستمر مع فكرتنا في إعادة البناء لم تعد الأكوان يوجد الآن ما هو أكثر من كومة اللقطات، ولكن دعنا مرة أخرى نبدأ بلقطة واحدة من كون واحد في لحظة واحدة. إذا بحثنا الآن في الكوما عن لقطات أخرى مشابهة جدا للقطة الأصلية، سنجد أن هذه الكوما مختلفة جدا عن الزمكان غير المشابه. وذلك لسبب وحيد هو أننا سنجد لقطات عديدة متطابقة تماما مع الأصلية. في الحقيقة أن أي لقطة موجودة هي موجودة كليا في عدد لا نهائي من النسخ. فليس إن شاء ما عن السؤال عن عدد اللقطات التي لها خصائص كذا وكذا... ولكن نسأل فقط أي قطاع من هذه المجموع 392
اللهائي تكون له خصوصية ما، ومن أجل الإيجاز فيما أقول، عندما أتحدث عن عدد معين من الأكوان سأعني دوما قطاعا معينا من العدد الكلي داخل متعدد الأكوان.

إذا وجدنا بين تنوعات النسخ مني أنا في الأكوان المختلفة، أقول إذا كنت ثمة نسخ متطلبة معني، أيها هي أنا؟ أنا بالطبع هو كلم. كل منهم قد سأل على التنفس السؤال "أيهم يكون أنا؟" وأي طريقة صادقة للإجابة على هذا السؤال لا بد أن تعطيهم نفس الإجابة. بافتراض أنه لا معنى للسؤال فيزيائيًا عن أي النسخ المتطلبة هو أنا، هذا الافتراض يعني افتراضًا آخر بأن ثمة إطار مرجعي خارج متعدد الأكوان تنسب إليه الإجابة المطلوبة مثل "أنا الثالث من اليسار..." ولكن أي "يسار" هذا وماذا تعني "الثالث؟" مثل تلك المفردات تعني شيئًا عندما تتخيل لقاطن مصغف في وضعية مختلفة في فضاء خارجي ما. ولكن متعدد الأكوان لا يوجد في فضاء خارجي بأكثر مما هو موجود في زمن خارجي؛ إنه يحتوي كل الفضاءات وكل الأزمنة هناك. إنه فحسب وفيزيائيًا هو كل ما هو موجود.

نظرية الكمية عمومًا لا تحدد ماذا سيحدث في لقطة معينية معينة بداتها، كما تفعل فيزياء الزمن الفضائي. وبدلا من ذلك فإنها تحدد ما هو القطاع من اللقطات في متعدد الأكوان ستكون لديه الخاصية المعينة. ولذلك فإن سكان التعددية تستطيع أحيانا أن نقيم فقط تنبؤات محتملة حدوث من خلال تجربتنا نحن، حتى ولو أن ما سيحدث في متعدد الأكوان سيكون محددًا بالكامل. افتراض مشابه أنا أجرينا رهنًا بعملية معدنية (بذفتها دائرة في الهواء) عند استقرارها على سطح المائدة على أحد وجوهها "صورة" أو "كتابة" يحدد الرابع وفقًا ماهما عليه في أيهما - المترجم) فثم تنبؤ مطلق لنظرية الكم هنا إذا ما في عدد معين من اللقطات، انطلقت العملية في حركتها العزلية بطريقة معينة وأظهر النتائج قراءة محددة، فثمة نصف هذا العدد من الأكوان تظهر فيه القراءة أعلى ومن ثم تستقر العملية على وجه الـ "صورة" أما النصف الآخر،
من الأدوات - نصف العدد - فتظهر فيه القراءة أيضا أعلى ولكن العملة تستقر فيه على وجه "الكتابة".

الشكل 11 - يظهر المنطقة الصغيرة من التعددية التي تقع فيها تلك الأحداث.

حتى في منطقة صغيرة تظل هناك كمية من اللحظات يجب إيضاحها، ومن ثم سنجعل كل نقطة واحدة في الرسم التخطيطي لتمثل إحدى اللحظات منها. كل اللحظات التي تنظر إليها تشتمل على منهجيات موحدة الطراز، والرسم التخطيطي قد تم ترتيبه على أن كل اللحظات مع قراءة معينة للمنحب سوف يمثلها الخط العمودي أو الرأسي، وقراءة المنبه تنتشر أو تتبع في الرسم من اليسار إلى اليمين. كلما مرنا مع الخط الرأسي في الرسم فليست كل اللحظات التي سنمر عليها مختلفة عن بعضها. سوف نمر على مجموعة متطابقة منها المشارك إليها بالجزء المظلم، واللحظات التي تظهر معها قراءة أدنى للمنحب تقع في الخانة اليسرى، ونلاحظ أو نرى أنه في كل تلك اللحظات، والتي في متطابقة، ستكون العملة في حالة دورانها المزدوج، وفي التأثير اليمنى من الرسم نرى أن نصف اللحظات التي ظهرت فيها قراءة المنبه متأخرة قد استقرت العملة على وجه "التصوير" ولف التي النصف الآخر استقرت على وجه "الكتابة". في أكون تكون قراءة المنبه فيها متوسطة (لا قراءة أسبق ولا أخرى متأخرة) ثم ثلاثة طرز من الأدوات ممثلة في قطاعات بعيدة عن قراءة المنبه.

إذا كنت حاضراً في المنطقة الموضحة في التعددية، فكل النسخ منك سوف ترى أولاً في حركتها المغلقة، وي بعدان فنص النسخ سترى استمرارها على وجه "التصوير" والنصف الآخر سيرى استمرارها على وجه "الكتابة". وفي مرحلة متوسطة من هذا سوف تكون قد رأت العملية وهي مستمرة في حركتها اللولبية ولكن على أي وجه سيمكنك التنبؤ بأنها تستقر عليه في النهاية. هذا الفرق بين النسخ المتطابقة ملاحظاً ما في أوجه تختلف بدرجة قليلة هو المسئول عن سمة الاحتمالية الموضوعية في التنبؤات الكمية. لأنه لو سألت مبدعًا، أي نتيجة مقترحة في ربط العمله هذا، فإن

394
الإجابة ستكون أنها غير قابلة للتنبؤ على نحو صارم. لأن نصف النسخ من الكتبة ستستهلك هذا السؤال سترى وجه "الصورة" في العمل وسيرة النصف الآخر منها "الكتابة". ليس هناك مثل هذا. أي من النصفين الذي سيرى وجه الصورة باكثر مما ليست هناك إجابة أيضًا لسؤال "أي النسخ هي أنا؟". وللأغراض العملية يمكن أن تلاحظ هذا على أنه تنبؤ احتمالي أو قابل للحدث بأن نسبة فردية تعادل 50% للعملة أن تستقر على وجه "الصورة" و50% الباقية تستقر فيه على وجه "الكتابة".

حتمية النظرية الكمية، هي بالضبط كما في الفيزياء التقليدية، كليهما يعمل للأمام والخلف عبر الزمن. ومن ناحية حالة الجموعة الموحدة لـ "الصورة" و"الكتابة" فإن اللقطات في الوقت المتأخر من الشكل (11-17)، حالة "الحركة المغزلية" للعملة في وقت أسبق، كليهما حتمي أو محدد والعكس بالعكس. ومع ذلك فن وجهة نظر أي ملاحظة، النتيجة تضيع في عملية الرهان، في حين أن المرحلة المبكرة المتمثلة في "الحركة المغزلية" للعملة، ربما تكون بين خبرات الملاحظ، إلا أن الجموعة الموجودة من وجهة "الصورة" و"الكتابة" لا تلتقي مع أي خبرة ممكنة للملاحظ. ولذا فإن الملاحظ في الوقت المبكر للرهان (الحركة المغزلية للعملة) ربما يمكن أن يبتني بملاحظتها المستقبلية ولكن النتيجة موضوعيا ستكون احتمالية. لكن لا أحد من النسخ المتاخرة وقتا يمكن أن يكون في مقدوره بعد أن رأى النتيجة أنعيد حالة العملة وهي تدور قبل استقرارها، أي بشكل ارتجاعي، لأنه المنهاك ستكون حينئذ قد توزعت عبر طرازين مختلفين من الأكواسي، وهذا يجعل عملية الارتجاع هذه من الوضع النهائي مستحيلة. على سبيل المثال: إذا كان كل ما نعرفه أن العملة قد أظهرت وجه "الصورة"، يوحن سابقة على ذلك ربما كانت الحالة وقتئذ هي ما أسماه "الدوران المغزل"، أو أن العملة كانت تدور في اتجاه "الكتابة"، وأنها من نوع سيستقر دائمًا على وجه "الصورة". ليس ثمة هنا
إمكانية للاسترجاع، حتى ولو كان ارتجاعاً احتمالياً. الحالة السابقة للعمل بالبساطة لا تحددها حالاتها المتاخرة أي حالة لحظات وجه “الصورة”. ولكن فقط من خلال حالة “الفصل” بين لحظات وجه “الصورة” ولحظات وجه “الكتابية” أي أن أفقي يمر عبر الشكل (11 – 7) في تتابع للحظات مع تزايد في قراءات الذنب. ربما يغرينا التفكير في هذا الخط، مثل الذي تبدو في الشكل (11 – 8) كزمناه، وكذل الرسم على أنه كومة من اللحظات، واحدة عن مثل هذا الخط. يمكننا أن نقرأ من الشكل (11 – 8) ماذا يحدث في الزمكان معرفاً بالخط الأخف، وللحظة هو يتكون من العملة الذاتية مغزلياً. وللحالة أخرى تحتوي على العملية المتقدمة بطريقة تتبع الوحيد كأنها ستتطور على وجه “الصورة”. ولكن في لحظة متاخرة وبالتناقص مع ذلك، تحتوي عليها وليست كأنها تتحرك بطريقة تنبع إليها تنبع إلى الاستقرار على وجه “الكتابية”. وأخيراً تستقر على وجه “الكتابية. ولكن هذا مجرد نقص أو عيب في الرسم، وكما أشارت في الفصل 9 (انظر الشكل 9 – 4) في هذه الحالة فإن قوانين الكم تتباينا أنه لا يوجد ملاحظ يتذكر رؤية العملية في حالة تنبع بوجه “الصورة” يمكن له أن يرى حالة وجه “الكتابية. إن الحكم على ما أسماه (التنبؤ بوجه “الصورة”) في المقام الأول. وذلك ليس مجرد ملاحظ في التعددية سيتعرف على الوقائع التي تحدث في الزمكان المعرق بالخط. كل ذلك يؤكد أنه لا يمكننا أن نستقبل هذه اللحظات معًا بشكل اعتباطي، ولكن فقط بطريقة تعكس العلاقات بينهما كما حددتها قوانين الفيزياء. اللحظات عبر الخط في شكل 11 – 8 لا تقيم علاقات مع بعضها بشكل مُرُضي لكي تقدم أو تحكم على أنها متجمعة معاً في كون واحد. مع الاعتراف بأنها تظهر في ظل القراءات المتزايده للزمن كانها في زمكان وكتابتها أختنا زمنية والتي ستكون كافية للزمكان كي يمكن مشابهته. ولكن في التعددية سيكون هناك مدى واسع من القطات لا تكفي القراءات المتزايده للمنبه لتحديد أي لحظة لها علاقة بالことです. لكي نفعل ذلك علينا أن نأخذ في اعتبارنا التفصيل المعقد والصعب بالنسبة لأي لحظة في التي ستحدد الأخرى.
قراءات توقيتية متزايدة

(شَكل ١١ - ٧)
منطقة من متعدد الأكران تشمل على عملية تدوير مغرزلاً وكل نقطة في الرسم التخطيطي تمثل لقطة واحدة

(شَكل ١١ - ٨)
تتابع من اللقطات مع قراءات متزايدة للمنبه الذي ليس بالضرورة زمنًا
أي لقطة في الزمكان تتعدد بواسطة أول لقطة أخرى وكما قل فان هذا الأمر ليس كذلك عموما في متعدد الأكوان. تماما كما في حالة مجموعة من اللقطات المتتابعة (مثل تلك التي تمثل العملية أثناء دورانها المغزل) تعدد حالة عدد متساوية معها من اللقطات المتبقية (مثل وجود "الصورة" ووجود "الكتابة"). وسبب خاصية الزمن في المعكوسية في قوانين فيزياء الكم، في المظهر العام، ثمة قيم متعددة في حالة حروف كلمة "مجموعة" أيضا تحدد حالة ما يسبقها. ومع ذلك، فهناك مناطق في متعدد الأكوان، وبعض الأمكاني في الفضاء، تسبق فيها لقطات بعض الموضوعات الفيزيائية، لمدة ما في سلسلة، كل عدد منها يحدد كل اللقطات الأخرى إلى ترتيب جديد. تتألف لقطات النظام الشمسي ستكون نموذجا مثاليا لذلك، قوانين الفيزياء التقليدية في هذه المناطق في تقارب جديد لقوانين الكم. التعددية في هذه المناطق والأمكاني، تبدو في شكل (11-6)، تجمع من الزمكان، وفي هذا المستوى من التقرب يتناقض المفهوم الكمي للزمن إلى المفهوم التقليدي. المرء يستطيع التميز بين "الأزمة المختلفة" وبين "الأكوان المختلفة"، والزمن هو نابع من اللحظات، ولكن هذا التقارب يسقط إذا تفحص المرء هذه اللقطات بتفصيل أكثر، أو نظر إلى الزمن السالفي أو الآتي، أو بعيدا عن المحدودية إلى "التعددية".

كل نتائج التجارب من السائد أن تكون في متناولة ولا مهرب لها من تقريب الزمن إلى تتابع من اللحظات. إننا لا نتوقع أن يفشل هذا التقرب في أي تجربة أرضية أو ذيونية قابلة للتوقع، ولكن تقول النظرية إنه لا بد من فشله بشدة في طرح "Big Bang" معينة من العمليات الفيزيائية. الأول هو بداية الأكوان، الانفجار الكبير طبقا للفيزياء التقليدية، فإن الزمن بدأ مع حزام كان فيها "المكان" أو "القضاء" مكشوفا بطريقة لا نهائية ويشمل حيز نقطة منفردة لا متاخمة الصغر، وقبل ذلك لم تكن شبة لحظات. وطبقا للفيزياء الكم، إذا ما نستطيع قبوله فإن اللقطات القريبة جدا من الانفجار الكبير لم يكن لها نظام معين أو مميز. خاصية التتابع هذه في الزمكان لم تبدأ.
مع الانفجار الكبير، ولكن بعد بعض الوقت منه، من طبيعة الأشياء فإنه لا يفيد أي
معنى أن تسال أي قدر من الوقت ذاك. ولكن يمكننا القول بأنها اللحظات الأبك والتي
يصلح تقريب جيد لها أن تستنتج الفيزياء القديمة أن الانفجار الكبير قد وقع مبكرًا
في 10^{-40} من الثانية (زنم بلاك).

الثاني والشامب، لفشل تناسبية الزمن، وهو ما يُظهر أنه يحدث في داخل الثقوب
السوداء عند الانهيار النهائي للكون (الانفجار الكبير) (Big Crunch)، إذا كان هناك
مثل ذلك. في كلتا الحالتين تتضفط المادة إلى كثافة لا نهائيّة طبقاً لفيزياء التقليدية،
تمامًا مثلما كانت في الانفجار الكبير، والنتيجة أن القوى الجاذبة سوف تمزق نسيج
الزمن.

وبالمثابة، إذا ما كنت قد تساؤلت ما الذي حدث قبل الانفجار الكبير أو الذي
سيحدث بعد الانفجار الكبير، يمكنك التوقف عن التساؤل الآن، لماذا يكون من
الصعب تقبل أنها ليست ثمة لحظات قبل الانفجار الكبير أو بعد الانفجار الكبير.
لدرجة أن لا شيء يحدث أو يوجد هناك؟ السبب أنه من الصعب تخيل أن الزمن بدأ أو
يتوقف. ولكن حينذاك الزمن لا بدأ ولا يتوقف لأنه لا يتحرك أبدًا. متعدد الأكوان لا
يأتي للوجود أو يتوقف عن الوجود. مثل هذه المصطلحات تفترض مسبقاً تدقق
الزمن. إنه فقط تخيل التدفق في الزمن هو الذي يجعلنا نتعجب حول ما حدث قبل أو
بعد الحقيقة كلها.

* ماكس بلاك (1858-1947) فيزيائي نظرية ألماني، هو الذي أصل نظرية "ميكانيكا
الكم" (حصل على جائزة نوبل من أنجليا) كما له مبدأ يعرف باسمه: "شابت بلاك" وهو أساس ميكانيكا
الكم ووصف سلوك العناصر والهواتف على المستوى الذي منظمًا حالة عنصر الضوء وتقدير ودعته
10^{-40} X 10^{-6} ثانية، فضلاً عن أن نظريته تلك أسفرت عما يقال له مبدأ الشك أو اللائين
بمعنى عدم إمكانية التحقق من قياس زمن ومكان عنصر ما في نفس الوقت. (الترجمة)
الثالث، من المظاهر أنه على مستوى التأثيرات الكمية في الميكروسكوبيات الثانوية
أو البديلة فإنها ستؤثر أو تفتقر نسيج الزمكان. وهذا يغلق ثغرات الزمن (يغلق الدائرة)
كتأثي له الآلات الزمنية الرفيعة توجد في هذا المستوى. وكما سئر في الفصل
القادم، فإن هذا النوع من انحياز نتائج الزمن ممكن فيزيائيًا أيضًا على المستوى
الأكبر، وهو سؤال مفتوح إذا كان هذا يحدث قرب مثل هذه الأشياء كتناوب الثقوب
السوداء.

وهكذا، على الرغم من عدم استطاعتنا حتى الآن من سير أو استكشاف أي من
هذه التأثيرات، فإن أحسن نظرياتنا تخبرنا بأن الفيزياء الزمكان ليست بئى حال أبدا
أكثر الأوصاف انضباطا للحقيقة. ومهمها كان تقارب جيدًا، فإن الزمن في الحقيقة لا
بد أن يختلف أساسا عن التتابع "الخطي" الذي يفترضه الحس العام. ومع ذلك فإن
كل شيء في التعددية محدد بشكل صارم كما في الزمكان التقليدي. استبعد لقطة
واحدة، ستقوم الباقيات بتحديدها تماما. استبعد معظم اللقطات والقلة الباقية منها
ربما تظل تحدد كل ما أطلقته، تماما كما تفعل في الزمكان. الفارق الوحيد هو، على
غير الزمكان، فإن متعدد الأكواح لا يشتمل على الطبقات المحددة أو المشتركة التي
التي يمكن أن تقوم بمثابة اللحظات في snapshots super
أسميتها لقطات فائقة معقدة متعددة الاتجاهات وغير مرتبة puzzle
التعددية، إنها لعبة بائولة
معقدة متعددة الاتجاهات وغير مرتبة.

في هذه اللعبة (التحدي)، والتي لا تستعمل على تتابع من اللحظات ولا تسمح
بتدفق الزمن، جاء الحس العام بما له معنى فيما يتعلق بالسبب والأثر. المشكلة أننا
وجدنا فيما يتعلق بالسببية في الزمكان أنها مشكلة متغيرات من الأسباب والتأثيرات
مكلها مثل الأسباب والتاثيرات ذاتها. ونظام توجد هذه المتغيرات في خيالنا، وليس في
الزمكان فقد هربنا من مواجهة الامعنى الفيزيائي برسم نتيجة حقيقية أو جوهير من
الخاصة المتخيلة لتغير الموجود من العمليات الفيزيائية("المضاادة للحقيقة":
counter)
، ولكن في متغيرات متعدد الأكواح الحائزة للوجود في قطاعات مختلفة،

400
وتخطيط لقوانين محددة أو مقررة نهائية. يوجد هذه القوانين ثمة حقيقة موضوعية بأن أيها من الحوادث تحدث فريقاً في حدوث أي من الوقائع الأخرى افتراض أن هناك مجموعة من القvatات، وليس من الضروري أن تكون متداخلة، ولكنها جميعاً تشارك في الخاصية 8 افتراض أن هذه المجموعة حائزة للوجود، فإن قوانين الفيزياء تقرر أن هناك توجد مجموعة أخرى من القvatات لها الخاصية 2. وواحدة من شروط 8 لا يكون سبباً في 7 وبالتالي فقد تلاقينا. خذ في اعتبار أن متغيرات المجموعة الأولى ليست لها الخاصية 8 إلا إذا من خلال وجود هذه المتغيرات وجود بعضها من القطات 2 لم تزل مقررة، إذن 8 لن تكون سبباً لـ 7؛ لأن 7 سوف تحدث بدون 8. ولكن إذا، من مجموعة متغيرات "لا 8" فقط وجود متغيرات "لا 7" مقرر، إذن فإن 8 كانت حتماً في 7.

ليس هناك في تعريف السبب والأخير ما يُطلب منطقياً أسباباً تستمر أثارها، وتكون في حالة الدخيل أو الغريب، مثل الحالة القريبة جداً من الانفجار الكبير أو حالة داخل الثقوب السوداء، وكلاهما ليس كذلك. ومعما يمكن فائدة في خبرتنا اليومية تستمر الأسباب في إحداث أثارها، وهذا لأنه، على الأقل في حدود السرعة المتاحة في التجربة، فإن عدد الطرقات المميزة للقفات تميل للتزايد بسرعة مع الزمن، ولا تتناقص أبدا. وهذه الخاصية لها صلة بالقانون الثاني للديناميكا الحرارية الذي يقول بأن الطاقة المنظمة مثل الكيمياء الكامنة أو الموجودة بالقوة وأيضاً الجاذبية، يمكن أن تنقلب إلى طاقة غير منظمة كلها، مثل الحرارة وليس العكس من ذلك أبدا. الحرارة عشوانية من الناحية الميكروسكوبية. وبمصنفات التعقيد فإن هذا يعني أن هناك حالات فرقة ميكروسكوبية للحركة في الأكوان المختلفة. على سبيل المثال. في تعاون لفقات العمل في حالة المبادلة العادية، يبدو أن عمليات الاستقرار على السطح تغير، أو تحول مجموعة متداخلة من لفات وجة "الصورة" المتنبي بها إلى مجموعة من لفات وجة "الصورة". ولكن أثناء هذه العملية تكون طاقة حركة العمل قد تحولت إلى حرارة.
وتأتي عند تعظيم الحركة بدرجة كافية لكي ترى الجزيئات المنفردة، فإن مجموعة
اللقطات التالية لن تكون متتابقة أبداً كلها تقول وتحافظ على أن العملة في وضعية
وجهة الصورة، ولكن تظهر جزيئاتها وجزيئات الهواء المحيط بها وعلى السطح الذي
ستستقر عليه، جميعها في شكل أو صورة مختلفة. وأعرف أن لقطات التوقعات
المبدئية لوجهة الصورة ليست أيضًا متطابقة من المنظر الميكروسكوب. لأن بعضًا
من الحرارة سيكون هناك أيضًا، ولكن إنتاج الحرارة في العملية يعني أن هذه اللقطات
أقل تحولاً جداً من الأخرى التي تحدثنا عنها.

التحول نسبي للملاحظ، من إمكانية ما هو فعلي، إلى مستقبل مفتوح، وماضي
ثابت، جميعاً تصبح ذات معنى داخل هذا الإطار. خذ في اعتبارك مثال رهان العملية
مرة أخرى، قبل الرهان يعتبر المستقبل مفتوحاً بالنسبة لأي ملاحظ، حيث تظل
إمكانية أي من النتائج في صورة أو كتابة سوف يلاحظ هذا الملاحظ، ذلك من
وجهة نظره حتى ولو أنهم مولعون من الفعلانออกมา قطعة. بعد استقرار العملة تكون نسخ
الملاحظ قد تفرعت إلى مجموعة الكاملي. وكل منهم قد لاحظ، وتذكر، نتيجة واحدة من رهان
العملة. ومنذ أصبحت في الماضي بالنسبة لأي ملاحظ فقد أصبحت ذات قيمة فعلية
واحدة بالنسبة لأي نسخة من الملاحظ، حتى لو كانت من وجهة النظر التعددية فقط
قيمتين إلى الأبد.

دعني أصل إلى خلاصة ليعامل مفهوم الزمن الكمي، الزمن ليس تعاقب للحظات،
ولا هو يتدفق. ولا أن حدوسنا عن خواص الزمن هي صديقة كبيرة أحد ميزة هي
بالطبع أسباب وأثار بالنسبة لبعضها البعض، بالنسبة للاستاذ يكون المستقبل بالطبع
مفتوحاً والماضي ثابت، والإمكانات بالطبع تصبح فعلية، والسبب في أن نظرائنا
التقليدية عن الزمن غير ذات معنى، هو أنها حاولت تقسيم هذه الحدود الصادقة في
الإطار العام لفيزياء تقليدية زائفة، في الفيزياء الكمية تكتسب المعنى لأن الوقت كان
دومًا مفهوماً كميًا. إننا نعيش في وجهة متعددة في أكران نسميها "اللحظات" كل

402
وجهًا منا لا يهم مباشرة بالوجوه الأخرى، ولكن لديه دليلاً على وجود الآخرين بسبب الرابطة المرضية التي تقييم بها قوانين الفيزياء بين الأكوان المختلفة. من المغرى أن تكون اللحظة التي هي محل اهتمامنا هي الوحيدة، أو على الأقل هي أكثر حقيقة عن الأختيارات، ولكن هذا مجرد "أناة". كل متعدد الأكوان صحيح فيزيائيًا، ولا شيء آخر حقيقي.

اصطلاحات:

الحركة المفترضة للحظة الحالية في اتجاه المستقبل، أو الحركة المفترضة لو حدثنا من لحظة واحدة عن الأخرى. (هذا لا معنى له!)	تدفق الزمن: Flow of time
المكان والزمان، يعتبران معاً كخاصية لها طبيعة استاتيكيّة ذات أبعاد أربعة.	الزمكان: spacetime
النظريات، مثل النسبية، التي فيها تكون الحقيقة معتبرة كزمنك. ولأن الحقيقة هي متعدد الأكوان فمثل هذه النظريات تكون تقريبًا في أحسن أحوالها.	فئياء الزمكان: Spacetime philsics
المقابلة في التأثير على الأحداث المستقبلية في واحدة من عدة طرق ممكنة، واختيار أيها الذي سيحدث.	الإدارة الحرة: Free wil
جملة شروط تكون المقدمة فيها زائفة (مثل "إذا كان فاراداي قد توفي عام 1830، إذن X لم تحدث").	الشروط الضْرِب واقعي: Counter factual condisional
(اصطلاح لهذا الفصل فقط) كون في زمن معين.	لقطة: Snapshot
الخلاصة:

الزمن لا يتدفق، الأزمنة الأخرى هي حالات خاصة لأكون أخرى.

الزمن يرحل، قد يكون أو لا يكون فعليًا أو عمليًا. ولكننا نمتلك بالفعل فهما نظريًا معقولًا جيدًا للكيف سيبدو ذلك إذا فعل، فهما يستوجب وتدخل فيه الأوتار أو الخيوط الأربعة.
الفصل الثاني عشر
ارتحال الزمن (أو سريانه)
لعلها فكرة طبيعية تلك التي تتتعلق بأن الزمن على نحوه من الأحجام هو بعد رابع إضافي للمكان. أي أنه كما أن من الممكن أن يرحب من مكان إلى آخر، فإنك أيضا يمكنك أن تساوره في وقت لآخر. لقد رأينا في الفصل السابق أن فكرة التحرك عبر الزمن، بنفس المعنى الحادث في الحركة عبر المكان، هذه الفكرة لا معنى لها. ومع ذلك يبدو واضحًا ما يعنيه الرجل بالسفر إلى القرن 25 أو إلى عصر الديناصورات. من المعتاد تخيل ألة الزمن في روايات الخيال العلمي كعبارة دخيلة أو غريبة. الرجل عليه أن يضبط بإحكام التاريخ والزمن لحيث يريد، ويتذكر سفر الألة إلى هذا التاريخ (أحيانا يستطيع الرجل اختيار المكان أيضًا). ويصبح الرجل هناك. إذا اختار الرجل الزمن البعيد، وتحدث مع إنسان آلي (روبوت) وأبدى دهشته وإعجابه بمجموعة سفينة فضاء بين كوكبية، أو (اعتمادًا على الحث السياسي لدى المؤلف) وتعج من التفحمات التي خلفتها ما أحدثته الإشعاعات من تحطم. وإذا الرجل اختار الماضي البعيد، فسوف يقتنع ضد هجمات الديناصورات بينما يترشح البتروداكتيلات فوق رأسه.

حضور الديناصورات سيكون دليلا مؤثرا ومثيراً للدهشة على أنت وصولنا بالفعل لمرحلة سابقة زمنيا. وعلينا أن نراجع تدابيرًا هذا الدليل، وتحديد التاريخ بدقة أكثر، بملاحظة روزنامة (1) ذات مدى طويل مثل شكل أبراج النجوم في سماء الليل ونسب تواجد المواد المشعة في الصخور. الفيزياء تمدنا بعيدًا من هذه النتائج، وتكتفل قوانين الفيزياء بجعلها تتفق مع واحدة أو أخرى عند تصنيفها وقياس درجاتها بطريقة مناسبة. وبطبيعة التقرير الذي نحن عليه متوافق الأكون من زمرزازات متوازية كل منها يحتوي على كومة من نقاط المكان، التاريخ المعرّف بهذه الطريقة هو خاصية للقطة تامة غير منقوصة. وأي اثنان من النقاط تنبض الواحدة منها عن الأخرى بلحظة زمنية تختلف عنها ويقع بين التاريخين. سفر الزمن هو أي عملية تسبب تفاوتا في

(1) روزنامة هي وسيلة ما لحساب الزمن وتسلسل التاريخ.
الفترة بين نقطتين من ناحية أخرى، خبرتنا عن كيف أن الزمن انقضى أثناء وجودنا بين هاتين نقطتين من ناحية أخرى. ربما نشير على ساعة أو منبه نحمله معنا، وربما قد قدرنا مدى تفكيكنا في أن لدينا فرصة عمل ذلك، أو ربما قسنا بمعيار فسيولوجي للذين هرمو في أجسادنا، أو لاحظنا مدى الزمن الذي انقضى خارجياً، بينما بكل مقاييس ذاتية قد خبرنا وقتاً أقصر بكثير عندما رحلنا إلى المستقبل. ومن الناحية الأخرى، لم نلاحظنا النب في الخارج والنتائج التي تشير إلى توقيت معين، وبعدنا (ذاتنا) نلاحظها متماسكة في الإشارة لوقت سابق، إذن تكون قد سافرنا إلى الماضي.

معظم مؤلفي روايات الخيال العلمي يدركون أن الزمن الموجه للمستقبل أو الماضي هما نوعان من العمليات مختلفة جدًا. أنا لن أعطي هنا أهمية كبرى للسفر إلى المستقبل لأنها في أقصاها أقل إشكالية أو إعجازًا، حتى في تجربتنا اليومية، على سبيل المثال، عندما ننام ونتسيق، فإن خبرتنا الذاتية أن الزمن يمكن أن يكون أقصر من الزمن المنقضى خارجياً. الناس الذين يفتقرون من غيوبة دامت عدة سنوات يمكن القول بأنهم سافروا طوال تلك السنوات إلى المستقبل، بينما الأمر ليس كذلك بالنسبة لحقيقة أن أجسادهم قد هرمو طبقًا للزمن الخارجي. ويتذكر من الوقت الذي خبروه شخصياً، وهكذا، من حيث المبدأ، فإن تقنية مشابهة لذلك والتي تخيلناها في الفصل الخامس لإظهار أن دماغ مستخدم الحقيقة التقديرية يمكن تطبيقه مع الجسد كله، وهكذا يمكن استخدامه كإضافة لرحلة زمن موجه إلى المستقبل. أمدنا نظرية التسبيبة الخاصة لأنشطتنا بطريقة أقل اقتصادية أو تفطية، وهي التي تقول بصفة عامة إن أي ملاحظ متسارع أو متباطئ يخبر وقتاً أقل مما يخبره ملاحظ ساكن أو في حالة حركة مستمرة أو مضطربة للإشارة. مثال: لو أن رائد فضاء طار في جولة جوية تستخدم تسارعاً يقترب من سرعة الضوء فسوف يخبر وقتاً أقل بكثير عن الملاحظ الذي يبقى على الأرض هذا التأثير يعرف بـ "التمدد الزمني". بواسطة تسارعًا. time dilation.

408
كماً يستطيع المرء أن يجعل هذا التمدد في الزمن من وجهة نظر مركبة رأى الفضاء أقصر للدرجة التي يريدها المرء، وسرعان الزمن كما يتم قياسه على الأرض طويل إلى الحد الذي يريد المرء، وهنا يستطيع المرء إلى أي مدى في المستقبل يريده في وقت قصير من الناحية الذاتية. ولكن هذه الرحلة المستقبل لا يمكن إكساءها أو أنه تعذر إلغاؤها. رحلة العودة تستغرق زمناً موجهاً للماضي، وليس ثمة قدر من تتمد الزمن يسمح لسفينة فضاء أن تعود من رحلة طيران قبل أن تكون قد أقفعت أصلاً.

الحقيقة التقديرية ورحيل الزمن، في معناها الشائع، يتشابهان في أنهما يشيران العلاقات المتعددة بين الحقيقة الخارجية وخبرة المستخدم بها. وعلى ذلك يمكن للمرء أن يطرح هذا التساؤل: إذا كان المولد العالٍ للحقيقة التقديرية يمكن برمجته بسهولة للتأثير على الزمن الموجه للمستقبل؟ إذا كان إبطاؤنا سوف يرسلنا إلى المستقبل، هل يرسلنا تسارعنا إلى الماضي؟ لا: العالم الخارجي سيبدؤ بأنه مجرد ميزة منسيته. حتى في حالة الحد الذي ليس في متناول اليد للعقل أن يعمل بسرعة لنية، فسيبدو العالم الخارجي متجعدا في لحظة معينة. سوف يبقى هذا ارتحالاً للزمن بالتعريف السابق، ولكنه لن يكون سفراً موجهاً للماضي. قد يسمى المرء سفراً موجهاً للزمن الحاضر. أتذكرون؟ ابتدأنا في ماكينة قادرة على السفر الموجه للزمن الحاضر عندما كنت أقوم بمراجعة الحقيقة الأخيرة قبل الامتحان. من هنا لم يتبنا مثل هذه الرغبة؟

قبل أن نناقش سفر الزمن موجهاً للماضي في ذاته، ماذا عن محاكاة ذلك الزمن؟ إلى أي مدى يمكن لولد حقيقة تقديرية أن يبرمج ذلك بعدة المستخدم خبرة سفر الزمن موجهاً للماضي؟ سوف نرى أن الإجابة عن هذا السؤال، مثل كل الأسئلة عن مدى الحقيقة التقديرية، سوف تحكينا لنا المزيد أيضاً عن الحقيقة التقديرية ذاتها.
الأوجه المميزة لخبرة بيئة الماضي هي: بالتعريف أن خبرة أشياء أو عمليات فزيائية - منبهات وروتينات - هي تقرير ما حدث فقط بالفعل في الماضي (بمعنى اللقطات الماضية). بالطبع يستطيع مولد الحقيقة التقديرية أن يحاكي تلك الأشياء في تلك الحالات. مثلا يمكن أن يعطي المرء خبرة الحياة في عصر الديناصورات، أو في خناص الحرب العالمية الأولى، وأيضا تستطيع صنع المجموعات الكوبية، التواريخ المطبوعة على الجرائد، أو أيا ما كان، تبدو جميعا بدقة كما كانت وقتها. كيف تكون درجة صحه ذلك؟ هل ثمة حد أساسي لدى دقة محاكاة أي عصر نحده؟ بدأ تورنج يقول أن مولد على الحقيقة التقديرية، يملك بناؤه، كما يمكن برمجته لمحاكاة أي بيئة ممكنة فيزيائيًا، وبشكل ظاهر جدا: يمكن برمجته لمحاكاة أي بيئة سبق أن وجدت فيزيائيًا.

لمحاكاة آلة زمن لديها إمكانية إعادة عرض لغايات قصده في الماضي (والتالي محاكاة هذه الغايات ذاتها)، فإن البرامج سيستعمل من بين ما يشمل عليه، على تسجيلات تاريخية لبيئات تلك الغايات. في الواقع سوف تحتاج إلى أكثر من مجرد التسجيلات، لأن خبرة سفر الزمن سوف تتطل بكثر من مجرد رؤية أحداث الماضي وهي تنفدر حول المرء. تشغيل تسجيلات المستخدم من الماضي سوف تكون مجرد توليد صور وليس توليد حقيقة تقديرية. وطالما أن المستنفر في الزمن سيكون مشاركا في تلك الأحداث ولد رد فعل إزاء هذه البيئات القديمة فإن المحاكاة الناجمة عن الحقيقة التقديرية لا بد أن تكون تفاعلية. على البرنامج أن يحسب لكل تصرف يصدر من المستخدم، كيف ستستجيب تلك البيئات التاريخية معه. مثلاً لو استطعت إقناع د. جونسون أنه من المفهوم ظاهرة من آلة زمن أنها تأخذها فعليًا لروما القديمة، فلا بد أن نسمح له بفعل ما هو أكثر من التأثير بمشاهدة، وعلى نحو غير مرئي، أن يوليوس قيصر يمر بجواره. سوف يرغب في اختبار أصالة خبرته تلك بأن يضرب بقدمه الصخرة المحلية في الشهد. وربما يضرب (بقدمه) القبيصر نفسه، أو على الأقل توجيه
الحديث له باللغة اللاتينية ويوقع منه أن يرد عليه بنفس اللغة. ما يعنيه قيام الحقيقة التقديرية بمحاكاة آل الزمن ولكي تكون محاكاة دقيقة هو أن البيئة لا بد أن تستجيب لمثل تلك الاختبارات التفاعلية بنفس الطريقة التي تفعل بها آل الزمن الحقيقية، وكما تفعل البيئة الماضية حسب ما سافرنا إليه، أي محاكاة الحديث باللغة اللاتينية ليوپوس قيصر.

وطالما أن يوپوس قيصر وروما القديمة هما من قبل الأشياء الفيزيائية فمن حيث المبدأ يمكن محاكاتها بدقة حكمية. الهدف يختلف فقط في درجة دقتها عن محاكاة الصالة المركزية لوبيلبندن بما فيها من مشاهدين. بالطبع سيكون التعقيد في البرنامج المستلزم مروعا وهائلا. وظل مزيد من التعقيد وربما حتى من قبل المستحيل، من حيث المبدأ، وهو عملية جمع المعلومات المتطلبة لكتابة البرنامج لمحاكاة آرمين معيينين.

ولكن كتابة البرنامج ليست هي التي تعني هذا. أنا لا أسأل عن أننا سنجد ما يكفي عن البيئات القديمة (أو بالطبع عن البيئات الحاضرة أو المستقبلية) لكتابة برنامج يحاكي أيها من تلك البيئات بالتحديد. أنا أتساءل عما إذا كانت مجموعة كل البرامج الممكنة لوجود الحقائق التقديرية تستثمر أو لا تستثمر على واحد يعطينا محاكاة عن سفر الزمن موجها للماضي، وإذا كان شمة، إلى أي مدى تكون دقة هذه المحاكاة. إذا لم يكن هناك برنامجاً لمحاكاة ارتحال الزمن حينئذ سيكون تطبيق مبدأ تورن أن ارتحال الزمن مستحيل فيزيائياً (لأن المبدأ في الأصل يقول بأن أي بيئة ممكنة فيزيائياً يمكن محاولاتها ببعض البرامج). وعلى السطح من هذا فإن شمة مشكلة هنا. لو أن شمة برامج يمكنها محاكاة البيئات القديمة بدقة، هنا يظهر عائق حقيقي أو أساسي في استخدامها لمحاكاة ارتحال الزمن. وهى العوائق التي تمنع ارتحال الزمن في ذاته والسما –تناقضات –ارتحال الزمن.

وهنا واحدة منها، إذا بنيت آل الزمن، واستخدمتها في السفر إلى الماضى – هناك أكون قد منعت نفسى السابقة من بناء آل الزمن. ولكن إذا لم تكن آل الزمن قد
بنيت، فلن أكن قادرًا على استخدامها للسفر إلى الماضي، ولا منع - حيث الأمر كذلك - كونها قد تم بناؤها. وعلى ساقوم بهذه الرحلة أم لا؟ إذا فعلت، فحينئذ ساكون حرم من الزمن ولذلك لن أقوم بالرحلة. وإذا لم أقم بالرحلة فحينئذ سوف أسمح لنفسي بإقامة آلة الزمن ومن ثم ساقوم بالرحلة. هذا ما يسمى أحياناً بـ "تناقض الجد"

والذي تقرر استمتعة الحفيد استخدام آلة الزمن في قتل جده قبل أن يرتقي الجد بأبناء. (حينئذ عندما لا يكون له أبناء فلن يكون شهًا أحفاد له فمن منهم الذي سيقتله؟) هذان الشكلان للتناقض؛ هما اللذان شاع الحديث عنهما والذان تطابا عنصراً في الصراع بين المسافر عبر الزمن، والذين الذين عاشوا في الماضي، حتى أن المرء يجب نفسه متعجبًا أنهما سيتعرضان. ربما ستجد هزيمة ارتحال الزمن وبذلك يتم تجنب التناقض. ولكن العنف ليس هو الجزء الضروري من المعضلة هنا. إذا كانت لدي آلة الزمن، فسأتمكن أن أقرر على النحو التالي: إذا كان مستقبلي سيزورني اليوم منفصلًا عن الغد، إذن في الغد لن استخدم آلتى الزمنية، وإذا لم أستقبل مثل هذا الزائر اليوم، حينئذ في الغد سوف استخدم آلة الزمن للسفر إلى الماضي إلى اليوم ومن ثم أزهر النفس. ويبعد أنه ينحدر من هذا القرار الذي اتخذه أكنت استخدام آلة الزمن فحينئذ لن أستخدمها، وإذا كنت بالفعل لن أستخدمها فحينئذ سوف استخدمها: تناقض!

التناقض يشير إلى افتراض خاطئ، حتى أنه تقليديا قد استخدم كبراهين على أن ارتحال الزمن مستحيل. وثمة افتراض آخر أحياناً ما يثير التحدي ألا وهو "الإرادة الحرة" هل يمكن عادة للمسافرين في الزمن أن يقرروا كيف يترىون. إذا كانت آلت الزمن موجودة بالفعل فلهما أن يستخلص حينئذ أن الإرادة الحرة للناس سوف تفسد. سوف يكونون إلى حد ما غير قادرين على تشكيك رغبات من النوع الذي وصفته، وأيضاً عند السفر في الزمن، سيكونون على نحو تراتبي بشكل ما ناسين للحلول التي أقاموها قبل السفر. ولكن الافتراض الخاطئ وراء التناقض ليس في وجود آلة الزمن.
ولا قابلية الناس على اختيار تصرفاتهم على النحو الذي يفوقه الخطأ كله ينحصر في النظرية التقليدية من الزمن، والتي أظهرت توأمة، لسسبب مستقلة، أنه لا يمكن الدفاع عنها أو الاحتفاظ بها.

إذا كان ارتحال الزمن فعلا مستحيلا منطقيا، وبالتالي ستكون المحاكاة الناجحة عن الحقيقة التقديمية مستحيلة بدورها. إذًا كان متطلبا تعليقا مؤقتا للإجابة الحرة، سيكون الأمر كذلك في محاكاة الحقيقة التقديمية لها. تناقضت ارتحال الزمن يمكن التعبير عنها بمعنائات الحقيقة التقديمية كالآتي: حالة محاكاة الحقيقة التقديمية تكمن، كاً كاأن ما يمكن فهمه في إخلاص البيئة المحاكة لتصور البيئة المرجعية فعلاً. البيئة المرجعية في حالة ارتحال الزمن هي تلك التي كانت قائمة تاريخياً. ولكن دائما تستجيب البيئة المحاكة، كما يطلب منها أن تفعل، لاستخدام ركلها، هذا يصبح غير دقيقة تاريخيا لأن البيئة الفعلية لم يسبق لها أن استجابت للمستخدم: فالستخدم لم يركبها أبداً. على سبيل المثال فلم يسبق أن التقى يوليوز قصير مع د. جونسون، وبالتالي فإن دكتور جونسون بتصوره في اختبار مدى إخلاص المحاكاة بانشاء حدث مع القصير، سوف يحكم هذا الإخلاص بإنشاء عدم دقة تاريخية للقصير. المحاكاة يمكن أن تكون صحيحة بأن تكون صورة مخلصة للتاريخ أو أن تستجيب بدقة ولكن لا يمكن أن تكون كليهما معًا. وهكذا يظهر بطريقة أو بآخرى أن محاكاة ارتحال الزمن في الحقيقة التقديمية غير قادرة بصورة صافيةً أو جوهريًة، على الدقة، وهي محاكاة أخرى للفصل بأن ارتحال الزمن لا يمكن محاكاتها في الحقيقة التقديمية. ولكن هل هذا يؤثر فعلاً كعائق لدقة محاكاة ارتحال الزمن؟ عادة فإن تقليد دقة التصرف ليست هي الهدف من الحقيقة التقديمية: المهم هو أن تستجيب بدقة. حالما بدأ في ممارسة التس في الصالة المركزية لويمايدون سوف تجعلها تتصرف بطريقة مختلفة عن تصرفها الفعلي. ولكن هذا لا يجعله تصرفًا أقل دقة. على العكس هذا هو المطلب من الدقة. الدقة في الحقيقة التقديمية تعني قرب المحاكاة من التصرف الذي سوف تعرضه البيئة.
الفعلية لو كنت متواجدا فيها. فحسب في بداية المحاكاة هل ستكون حالة البيئة التي تم تجاوزها مماثلة للبيئة الأصلية. ولذلك ليس حالة البيئة. ولكن استجاباتها لحركات المستخدم هي التي يجب أن تكون صادقة. لماذا التناقض بالنسبة لمحاكاة ارتحال الزمن وليس لمحاكاة أخرى، مثل بالنسبة لمحاكاة السفر العادي؟

يدور المناقشة لأنه بالنسبة لمحاكاة الارتحال في الزمن الموجه للمستخدم يقوم المستخدم بدور منفرد أو مزدوج، أو دور متعدد. لأنه بسبب الفجوات المتصلة بذلك حيث مثال واحد أو أكثر من نسخ المستخدم هي من ناحية التأثير المتعلق سوف تحاكي المستخدم بينما تستجيب لحركات المستخدم تزامنيًا. على سبيل المثال: دعنا نخlarıyla أشياء المستخدم لولد حقيقة تقديرية يقوم بمحاكاة برنامج سفر في الزمن. افترض أنني أدرت مفتاح تشغيل البرنامج. فإن البيئة التي حولها هي في العمل مستقبل. وفي الوسط هناك باب دوارة، مثل تلك الأبواب التي تستخدم في مقدمة الأبنية الكبيرة، فيما أنه هنا باب معمدا ومطوق تماما بعطلات معتقمة أيضا. والطريقة الوحيدة للدخول أو الخروج هو مخرج وحيد مقطوع في جوان العطلة. والباب يدور بصفة مستمرة. ويبدو للوهلة الأولى أن شيئا صغيرا يمكن للمرء أن يفعل مع هذه الميزة وهو الدخول إليه والدوران معه مرة أو مرات ثم يعود مرة أخرى. ولكن فوق الدخل هناك علامة إرشادية تقول: "مر إلى الماضي." إنها ألة زمن، متخصصة للحقيقة التقديرية. ولكن إذا كانت ألة زمن موجهة للزمالي المستخدم بالفعل، ستكون كهذه، ولكنها لن تكون نوعا من عبارة دخيلة أو غريبة، وإنما نوعًا دخلاً أو غريباً بالنسبة للسكان. بدلاً من القيادة أو الطيران للماضي، سوف يأخذ المرء ممرا ل الماضي (ربما مستخدمًا عربية فضاء عادية).

ثم يظهر في وقت مبكر عما هو في الآن حقيقة.

وتمسا ساعة حائط معلقة على حائط العمل المغلق. تشير مبديئًا إلى أن وقت الظهيرة. وتمسا بعض التعليمات على إسطوانة الدخول. ومع انتهاء قراءتها لها ستكون دقائق خمس قد انقضت بعد الظهرة، كليهما طبقًا لفهي ولا تشير إلي الساعة المعلقة.
على الحائط. تقول التعليمات إنك إذا دخلت الأسطوانة فدر مع الباب الدوار، ثم أظهر، سيكون الوقت في المعالع أسرع بخمس دقائق. دخلت إلى إحدى قمرات الباب الدوار.

وإذا مشيت حوله أغلقت القمرة خلفي، وللحظة بعدها وصلت للخروج مرة ثانية، وخرجت، المعالع يبدو هو نفسه ما عدا - ماذا؟ ما الذي أتوقع أن أخبره بعد ذلك؟ إذا كان ذلك يمثل محاكاة دقيقة لارتحال الزمن الموجه للماضي؟

(شكل 21-1)

قراءة زمنية من خروج عن رحلة مسافر في الزمن

عند أعود للخلف قليلا، إنني مع الدخول وجدت زرًا عليه بطاقة "تفاعل" ولا تفاعل ومبدئيًا هو عند "لا تتفاعل" وهذا الوضع لا يسمح للمستخدم بالمشاركة في الماضي ولكن ملاحظته فقط، ونماذج أخرى لا يمكننا بمحاكاة حقيقة تقديرية للماضي ولكن بتوليد صور عنه.

415
بمجرد أن تشير إلى أنها ليست شبه غموض أو التباس أو تناقض حول الصور التي يتطلب توليدها عندما يبرز من المجال الدوار. إنها صور لِي في العمل وأنه أفعل ما فعلته عند الظاهري. ومن بين أسباب عدم الغموض هو أنني أستطيع تذكر تلك الوقائع، حيث أستطيع اختبار هذه الصور من الماضي مع استعدادات الشخصية لما حدث. بتقييد تحليلاتنا إلى بيئة صغيرة مغلقة ولدة قصيرة، سوف نتجنب مشكلة التشابه التي سنجدها في كيف كان عليه يوليوس قيصر، والتي تمثل مشكلة عن الحدود القصوى فيما يتعلق بعلم الآثار عن أن تكون من المشاكل المرتبطة عن ارتحال الزمن. في حالتنا هذه يستطيع بسهولة مولد الصور المطلوب بعمل تسجيلات لكل ما أفعله. ليس تسجيلاً لما فعلته في الحقيقة الفيزيائية (والتي هي البقاء مستقبلاً داخل مولد الحقيقة التقديرية) ولكن ما أفعله في البيئة التقديرية للعمل. وهكذا فإنه في اللحظة التي برزت فيها من الأزمن، فإن مولد الحقيقة التقديرية قد حاكي العمل بعد خمس دقائق من الظاهري، ثم بدأ في إعادة تسجيله شخصي، بدءاً مما حدث وقت الظاهري. إنه يجري هذا التسجيل لي بالرسم المنظوري الذي عليه وضع الحاكي وإلى ماذا أنظر وباستمرار بعيد ضبط الرسم المنظوري على الطريقة المعتادة التي أتحرك بها. وهكذا أرى الساعة تشىء إلى الظاهري مرة ثانية. وأيضاً أرى نفسى السابقة واقعاً أمام آل الزمن أقرأ اللغة فوق الدخول دارساً للتعليمات فيها، تماماً كما فعلت منذ خمس دقائق مضت. أراه ولكنه لا يراه. ولا يهم ما أفعله، ولا أستطيع الصورة المتحركة لي تكون كرد فعل بأي طريقة لوجودٍ. وبعد قليل تتحرك في اتجاه آل الزمن.

إذا حدث أننى شكلت عانقاً للمدخل، فإن صورتي مع ذلك سوف تتجه إليه مباشرة وتدخل فيه، تماماً كما فعلت، لأنها لفعت غير ذلك فستكون صورة غير دقيقة أو صحيحة. هناك طرقاً عديدة يمكن بها برمجة مولد صور للتعامل مع حالة عبور شيء مصمم في موقع المستخدم. مثلاً يمكن أن تمر الصورة خلاله كأنه شبح، أو يمكنها
الحقيقة التقديرية يجعلها أسقط بدون مجهود في فجوة ضيقة، أو يتلقي إلى كوني
عاقلةً من الماضي.

ليست فقط صورتي التي لن يكون لدى مزيد من التأثير فيها. لأننا أنتقلنا مؤقتا
من مولد الحقيقة التقديرية إلى مولد صور، فلن يكون لي أي تأثير على البيئة الجارية
تقليدها. لو أن هناك كوب ماء على المنضدة فلن أستطيع التقاطه للشرب منه، كما
استطعت من قبل أن أغلق من الباب الدوار للماضي الذي يجري تقليده. بطلب مشابهة
بيئة تفاعل للارتدال الزمني الموجه الماضي، الذي يدير بفاعلية الوقائع التي حدثت قبل
خمس دقائق مضت، فمن الضروري أن أتخلى عن السيطرة على تلك البيئة. تخليت عن
السيطرة، كما كنت، لنفسى السابقة.

وبالنسبة لصورتي داخل الباب الدوار، فإن الوقت الذي تشير إليه الساعة
المعطاة على الخانات تصل مرة أخرى إلى خمس دقائق بعد الثانية عشر، ولأنها عشر
دقائق في التقليد طبقة إدراكى الشخصى. ما يحدث بعد ذلك يتوقف على ما أفعله. إذا
بقيت فقط في العمل، فإن مهمة مولد الحقيقة التقديرية التالية ستكون بالضرورة هو
وضعى في الأحداث التي وقعت بعد مرور خمس دقائق من الثانية عشر بتوقف العمل.
وليس لديه بعد تسجيلها لتلك هذه الأحداث، وليس لدى أيضاً ذكريات عنها. بالنسبة
لى وبالنسبة للعمل الذي تجري مشابهتها وبالنسبة للحقيقة الفيزيائية، فإن هذه
الأحداث لم تقع بعد وعليه فإن مولد الحقيقة التقديرية يمكنه استئناف العمل على أنها
محاكاة تفاعلية بالكامل. والتأثير الخالص هنا هو أنني قضيت خمس دقائق في
الماضي دون المقدرة على التأثير فيه، وبعدئذ عدت إلى “الحاضر” الذي خلفته وراءه،
أي للتتابع من الحوادث التي أستطيع التأثير فيها.

البدل هو أن أتابع صورتي في آلة الزمن، مسافراً حول الآلة بصورتي ثم الظهور
أو البروز مرة ثانية في ماضي العمل، ما الذي يحدث حينئذ؟ مرة أخرى تشير الساعة
إلى الظهيرة. الآن أستطيع أن أرى صورتي لنفسى السابعة، واحدة منهما تظهر آلة
الزمن للمرة الأولى، ولاحظ أنها ليست صورتي أو صورة أي من الأشياء الأخرى. أما
الصورة الأخرى تظهر فيها الصورة الأولى ولكن ليست صورتي. أستطيع أن أرى
كليهما. فقط الصورة الأولى التي يمكنها التأثير على أي شيء في العمل. هذه المرة،
ومن جهة نظر مولد الحقيقة التقديرية، فإن شيئا لم يقع في لحظة ارتحال الزمن، إنه
في حالة زر ‘لا تفاعل’، وبساطة مستمر في إعادة عرض صور الأحداث منذ خمسة
دقائق سابقة (من وجهة نظري الشخصية) وقد وصلت هذه الدقائق الخمس إلى اللحظة
التي أبدا فيها صورة لنفسى.

وündeما تمر خمس دقائق أخرى، يمكنني مرة أخرى اختيار أن أعود إلى الدخول
إلى آلة الزمن، في هذه المرة بصحبة صورتي لي، انظر الشكل (12-2). وإذا ما
كررت العملية فبعد كل خمس دقائق جديدة ستظهر صورة إضافية لي. وكل واحدة
ستظهر وهي ترى كل السابقات عليها (من خلال خبرتي لها) ولكنها لا ترى أيًا من
التي ستظهر بعدها.

إذا أواصلت القيام بنفس التجربة إلى أقصى مدى ممكن، فإن الحد الأقصى
للنسخ منى التي يمكن أن توجد سوف يحدّها مولد الصور في استراتيجيته (لتجنب
التصادم. دعنا نفترض أن سيجعلها صعوبة حقيقية أن أعصر نفسى مع كل صورى
عبر الباب الدوار. سوف أكون ماضرا حينئذ لأن أفعل شيئا مغايرا عن السفر خلفا
إلى الماضي مع هذه الصحبة. يمكنني الانتظار قليلا، وأستقبل الضرورة التالية لهم، في
مثل هذه الحالة سوف أصل للمعمر بعد لحظة من وصولهم. ولكن هذا من شأنه أن يؤجل مشكلة التزاحم في آلة الزمن.

إذا واصلت الدوران في هذه الحلقة فإن كل الشقوق الضيقة في السفر في مدة الخمس دقائق بعد الثانية عشرة سوف يتم ملؤها، وتضطرني لكي أدع نفسي أصل في وقت لاحق حيث لا تكون هناك مزيد من وسائل العودة لتلك الفترة. وهذه خاصية أخرى ستكون لدي آلات الزمن فيما لو وجدت فعلاً فيزيائيًا. إنها ليست فقط مواقع بل إنها مواقع لها قدرة نهائيّة لدعم المروّر إلى الماضي.

الشكل (١٢-٢)

تكرار استخدام آلة الزمن

يسمح بتواجد نسخ عديدة للمسافر في الزمن

ونتيجة أخرى تأتي من حقيقة أن آلة الزمن ليست عربية، ولكن أماكن أو ممرات، تتتمثل في أن المرء لا يكون كامل الحرية في اختيار أي الأوقات التي يسافر إليها.
مولد الحقيقة التقديرية لديه الآن سجلات لموقع في الملعوم وقت الظهيرة. وخمسة دقائق بعدها، أي واحد الذي يسيئكشوف أو سيصف التاريخ الحقيقي؟ ليس علينا أن نهتم كثيراً إذا لم تكن هناك إجابة لهذا السؤال، لأنه يسأل عن ما هي الحقيقة في وضع حُرّتنا فيه الأمر اصطناعياً من حيث التفاعل معه، بجعلنا اختيار د. جونسون غير قابل للتوقع. ويمكن للمرء أن ينشئ أن آخر وجه، والذي صور أكثر النسخ منه، هو وحده الحقيقية، لأن الوجوه السابقة له والتي كان لها تأثير ما أظهرت تاريخ الوقائع من وجهة نظر الناس، الذين من خلال قاعدة اصطناعية تمتها في عدم التفاعل، قد مُنعوا من الرؤية الكاملة لما حدث. وبدلاً من ذلك يمكن للمرء أن ينشئ أن الوجه الأول للوقائع، الذي يحوى نسخة واحدة منه، هو وحده الحقيقية، لأنه الوحيد الذي خبرته تفاعلياً. النقطة كلها في مساحة عدم التفاعل، هي أنها تمنع أنفسنا مؤقتاً من تغيير الماضي، وطالما أن الوجوه المتتابعة بعد الأولى تختلف عنه، فإنها لا ترسم الماضي أو تصوّره، كل ما تصوره هو شخص ما ينظر للماضي بلفظ وكياسة عبر مولد عالمي للصور.

والمرء يمكنه أيضاً أن ينشئ أن كل الوجهات متوناً من حيث حقيقيتهاها وبعد كل شيء، فهم عندما ينتهون فائني لن أتذكر تاريخاً وحيداً للمعامل خلال مدة الدقائق الخمس، وإنما عدد من التواريخ. لقد خبرتها على التوالي، ولكنها حديث – وجهة نظر المعمل ذاته – خلال مدة الخمس دقائق. السجل الكامل لخبرتنا تلك يتطلب الكثير من اللقطات للمعمل في كل لحظة معرفة للساعة، بدلاً من اللقطة الواحدة الممتدة لكل لحظة بكلمات أخرى، لقد كان هذا محاكاة لأكوك متوازية. ويتولى هذا التأويل أو التفسير.

420
إلى أن يصبح أقربها للصدق، كما نرى عند محاولة التجارة من جديد مع وضعية الزر
-تفاعل.
أول ما أريد قوله بشأن حالة التفاعل، التي أمتلك فيها حريتي في التأثير على البيئة، إن واحدًا من الأشياء التي أستطيع اكتسابها لأن تقع هي تلك التي تستتبعها الأحداث التي وصفتها في حالة عدم التفاعل. أي أنني أستطيع القوة ومواجهة نسخة أو أكثر مني، ومع ذلك (إذا كنت مُمتَكلًا جيدا بدرجة كافية) أتصرف تماما كما لو أنني لم أستطيع رؤية بعضهم. ومع ذلك لا بد أن أراقبهم بعناية إذا أردت إنشاء ما تستبعدها الوقائع التي حدثت عندما خضت هذه التجربة وزر التفاعل كان مغلقاً. لا بد أن أتذكر ما فعلته النسخ حتى أستطيع أن أفعله في زيادة لاحقة لهذا الزمن.
في بداية الأمر عندما رأيت في البدء آلة الزمن رأتها على الفور تلفظ نسخة أو أكثر مني. لماذا في حالة عمل زر التفاعل، عندما استعملت آلة الزمن بعد خمس دقائق من وقت الظهور، سيكون لي الحق في التأثير على الماضي الذي عدت إليه، وهذا الماضي هو الذي يحدث الآن، عند الظهور. وهكذا تكون ذاتي أو ذواتي المستقبلين قد وصلوا ليباشروا استخدام حقهم في التأثير على العمل وقت الظهر، والتأثير على وبالذات في جميع أراؤهم.
النسخ من سيدتهم إلى أشغالهم. خذ في اعتبارك المهمة الحوسية بأن مولد الحقيقة التقديرية عليه أن ينفذ محاكاة تلك النسخ. ثمة عامل جديد سيعمل هذا أصعب بكثير مما كان عليه في حالة عدم التفاعل. كيف لمولد الحقيقة التقديرية أن يجد الذي ست😭في تلك النسخ؟ إنه ليس لديه بعد آية تسجيلات لتلك المعلومات، لأنه في الوقت الفيزيائي كان انعقاد المجموعة قد بدأ على التو. وبعد عليه - وفورية - أن يمثلني وأنا أحاكي مستقبلي.
وطالما أنا عازم على الإدعاء بأنني لا أستطيع رؤية هذه المحاكيات، وبالتالي تقليدي ما أراه مما يفعله، سوف لا يكونون ذاتين بالنسبة لاختبار ضيق جدا للصحة أو الدقة. سوف يحتاج مولد الحقيقة التقديرية فقط أن يجعلهم يفعلون أي شيء، أي شيء مما قد أفعله؛ وأكثر تحديداً: أي سلوك أنا قادر على تقليديه. ولوجود التقنية التي نفترض أن مولد الحقيقية التقديرية سيقوم بناء عليها، يمكننا أن نفترض أنه لن يتم في سريان قابليته. إن لديه نموذج رياضي دقيق لجسدي، ودرجة من الدخول المباشر لدماغي. يمكن استخدام كلاهما لحساب السلوك الذي يمكنني تقليديه، ومن ثم تكون لديه محاكاة مبئية لي وأن أقوم بهذا السلوك.

وهكذا أبدأ التجربة برؤية بعض النسخ من تبرز من الباب الدوار وهي تفعل شيئًا ما. فانتظارًا بأنني لا أراه، وبعد خمس دقائق أذهب حول الباب الدوار بنفسى مقدماً ما شاهده قبلًا ما كانت تفعله أول نسخة. وبعد خمس دقائق أخرى أذهب للباب الدوار مرة أخرى وأقدم ما فعلته النسخة الثانية. وهلم جراً. وفي أثناء ذلك، ألاحظ أن واحدة من النسخ تكرر دائماً ما كنت قد فعلته في الدقائق الخمس الأولى. وفي نهاية تعاقب السفر في الزمن، سيكون لدى مولد الحقيقة التقديرية عدة تسجيلات ما حدث في الخمس دقائق التالية لوقت الظهيرة. وفي هذه المرة ستكون تلك التسجيلات متطابقة. وبكلمات أخرى فإن تاريخًا واحدًا قد وقع أي أنني تقابلت مع ذاتى المستقبلية لكني أنظر إلى ما لم ألاحظ ذلك. وبعد ذلك أصبحت ذاتى المستقبلية مسافة إلى الوراء في الزمن لقابلة نفسى الماضية، وهو الأمر الذي لم تتم ملاحظته بوضوح. كل هذا سلائم وغير متناقض أيضاً غير عملي. لقد قمنا به أنا ومواد الحقيقة التقديرية ونحن مرتبطان بلعبة صعبة أو معقدة وذات مرجعية نتقاسمها معاً. لقد كنت أقدها بينما هي تقلدنا. ولكن مع وضع التشغيل لذات التفاعلات العامة لم أكن لاختيار القيام بهذه اللعبة.
أو أن لي مدخلاً فعليًا لموارد الحقيقة التقديرية لارتحال الزمن، فبالتأكيد سوف يكون راغباً في اختبار مدى الثقة بالمحاكاة للفترة التي نناقشها، فإن الاختبار سيبعد حالة أرى النص مني. وبعيدا عن تجاهلها، سوف أقرّرهم بواحشراك في محاولة. أنا مزود بالكثر مما لدى دوستوسفي في اختبار يوليوس قيصر. لاختبار مصادقته، ولاجتيزا هذا الاختبار المبتدئ. الوجه المحاكي مني سيكون بنجاح كائنات اصطلاحية ذكية - والأكثر من ذلك سيكون أكثر شعراً برأي الأمر في استجاباتهم. لمحةٌ خارجية أدرجه أنهم سيقودون إلى بيانات يملؤن محاكات دقيقة لما ساكن عليه بعد خمس دقائق من الآن. على مولد الحقيقة التقديرية أن يجري برنامج مشابهًا لتعليم عقولً ونماضيً أو القاعدي. ومنذ أخرى فإن صعوبة كتابة مثل هذه البرامج هي بالأمر الذي يغنينا هنا. نحن نبحث الحقيقة التقديرية لارتحال الزمن وليس فيها بالذات. لا يهم من أين يحصل مولد الحقيقة التقديرية الافتراضي على برنامج، لأننا نسأل عما إذا كانت كل مجموعة البرامج الممكنة تحتوي أو لا تحتوي على واحد يحاكي بدقة ارتحال الزمن. ولكن مولدنا للحقيقة التقديرية يمكن من حيث البدا - الوسائل التي يمكننا من اكتشاف كل من الطرق الممكنة لسلوكنا في المواقف المختلفة. تلك المعلومات متوضعة في مكان ما من عقل الفيزيائي ويمكن بناءً على مباني دقيق قراءتها من حيث البدا. واحدة من هذه الطرق (ربما تكون غير مقنعة) لفعل ذلك هو أن يدفع مولد الحقيقة التقديرية عقلًا للتفاعل في الحقيقة التقديرية. من خلال اختبار البيئة، وتسجيل سلوكها، وتخزينه في جزء الأصلية، ربما بإعادة تشغيله للخلف، والسبب في أن هذه الطريقة ستكون غير مقنعة هو أننا سافرنا مزرياً بخبرة هذا الاختبار البيئة، ولو أني لم استعيده بعد ذلك، أنا أرى مولد الحقيقة التقديرية أن يكون في الخبرة التي حدثتها وليس أي شيء غيرها.

على أيَّ حال فإن ما يهمنا للغرض الحالي، هو هذا، وطالما أن عقلنا هو موضوع فيزيائي فإنا بدأ تورنت يقول إنه ضمن إعادة العرض لآتي مولد حقيقة تقديرية عام.
وعلى ذلك فإن من الممكن - من حيث البدا - لنسخ من أن تجتاز اختبار عمًا إذا كانت تشبه بذلة. ولكن هذا ليس هو الاختيار الوحيد الذي أريد تثبيته. أساسًا أنا أريد اختبار ما إذا كان ارتحال الزمن نفسه قد تمت محاكاته بشكل يوحي به. وبعد هذه النهاية أريد أن أجد ليس فقط إذا ما كان هذا الشخص هو أنا بشكل يعتر به، ولكن ما إذا كان فعلًا أثريًا من المستقبل بشكل يمكن الورق به. جريدة يمكن اختبار ذلك عن طريق توجيه أسئلة إليه. يجب أن يقول إنه يتذكر أنه كان في موضوعي منذ خمس دقائق مضت، وأنه سافر حول الباب الدوار وتقابل معه. وسوف أجد أنه أيضا يختبر مصداقتي. فإنه إذا سيفعل ذلك لأن أكثر الطرق صرامة ومباشرة التي يمكن بها اختبار مشابهته لذاتي المستقبلية ستكون الانتظار حتى أدخل في اللحظة: أولاً، مما إذا كانت هذه النسخة مني والتي وجدتها هناك، تتسك كما أتذكر أني سكن، ثانياً: إذا كان سلوكى كما أذكره من سلوك النسخة.

في كل من هاتين الحالتين فإن المحاكة تستقبل في اجتياز الاختبار! في أول وأبسط محاولة للتصرف بشكل مختلف عن الطريقة التي أتذكرها من سلوك النسخة. سوف أنجح وسوف يكون من السهل جعله يسلك بطريقة تختلف عن تلك التي أسلكاها: كل ما على فعله هو أن أسأله أي من النسخ هي أنا، ولو أنى مكانه للآن سائل، كما أنه ليست بثقة واحدة مميزة لهذا. وعلى ذلك فهمها كانت مشابهتهم جدًا لظهيرة وشخصيتها. فإن هؤلاء الظاهرين أو البارزين توا من آلة الزمن للحقيقة التقديرية لن يكونوا محنا ما ساكن عليه بعد قليل وبطريقة قابلة للورق بها. ولا يجب أن يكونوا كذلك بعد كل شيء، ولدى الامل الحاد لن يكونوا مثلًا مكلفة حين يحل دورى لاستخدام آلة الزمن، وطالما يسمح لي الآن مولد الحقيقة التقديرية أن تتفاعل مع البيئة التي تجري محاولاتها، فليس هناك ما يمنعني من تنفيذ ما انتويت عليه.

عن ذكر الألسم الأمر. كما تبدأ التجربة بمقابلتي لشخص أعرف عليه. بعدها عن الفروق البسيطة. فهذه الفروق تشير بمساءله على أنه من المستقبل: أنه يتذكر.
العمل في حالة أثناء الخمس دقائق التالية للظهيرة، وهو بالنسبة لما أشاهده لم يقع بعد. هو يتذكر موضعه في هذا الوقت مارًا من الباب الدوار ووصوله عند الظهيرة.

ويتذكر قبل كل ذلك بداية تجربته في وقت الظهيرة ورؤية الباب الدوار لأول مرة. ورؤية نسخ منه تبرز أمامه. ويقول لقد حدث هذا منذ خمس دقائق، بالنسبة لإدراك الشخصي، بينما بالنسبة لإدراك أنا فالتجربة لم يمض عليها الدقائق الخامس.

بعد. وهكذا. ورغم اجتيازه هذه الاختبارات على كونه وجه من الوجهة المحددة في المستقبل فهو بعد ليس مستقبلًا القابل إقامة الدليل عليه. عندما اختبر كونه بالضبط الشخص الذي ساكتنه، فإنه يفشل في هذا الاختبار. ويشبه ذلك قوله لـ

"إني لم أنجح في اختبار كوني شخصيته الماضية طالما لا أقوم بالضبط بما يتذكر أنه فعله.

وهكذا حالا أسافر إلى ماضي العمل، أجد أنه ليس نفس الماضي الذي خرجت منه. بسبب تفاعلها مع فلاسفة منى التي سأجدها هناك لا تتصرف بالضبط على النحو الذي أتذكر أنني سكلته. ولذلك فإنه إذا كان لولد الحقيقة التقديرية أن يقوم بتسجيل كل ما حدث أثناء تابع أو تعابر رحلته، فسيقوم مرة أخرى بتخزين عدة لقطات لكل لحظة طبقا لساعة حائط العمل، وبكلمات أخرى ستكون هناك عدة تأريخ متوازية وملزمة للمعمل خلال مدة الخمس دقائق التي استغرقتها الرحلة. ولقد خبرت كلا من هذه التأريخ، ولكن هذه المرة خبرتها جميعا بشكل تفاعلي، وعلى فليس ثمة أذار أو أسباب للقول بأن أي تأريخ منهم أقل حقيقة من الآخرين. وهكذا فإن ما مとなった محاكاته هنا هو متعدد أكوان صغير. ولو كان هذا هو الوقت الفيزيائي للرحلة، فإن

تعدد اللقطات لكل لحظة سيكون ممثلاً للأكوان المتوازية. ولوجود الفهم الكمي للزمن فإن يتسبب ذلك في دهشتنا. نحن نعرف أن اللقطات التي راكمها نفسها تقريبًا في لحظة من التتابع الزمني خلال تجربتنا اليومية هي في الحقيقة للأكوان المتوازية، ونحن في العادة لا نُخبر الأكوان المتوازية الأخرى الموجودة في ذات الوقت، ولكن لدينا سببا

425
معقولاً للإيمان بأنها موجودة هناك، وهكذا إذا وجدها طريقة ما، والتي لم تحدث بعد، للسفر إلى أوقات مبكرة، مما نتوقع أن هذه الطريقة بالضرورة ستأخذ كل نسخة من القطة العينية التي سبق أن اختبرتها هذه النسخة؟ مما علينا أن نتوقع أن كل زائر يفد إليها من المستقبل سوف ينهمر فوقنا من لقات المستقبل المعين الذي سنجد أنفسنا فيه أخبراً: فعلًا لا يجب أن نتوقع ذلك إذا أن طلبك بأن يسمع لك بالتفاعل مع البيئة الماضية المحاكية يعني طلبك أن تغيرها، والتي تعني بالتعريف، طلب أن تكون في لقات مختلفة عن تلك التي تذكرها (أو ربما تكون متطابقة مع نفس اللقات)، فقط في أقصى ما استتبثته في المناقشة السالفة، حيث لا يكون هناك تفاعل فعال بين النسخ التي تقابلت معها، وعندما يجعل مولد الحقيقة التقديري كل التواريخ المتوازية المخزنة كاملة التوافق.

الآن دعني أخصع آلة للحقيقة التقديري الزمنية للاختبار النهائي، دعني أربب الأمر بحيث أصل عمداً لتفاوض، لقد شكلت رغبتي الراحسة في السالف على هذا النحو: سأدخل ذلك إذا كانت نسخة من الألوات برزن من آلة الزمن وقت الظهور، إذن أدخل الآن بعد خمس دقائق من الظهور، وبالطبع في أي وقت أثناء التجربة، ولكن إذا لم تظهر أي نسخ، فسوف أدخل آلة الزمن بعد خمس دقائق من الظهور وأظهر فيها عند الظهور وحينئذ لن نستخدمها مرة أخرى، والذي حدث؟ هل سيظهر أحد من آلة الزمن أم لا؟ نعم ولا! هذا يعتمد على أي كون هو الذي أخذناه في الاعتبار. تذكر أن أكثر من شيء واحد قد وقع بالعمل عند الظهور. أفترض أنني لم أر أحدا يبرز من آلة الزمن وأنها تشير إلى وضعية "بدأ" كما في يمين الشكل (16 - 2) وأنني وواضح رغبتي الراحسة، انتظرت مرور خمس دقائق بعد الظهور تم تشتيت حول الباب الدوار الذي أصبح مالوفاً الآن. خرجت منه عند الظهور. ساهم بالطبع وجهتها من وجهتها واقفا عند نقطة "البدء" في يسار الشكل (16 - 2)، وكما تحدثنا سنجد أنه وانا قد شكلنا نفس الرغبة. لذلك وليني برزت في كونه هو فسوف يسرك بطريقة تختلف عن
سولكي. وبإعمال نفس الرغبة التي لدى فسيقوده هذا إلى عدم استخدام آلة الزمن. ومنذ هذه اللحظة يمكننا أن نرى أن التفاعلات وتستمر في هذا التفاعل طوال مدة استمرار المحاكاة حيث سيكون هناك وجهان من وجه في هذا الكون ووجه في الكون الذي أتيت منه وسيظل العمل خارج يحدث خمس دقائق من الظهورة لأنني لم أعد أبداً إليه. لم نواجه أي تناقض هنا. كل من وجهنا قد نجح في ممارسة رغبتي المشتركة - التي لذلك لم تكن، بعد كل شيء، غير قابلة منظاقياً للقيام بها.

ولكن أنا الآخر في هذه التجربة قد خاضت تجربة مختلفة. لقد رأى شخصاً ما يبرز من آلة الزمن عند الظهورة بينما لم أره أنا. تجاربنا لابد أن تكون متزاوية في إخلاصها لما انتوينا عليه ومتساوية في عدم التناقض، إذا ما تبادلنا الأدوار. بمعنى أني أستطيع أن أراه بارزاً من آلة الزمن عند الظهورة وبالتالي لا استخدمها أنا. وفي هذه الحالة يكون كلانا قد انتهى في الكون الذي بدأت أنا منه. فإنه في الكون الذي بدأ هو منه يظل العمل خالياً.

الشكل (12 - 3)

ممرات متعددة لسافر في الزمن يحاول إحداث تناقض

427
أي من هاتين الإمكانيتين المتاسبتين سيريني إياه مولد الحقيقة التقديرية؟
خلال هذه المحاكاة الجوهورية لعملية التعددية، لعبت دورًا واحدًا من نسختي التي بينها قام البرنامج بمحاكاة النسخة الأخرى. في بداية التجريبية بدأت النسختان متطلباتن (ولو أنها م_CAPACITYات) من ناحية الحقيقة الفيزيائية لأن واحدة منها فقط متصلة بعقل وجسد فيزيائي خارج البيئة المحاكاة) ولكن من حيث الوجه الفيزيائي للتجربة - إذا ما كانت ألة الزمن موجودة فيزيائيًا - فإن كلا من الكوين يشتمل على نسختي مني سوف يلتقيان والتلك كانتا في البداية متطلباتن بصرام، وكلاهما متساو في كونهما حقيقيين، وليس ذا معنى أن نسأل أي نسخة منا ستخطو أي من التجربتين طالما أننا متطابقان في هذا المكان لرأي منا. الأكوان المتوازية لا تتفق أرقاماً متسلسلة:
إنه تستيق ذكر بما يحدث فيها. وعلى فإن محاكاة كل لصالح نسخة واحدة مني، يعني أن يقوم مولد الحقيقة التقديرية لأجل إعادة إنشاء تأثير الوجود في نسختين متطلباتي، في حين أصبحا مختلفتين لكل منهما تجربة مختلفة. قد يحدث هذا حرفياً أو تم بطريقة عشوائية حيث تتساوي فرص الإمكانيات، أي من الأدوار ستلعب (وعلى ذلك وبناء على رغبتي السابقة أي الأدوار سالب)، للاختيار العشوائي، لأن الوسائل في رحان عمل إلكترونية خالية بوضوح من العيوب، وفي تلك العملية التي تظهر وجهة "الصورة" في نصف الأكوأن التي رؤيتها فيها عليها، ووجهة "الكتاب" في النصف الآخر من الأكوان وهنا كفيف نصف هذه الأكوان سالب دورا واحد، والدور الآخر في النصف الثاني. هذا بالضبط ما يحدث مع ألة زمن حقيقية.

لقد رأينا أن قابلية مولد الحقيقة التقديرية على محاكاة ارتحال الزمن تعتمد على امتلاكه معلومات تفصيلية عن حالة الاستخدام العقلية. وهذا يثير الحج وأول فترة من كوننا تجنبنا التنافض بناج. إذا كان مولد الحقيقة التقديرية يعلم مسبقًا ما أنوى فعله، فهل أنا فعلاً حر في تنفيذ ما اختاره من الاختيارات؟ نحن لسنا بحاجة لسؤال أعمق هنا عن طبيعة هذه الإرادة الحرة. أنا حر بالطبع في فعل ما أشاء في هذه
التجربة، بمعنى أي طريقة ممكنة قد اختارها في در الفعل إزاء الماضي المشابه - بما يشتمل من الشروائط، إذا أردت لمولد الحقيقة التقديرية أن يسمح بأن يكون رد فعل على هذا النحو، وكل البيئات التي تتفاعل معها ستتأثر بما فعله، وأن رد فعلها إزاي سيكون هو بالضبط كما لو أن آلة الزمن ليست موجودة هناك.

والسبب في أن مولد الحقيقة التقديرية سيحتاج معلومات عن دماغي، ليس ليتباه بتصرفاتي، وإنما ليحاكي أقرانى من الآلات الأخرى. مشكلة تتحصل في أنه في الوجه الحقيقى لهذا الوضع سوف تكون هناك نظائر لم في الآلات المستقبلية، مبدئيًا متطابقة، يمكن أن يكونون من النواحي مكل ويأخذون نفس القرارات (وأبعد من ذلك في التعددية سوف يكون هناك من هم مختلفون في وضعيته التحريبية ولكن آلة الزمن سوف لن تسجل أبدا في التقابل مع تلك الأجهزة). إذا كان سامح طرق أخرى لمحاكاة هؤلاء الناس النظر، فإن مولد الحقيقة التقديرية لن يحتاج أي معلومات عن رأسى، ولن يحتاج إلى الوسائل الاستثنائية للحوسبة التي تتخيلناها. على سبيل المثال لو أن بعض هذه النظائر كانوا قادرًا على مشابهتى لدرجة ما من الدقة (بعيدا عن المساهمات الخارجية كالمظهر واللغة الصوت التي تتحسسها أو من قبل التوافق بالنسبة للمحاكاة)، فإن فإن مولد الحقيقة التقديرية سيراهمهم وهم يتصرفون طبقا لقواعد نظائر في الآلات المستقبلية، ومن ثم يمكن، يمكننا ارتحال الزمن إلى هذه الدرجة من الدقة أو الصحة.

وألا زمن حقيقية لن تواجه مثل هذه المشاكل. إنها سوف ببساطة تدنا بمسارات على الطريق والذي سابقلاها، إنما وعلى مدار دفعته إلى الفعل. ولن تقيد لا سلوكنا ولا دريحتنا عندما نتفاعل مع هذه الاعمال. والطرق التي ستكون بها هذه المزارع مع بعضها - أي التي ستقود إليها آلة الزمن من لقطات - سوف تنافس بحالتى الفيزيائية بما فيها حالة عقل، وهذا لا يختلف عن وضع الطبيعي، والذي تنعكس عليه نزعتى للسلوك بطرق متنوعة، تؤثر على ما يحدث. الفرق الكبير بين هذا.
وبين تجربتنا اليومية يتمثل في أن كل نسخة منا يتواجد فيها بالقوة تأثير كبير على الأكوان (من خلال السفر إليها).

هل قابلية السفر إلى ماضي الأكوان الأخرى وليس كوننا، يعني شيئًا حقيقة لارتحال الزمن؟ هل هو فقط السفر وسط الكون هو الذي له معنى أكثر من المقصود بارتحال الزمن؟ لا. العملية التي كنت أصفها هي حقيقة ارتحال الزمن. أول كل شيء، إنها ليست حالة أننا لا نستطيع السفر إلى لقطة كُنا فيها بالفعل، أو أعدنا الأمر بطريقة صحيحة سنستطيع، وبالطبع لو غيرنا أي شيء في الماضي - أو جعلناه مختلفًا، كما كان عليه في الماضي الذي أنت منه - سوف إذن نجد أنفسنا في ماضي مختلف. بارتحال الزمن المكتمل النمو سوف يسمح لنا بتغيير الماضي، وبكلمات أخرى سيسمح لنا بجعل الماضي مختلفًا عن الطريق المتذكّر أنه كان عليه (في هذا الكون). هذا يعني شيئًا مختلفًا عن ما كان في الماضي الذي لم نصل إليه تغيير أي شيء. وهذا يتضمن، بالتعريف، اللقطات التي نتذكر أننا كنا فيها.

وعلى هذا فإن الرغبة في تغيير لقطات معينة، وهي التي أظهرنا مرة أنها لا تفيد أي معنى. ولكن هذا ليس له أي شأن مع ارتحال الزمن. إنه بلا معنى ذلك الذي تستنبطه مباشرة من النظرية التقليدية عن تدفق الزمن. تغيير الزمن يعني اختيار تلك اللقطات الماضية التي تريد التواجد فيها، وليس تغيير لقطات بعينها إلى لقطات أخرى، ولهذا المعنى لا يختلف تغيير الماضي من تغيير المستقبل، وهو ما نفعله طوال الوقت. حالما نأخذ اختيار ما فنحن نغيّر المستقبل: نغيّره عما كان سيؤدي إليه الحال لو كان اختيارنا مختلفًا. مثل هذه الفكرة ستفقد فزياء الزمكان التقليدية أي معنى بمستقبلها الوحيد السابق التحديد من خلال الحاضر. وإنما تجعل معنى لفيزياء الكم، عندما نتخذ اختياراً نحن نغيّر المستقبل عما كان سيؤدي إليه في أكوان تختلف فيه اختياراتنا. ولكن ليس ثمة حالة لتغيير أيّة لقطة مستقبلية، إنما لن يمكنها التغيير. تغيير المستقبل.
يعني اختيار أي اللقطات سنكون فيها تغيير الماضي يعني بالضبط نفس المعنى. ويسبب عدم وجود تدفق في الزمن لفسر ثمة أشياء مثل تغيير لقطات ماضية بعينها مثل تلك التي يتذكر القارئ أنها كان فيها. ومع ذلك إذا استطعنا بطريقة ما التحكم على اتصال فيزيائي بالماضي لن يكون هناك سبب لآلا تستطيع تغييره بنفس المعنى الذي نغير فيه المستقبل، بما يعني اختيار اللقطات المختلفة عن تلك التي كنا سنكون فيها أو أن اختارنا اختيارنا خلفاً.

المناقشة من خلال مساعدة الحقيقة التقديرية لفهم ارتحال الزمن، ذلك أن مفهوم الحقيقة التقديرية يتطلب أخذ “الوقائع المواجهة للحقائق” مأخذ الجد، وإذا فإن مفهوم متعدد الأكوان الكمي للزمن يبدو طبيعيًا عندما يحكي في الحقيقة التقديرية. بورية ارتحال زمن موجه للماضي ضمن إعادة العرض لولد علالي للحقيقة التقديرية سوف تُعلنا أن فكرة ارتحال الزمن موجهًا للماضي تعني معنى تامًا. وليس ذلك كالقول بأنه ممكن التحقيق فيزيائيًا بالضرورة. وبعد كل شيء فإن آلات سرمينية متحركة بأسرع من الضوء وأشياء عديدة أخرى غير ممكنة فيزيائيًا سوف تكون ممكنة في الحقيقة التقديرية. لا يهم بالنسبة للحقيقة التقديرية إمكانية إثبات أن عملية معينة مسموح بها من قبل قوانين الفيزياء (وله أنه يمكن إثبات العكس، إذا ما وصلنا إلى النتيجة العكسية. إنها تستطيع عبر مبدأ تورنجر، بأن ارتحال الزمن لا يمكن أن يحدث فيزيائيًا) وعلى الفما الذي نقوله لنا استنتاجات الله للحقيقة التقديرية الزمنية عن الفيزياء؟ إنها تقول لنا ماذا سيكون عليه ارتحال الزمن إذا حدث. إنها تقول لنا إن الزمن الموجه للماضي سيكون عملية لا مهب لها من أن تكون ضمن أكوان متصلة ومتفاصلة مع بعضها، والمشارك في مثل هذه العملية سوف يسافر بصفة عامة من كون إلى كون آخر حينما يكون مسافراً في الزمن. وبالتحديد كيف ستكون الأكوان متصلة، فإن هذا سيعتمد على الحالة العقلية للمشارك، من بين أشياء أخرى سيعتمد عليها.
وهكذا لكي يكون هناك سفر في الزمن، فلا بد أن تكون هناك تعددية أكون -

ومن الضروري أن قوانين الفيزياء التي تهيمن على متعدد الأكون تؤدي إلى ما يلي:

في وجود آلة زمن ومسافرين محتملين في الزمن يصبح الأكون متعلقة بعضها بالطريقة التي وصفتها، وليس بأي طريقة أخرى. وعلى سبيل المثال: إذا كنت لن

استخدم آلة الزمن فإن تظهر أوجهها في مسافرة في الزمن عبر اللقطات، بمعنى عدم موجود أكون أخرى يمكُن فيها لتلك الأوجه أن تستخدم آلة زمن، ومن ثم يمكن للأكون أن تتصل بكوني. وإذا كنت بالتأكيد سأستخدم آلة الزمن، فسيصبح كوني متصلاً بالكوان الأخرى التي فيها سأستخدم مؤكداً آلة الزمن. وإذا ما أردت أن أنشئ دورًا

لمناقش، إذن وكما رأيناه سيكون كوني متصلاً بكون آخر توجد فيه نسخة مني لديها نفس النية، ولكن مع هذه النية يتمотор الأمر بأن هذه النسخة تتصرف بطريقة مغايرة لتصري، ومن الملاحظ أن ذلك بالتحديد ما تنبأ به نظرية ميكانيكا الكم، وباختصار فإن النتيجة أنه إذا كان يوجد ممر للماضي، فسيكون المسافرين إليه أحرارًا في التفاعل مع بيئةهم التي سافروا إليها بنفس الطريقة لو أن هذا الممر لم يقودهم إلى الماضي. وليس ثمة حالة يستطيع فيها ارتحال الزمن أن يكون متماسكًا، أو يضع فيها

قيودًا خاصة على سلوك المسافرين في الزمن.

هذا يترتكا مع سؤاول عما إذا كان ممكنًا فيزيائيًا مثل هذا الممر للماضي أن يوجد، وكان هذا السؤال محاولة للكثير من الباحثين، وما زال محاولةً لخلاف وثبر الجدل بين الكثيرين. ونقطة البداية المعتادة في هذا هي مجموعة المعادلات التي تتشكل منها

الأساس التنبوتي لنظرية أينشتاين عن النسبية العامة، وهي النظرية الشائعة كأحسن نظرياتنا عن الزمان والمكان. وهذه المعادلات المعروفة بـ "معادلات أينشتاين" لها عدة

حلول، كل منها يصف شكل رباعي الأبعاد ممكن للمكان، والزمان، والجاذبية. معادلات

أينشتاين هذه بالتاكيد تسمح بوجود ممر للماضي، كما أكتشفت عدة حلول تتعلق بهذه

الخاصة.
لكنه وحتى عهد قريب جرى العرف على مثل تلك الحالات بشكل جماعي. ولم يكن هذا أبدا لأسباب ظهر من النظرية نفسها، ولا من أي جدل حول الفيزياء. ولكن بسبب وقوع الفيزيائيين تحت تأثير الانطباع بأن "ارتحال الزمن" سوف يقودنا إلى تناقضات وبالتالي لا بد أن تكون حلول معادلات أينشتاين تلك غير فيزيائية. هذا الذي يمكن أن نسميه "التخمين الثاني" يذكر بما حدث في السنوات الباكرة للنسبية العامة.

عندما كانت الحلول التي تصف "الانفجار الكبير" و "الكون المتدفق" مرفوضة من أينشتاين نفسه حتى أنه حاول أن يغير من المعادلات بحيث تصف كونًا مستقرًا بدلاً من ذلك. ومتأخرًا هو نفسه أشار إلى ذلك كأكبر أخطاء حياته وكان التمدد قد تم إثباته تجريبياً بمعارض الفلكي الأمريكي إدوارد هابل(1) والكبير في أنيشتاين Edwin Hubble (2)

وأظهر هذه النتائج التي توصل إليها الفلكي الألماني كارل شوارتزشيلد(3) والتي كانت أول من وصفت "الثقوب السوداء" لقد تم رفضها، على سبيل الخطأ، بدعوى أن ظاهرة مثل وجود منطقة يصعب بل يستحيل من حيث المبدأ الهروب منها، وأن قوى الجاذبية تركزها اللانهائية هي ظاهرة مضادة للحدس.

الرؤية السائدة اليوم أن الثقوب السوداء موجودة، وأن لها بالفعل الخواص التي تنبات بها معادلات أينشتاين.

(1) Edwin Powell Hubble (1889 - 1953) فلكي أمريكي، ويعود مؤسسًا للكون ما وراء النجوم وهو أول من أوجد دليلًا على تعدد الكوكب، كما أن له قانون يعرف حالياً بإسمه Hubble (يصل إلى 100 كم في الثانية لكل مليون سنة ضوئية) والذي يتصل بالعلاقة بين المسافة بين المجرات وسرعتها. في كلما ابتعدت زادت سرعتها حتى تصل إلى مثل هذا السرعة. (المترجم)

(2) Karl Schwarzschild (1873 – 1916) وهو فيزيائي ألماني شهير، ويُطلق عليه الفيزياء الفلكية. وكان بين أشد العلماء المجهزاً حيث إنه لم ينتم بعد للسادسة عشر من العمر ظهر له بعض مشارك في "الدارات الفلكية". كما حصل على الدكتوراه الخاصة به عام 1896 عن نظريات بوانكاريه. (المترجم)
إذا أخذنا الأمر حرفيًا، فإن معادلات أينشتاين تنبأ بأن السفر للماضي يمكن
في أشياء تدور خارجًا بسرعة شديدة، مثل الثقوب السوداء، إذا ما تحركت بشكل
لولبي بسرعة كافية وفي ظروف أخرى معينة. ولكن كثيرًا من الفيزيائيين أودوا
شكوكهم في أن تكون هذه النتائج عملية. ليس شمل ثقوب سوداء تدور بسرعة كافية
تعبر عنها، كما ثار الجدل (بشكل غير حاسم) حول أنه يستحيل أن تقيم هذا الشيء
اصطناعيًا. لأن أي مادة سريعة اللولبية يُذكَف بها ربما بعد إلقائها سيغمر عليها
دخول الثقوف السوداء. المتشككون ربما يكونون على حق، ولكن طالما أن مقاومتتهم لقبول
إمكانية ارتحال الزمن تقوم على معتقد أن ارتحاله سيؤدي إلى تناقضات، فإن ذلك لم
يبرر ولا يبره من الخطأ.

وحتى بعد أن تصبح معادلات أينشتاين مفهومة تمامًا، فإننا لن نعدنا بناجية
حاسمة عن موضوع ارتحال الزمن. النظرية النسبية العامة ظهرت قبل نظرية الكم وإن
لم تكن مفسرة معها تمامًا. ولا أحد قد نجح بعد في تشكيل وجه كمي مرضي لها،
أي نظرية كمية للجاذبية. وعليه فإنه طبقًا للمناقشات التي قدمتها، فإن التأثيرات الكمية
ستهيمن على حالات السفر في الزمن. وجهة أخرى لنظرية الجاذبية الكمية مرضحة
فقط للسماح بالزمن الموجبة الماضي لأن يوجد في متعدد الأكوان، وهي أيضا تنبأ بأن
مثل هذه الصلات تتشكّل باستمرار وتتغير السوية. هذا يحدث في الزمان والمكان،
وإذا فقط على المستوى التحت ميكروي، الأمر النموذجي الذي يتشكل عبر هذه
المؤثرات عرضه 10-10 متر، يبقى مفتوحا لواحد زمن بلاينك (حول 10-42 ثانية، أي أنه
يصل في الماضي فقط إلى زمن قدره 1 بلاينك).

ارتحال الزمن نحو المستقبل، الذي يتطلب أساسًا صواريخ كفؤة كافية، هي
على مسافة معقولة ولكن موثوق من تحقيقها تقنيًا في الدى النظر. الزمن الموجه
للماضي، الذي يتطلب التعامل مع الثقوب السوداء، أو أي شيء عنيف جاذبيًا وممزق
لتسجع الزمان والمكان، سيكون قابلاً لأن يكون عمليا في المستقبل النائي البعيد، إذا ما
حذرت أصلا. في الوقت الحالي نحن لا نعرف قوانين فيزيائية تحكم الارتحال للزمن موجها للماضي. بل العكس، إننا تعلم منه غير قابل للتصديق أو الدفاع عنه. الاكتشافات المستقبلية في الفيزياء الأساسية ربما تغير من ذلك. ربما نكتشف أن تدفقات كمية في الزمان والمكان ستكون هائلة القوة في اقترابها من آلات الزمن. وتتضمن الدخول إليها (ناقش ستيفن هوكينج) في إحدى المرات أن بعض حساباته تجعل الأمر مشابهًا لذلك، ولكن مناقشاته لم تكن حاسمة. أو أن بعض الظواهر غير المعلومة حتى اليوم ربما ستحكم الارتحال الزمن الموجه للماضي، أو تدمنا طريق أحد وأسهل لفعل ذلك، المرء لا يستطيع التنويه بنمو المعرفة. ولكن إذا ما كان مستقبل التقدم في أساسيات الفيزياء سيستمر في السماء بارتحال الزمن من حيث البداية، فإنه بالتأكيد سيكون مجرد مشكلة تقنية ستحظى بالحل إن أخلاً أو عاجلاً.

بسبب أن آلة الزمن لم تمدنا بمبرم إلى أوقات أبكر من اللحظة الحالية التي تحقق بالفعل، وبسبب الطريقة التي تقول بها نظرية الكم أن الأكوام على صلة ببعضها البعض، فثمة حدود لما يجب أن تتوافق تعليمه من استعمال آلات الزمن عندما نبني إحداهما، وليس قبل ذلك. ربما تتوقع زوارًا أو على الأقل رسلًا من المستقبل، ليتظهر منها. ماذا سيقولون لنا؟ أمر واحد لن يقولوا لنا بالتأكيد وهو قول أي شيء عن مستقبلنا. الكابوس القدرى الخاص بيوم الحساب الموحي به والذي لا مهب منه سوف يجيء على الرغم من كل محاولاتنا في تجنبه، وربما كنتيجة لمحاولاتنا تلك. وكل هذه هي مادة لأساطير وروايات الخيال العلمي فقط. الزوار من المستقبل لا يستطيعون معرفة مستقبلنا بأكثر مما نعرفه نحن، لأنهم غير آتين من هناك. ولكن يستطيعون إخبارنا مستقبل كيفون، حيث كان ماضيهم متطابقاً مع ماستينا. يمكنهم إحضار شرائح أخبار وبرامج الأمور السائدة. إذا كان مجتمعهم قد اتخذ قرارًا خاطئًا، والذي يقود إلى كارثة، لا يمكنهم تحذيرنا من ذلك. ربما تتبع نصيحتهم أو لا تتبع، وإذا
اتبعنا تلك التصيحة، ربما نتجنب الكارثة أو - وهنا لا توجد ضمانات - ربما نجد النتيجة حتى أسوأ مما وقع لهم.

وفي المتوسط مع ذلك سوف يكون المفترض أن نستفيد من دراسة مستقبل تاريجهم، ولو أنه ليس مستقبل تاريخنا، وعلى الرغم من معرفة أن الكارثة وشيكة الحدوث، فليس كل هذا مثل معرفة ما الذي يجب أن نعرفه عن ما هو العمل إزاءها. ربما نفترض أن نتعلم الكثير من مثل هذه التسجيلات التفصيلية، من وجهة نظرنا عما يمكن أن يحدث. زوارنا هؤلاء، ربما يحضرون تفصيلات عن تحققات عملية وفنية كبيرة. إذا كانت هذه قد صنعت في المستقبل القريب للكون الآخر، فهذا يشبه أن ننظر الناس الذين صنعوها يجدون في كوننا، ربما يحلمون في اتجاه تلك التحققات. وإذا مثّلوا جميعا كله ك vamos واحدة، الوجوه الكاملة لعملهم. هل سيكونون ممتنين؟ من الواضح أن هذه متناقضة أخرى لارتحال الزمن هنا. إذا لم يبد أنها تنسيء تامسا، وإنما فقط فضوليات، فقد نوقشت كثيرًا في الخيال عن أن تكون قد نوقشت عبر العلم Michael.

في مجال معاداة ارتحال الزمن (ولو أن بعض الفلاسفة مثل ميشيل دوميت قد أخذ الأمر بجدية) أنا أسميها متناقضة المعرفة في ارتحال الزمن، وهنا كيف تجري الحكاية بالضبط. التاريخيون حول المستقبل والذين لديهم اهتماما خاصا يستخدمون آلية زمن لزيارة الكاتب الكبير في وقت كتابته Shakespeare بشكسبير، وكانت بينهم محاكاة عن ما هو الوقت الذي يرجم في كتاب هاملت Hamlet من ناحية الشهيرة: أكون أو لا أكون، الذي أتي بها مع من المستقبل. شكسبير أعجب بالناجحة واستخدمها في مسرحيته. وفي وجه آخر للأمر، شكسبير يموت ومسافر الزمن يدعو شخصيته، يحقق نجاحًا باعتباره كاتب مسرحيات والتي ينسخها من الأعمال الكاملة لشكسبير، والتي أحضرها معه من المستقبل. وفي وجه آخر سيكون مسافر الزمن حذرًا في إمكانيته موضع شكسبير بالمرة. ومن خلال سلسلة أحداث، ويجذ نفسه غير ممتنًا لشخصية شكسبير، مرة أخرى يترحل مسرحياته.
لا يمكنني قراءة النصوص بشكل طبيعي من الصورة المقدمة.
والعمليات الفيزيائية فيهما غير متناقضة أيضًا، ولكن تفصيلات قوانين العرفة التي تحكمها واحدة. في حالة واحدة منهما يمكن تسميتها: نظرية بور في نمو العرفة العلمية، وفي الأخرى نظرية داروين في "التطور". المرء يمكنه تشكيل متناقضة معرفة في مثل الكلمات المستخدمة في الأنواع الحية أو أخذنا - مثلا - أحد الحيوانات الثديية في ألة زمن إلى عصر الديناصورات حيث لم تكن قد ظهرت بعد الحيوانات الثديية. نحن نميز حيوانات الثدي. مات الديناصورات وحلت محلها الحيوانات الثديية. إنه من السهل أن ترى أن هذا الوجه غير مقبول فلسفياً إنه لا يطبق واحدًا من أصول داروين في نشوء الأنواع، خاصة "الخلق". أصل الأنواع، في هذه القصة متتميز في تفوقه على الطبيعة: القصة لا تقدم لنا تفسيرًا أو شرحا - أو تحكم إمكانية أن تكون كذلك - كيف أن الأنواع والتواجد أو التكيف العقد للأنواع مع كوايتها البيئية قد أصبحت هناك.

بهذه الطريقة فإن حالة متناقضة العرفة تنتهك العرفة، أو إذا شئت، مبادئ التطور. إنها تتناقض فقط لأنها تتضمن الخلق من لا شيء أو معرفة بشرية معقدة، أو تكيف بيولوجي معقد. القصص المشابهة بأشكال أخرى ومن المعلومات في هذه العقد ليست متناقضة. بعد ملاحظة حضانة على الشاطئ، ثم ارتحل إلى الوراء إلى أمس، وضع الحضانة في موضع آخر ثم حركها إلى حيث تريد أن تجدها. لماذا تجدها في هذا الموضع بالذات؟ لأنك حركتها إلى هناك. لماذا حركتها إلى هناك؟ لأنك وجدتها هناك. لقد تسببت في بعض المعلومات (موقع الحضانة) لكي تحوز (المعلومات) صفة الوجود في عقدة أو حلقة ذاتية التماسك. ولكن ماذا بعد؟ لا بد للحضانة أن تتواجد في مكان ما، بالإضافة لأن القصة لا تتضمن الحصول على شيء من لا شيء، أو عن طريق العرفة أو التكيف. ليس حاجة تناقش هنا.

من وجهة نظر متوسط الأكواKEN فإن مسافر الزمن الذي يزور شكسبير لم يأت من مستقبل نسخه شكسبير. يستطيع أن يثير، أو ربما يحل محل النسخة التي يزورها.
ولكنه لا يستطيع أبدا أن يوزر النسخة الموجودة في الكون الذي بدأ منه. وهي تلك النسخة التي كتبها المسرحية - وعلى هذا فالسحريات للكون مؤلف عبقرى، وليس مثلاً عقد أو حلقات متناقضة من تلك التي تحيلناها في القصة. المعرفة والتكيف حتى في حالة وجود ممرات إلى الماضي، يمكن استحضارها اللوجود فقط بشكل متزايد بواسطة تصرفات الإبداع البشري أو التطور البيولوجي. وليس بأن طريق أخرى.

كنت أتمنى أن أقرر أن هذا المطلب يحقق بصرامة من خلال ما تفرضه قوانين نظرية الكم على التعددية. أتوقع أنها كذلك، ولكن هذا من الصعب إثباته لأنه من الصعب التعبير عن الخاصية الملوكية هنا باللغة السائدة في الفيزياء النظرية. ما هي التأليف أو التشكيلات الرياضية التي تميز بين "المعرفة" و "التكيف" وبين المعلومات التي لا تزال وراثتها؟ ما هي المساهمات الفيزيائية التي تميز العمليات الإبداعية من العمليات غير الإبداعية؟ ولد أنتان بعد لا يستطيع الإجابة على هذه الأسئلة فانا لا أعتقد أن الحالة توصف بالبياس. تذكر نتائج الفصل الثامن حول معنى الحياة، والعرفة في متعدد الأكوان. لقد أشرت هناك (أصيب لا لا يتصور بارتحال الزمن) أن إبداع المعرفة والتطور البيولوجي هي فيزيائي عمليات ذات معنى، وواحد من الأسباب أن هذه العمليات، وفقط هذه العمليات، لها تأثير معين على الأكوان المتوازية - أو أي بناء وراء الكون أو عبره من خلال جعلهما متشابهين. عندما يستطيع يوما فهم تفاصيل هذا التأثير، ربما يستطيع تعريف المعرفة، والتكيف والإبداع، والتطور في كلمات تلتقى عند التعددية.

عندما أمتقت متناقضة، كانت هناك أخيرا نسختان مني في كون واحد ولا شيء مني في الكون الآخر. إنها قاعدة عامة حين يأخذ ارتحال الزمن مكانه فإن الرقم الجمعي للنسخ (مني) والتي تعد على مدى كل الأكوان، يغيب. وبالتالي فإن قوانين حفظ الطاقة والكتلة والكمات الفيزيائية الأخرى تستمر لأن تكون في متعدد الأكوان كله وليس بالضرورة في أي كون واحد. ومع أنه لا يوجد قانون حفظ للمعرفة فإن حيازة آل
زمن سوف يسمح بأن نتوجه إلى المعرفة من مصدر جديد كلية، أي "إبادية العقول" في آكوات أخرى. وهم أيضا يمكن أن يكونوا أكثر معرفة منا؛ بحيث يمكن للمرء أن يتحدث باستفادة عن "تجارة" في المعرفة، وتجارة في الإنتاج الاجتماعي الذي يحيى معرفة. بين آكوات متعددة ولكن المرء لا يستطيع أخذه المشابهة بشكل حرفي، لأن التعددية لن تكون منطقة تجارة حرة، لأن قوانين ميكانيكا الكم تضع قيودا قاسية أو صارمة على أي من اللقطات يمكن ربطها بلقطات أخريات. وهذا لسبب واحد، أي كونين يكونان متصلين مع بعضها في اللحظة التي يصبحان فيها متطابقين، ويمرد اتصالهما هذا يجعلهما يبدآن الاختلاف عن بعضهما. فقط عندما تتراكم هذه الفروق والمعرفة الإبداعية الجديدة قد نشأت في كون منهما وأرسلت إلى الوراء في الزمن إلى الكون الآخر، فهكذا نستطيع استقبال معرفة لم توجد بعد في كوننا.

طريقة أخرى أكثر دقة في التفكير في تجارة المعرفة بين الكونيتي هي التفكير في كل عملياتنا المنتجة أو المولدة للمعرفة، كل ثقافاتها ومدينتها، وكل العمليات الفكرية في عقل كل فرد بالطبع، وكل المحيط الحيوي المتطور أيضًا كما لو كانوا عملية حوضية ضخمة. كل المساحة تتحصل في تنفيذ برنامج كمبيوتر ذاتي الحفز ذاتي التوليد، وبتحديد أكثر فهي، وكما أشرت، هو برنامج حقيقة تقديرية في عملية محاكاة، مع دقة متزايدة دائمة، هي كل الوجود. في الآكوات الأخرى ثمة أوجه أخرى لولد الحقيقة التقديرية، موجهة لآل الزمن. وقد تكون قادرة على استقبال بعض نتائج الحوسبة التي حققتها نظائرها في آكوات أخرى، طالما سمحت قوانين الفيزياء بتبادل المعلومات الضرورية. كل قطعة أو جزء من المعرفة يتحصل عليها المرء من آل الزمن سوف يكون لها مؤلف في مكان ما من متعدد الآكوات، ولكنها ربما تقف عددًا لا يحصى من الآكوات المختلفة وهكذا فإن آل الزمن هي مصدر أو وسيلة تسمح بطرزات أو أنماط معينة من الحوسبة يمكن أن تتحقق بكفاءة هائلة أكثر من تحقيقها في كمبيوتر واحد.

إنه تحقق ذلك بالمشاركة الإيجابية من جانب النص المشتهر المتعدد منه عبر الآكوات المختلفة.
في غيابه انة الزمن سيتحول الأمر إلى تبادل ضئيل للمعلومات بين الأكوان. لأن قوانين الفيزياء تقتنيا. في هذه الحالة، أن يكون الاتصال السببي بينهم ضئيل. ولدرجة جيدة من التجريب، المعرفة يتم إبداعًا في مجموعة لقطات مشابهة تتناوب مع قليل من اللقطات الأخرى، أي تلك التي تراكمت في زمن مستقبلي بالنسبة للقطات الأصلية. ولكن هذا مجرد تجريب. ظاهرة التداخل هي نتيجة لاتصال السببي بين الأكوان القريبة من بعضها. لقد رأينا في الفصل التاسع، أنه حتى على هذا المستوى الصغير جدا من الاتصال يمكن استخدامه في تبادل المعلومات الكمبيوترية ذات المعنى والمفيدة بين الأكوان.

دراسة انة الزمن أشبه بمسرح - بالرغم من أنه مسرح فكر تجريبي نظرًا حتى الآن - نرى فيه كتابة قدر كبير من الصلات بين ما اسميه "الخيوط الأربعة الرئيسية" كل من تلك الخيوط يلعب دورًا أساسيًا في تفسير ارتحال الزمن. ربما يتحقق ارتحال الزمن يومًا ما، أو ربما لا يتحقق. ولكن إذا تحقق، فلن يتطلب أي تغيير أساسي في نظرتنا للعالم على الأقل بالنسبة لهؤلاء الذين شاركوا بنطاق واسع في النظرية للعالم الذي قدمته هنا. كل الاتصالات التي يمكن إقامتها بين الماضي والمستقبل، والتي تستلزم الربط بين مجالات منفصلة بوضوح من المعرفة ستكون هناك على آية حال.
<table>
<thead>
<tr>
<th>اصطلاحات</th>
<th>ارتحال الزمن:</th>
</tr>
</thead>
<tbody>
<tr>
<td>في الزمن الموجه الماضي في آلة الزمن، فإن السافر يمر بتجارب ذات الصلة كما هي معرفة في ساعة وتاريخ خارجية، أكثر من مرة في عقوبة شخص (أي من الناحية الذاتية).</td>
<td>Time travel</td>
</tr>
<tr>
<td>في الزمن الموجه المستقبلي في آلة زمن، يصل السافر إلى لحظة متأخرة في وقت شخصي أقصر عن المعرف بالساعة وتاريخ خارجية.</td>
<td>Future-directed</td>
</tr>
<tr>
<td>شيء فيزيائي يسمح لاستخدامه أن يسافر إلى الماضي. من الأفضل التفكير فيه كمكان أو ممر أكثر من التفكير فيه كعبارة.</td>
<td>Time machine</td>
</tr>
<tr>
<td>حالة من عدم الإمكانية الواضحة لاحترام مسافر في الزمن أو أن السفر في الزمن ممكن.</td>
<td>Paradox of time travel</td>
</tr>
<tr>
<td>المشكلات التي تنشأ فيها المعرفة عن شيء، من خلال السفر في الزمن.</td>
<td>Knowledge Paradox</td>
</tr>
<tr>
<td>هي المشكلات التي من خلالها يسافر المرء إلى الماضي وفي نفس الوقت يمنع نفسه من عمل ذلك.</td>
<td>Grandfather paradox</td>
</tr>
</tbody>
</table>
الخلاصة:

ارتحال الزمن قد يتحقق أو لا يتحقق، لكنه ليس متانقًا مع الحقيقة. إذا سافر المؤر إلى الماضي سوف تتقدم حريته الطبيعية في التصرف، ولكنه بصفة عامة سوف ينتهي إلى ماودي كون مختلف. دراسة ارتحال الزمن هي منطقة دراسة نظرية، التي فيها الخيوط الأربعة التي اقترحتها تكتسب المعنى: ميكانيكا الكم، باكوانا المتوازية والمفهوم الكم للزمن، ونظرية الحوسبة، وسبب الصلات بين الحقيقة التقديرية وارتحال الزمن، وسبب السمات المميزة لارتحال الزمن يمكن تحليلها كمفتاح جذري من الحوسبة، والمعرفة ونظرية التطور، وسبب القيود التي تضعها على كيف تأتي المعرفة إلى الوجود أو حياة صفة الوجود.

ليس فقط الخيوط الأربعة التي ترتبط معاً كتسبيح للحقيقة، هناك أيضاً توازيات ملحوظة بين المجالات الأربعة للمعرفة مثلها. كل النظريات الأربعة الأساسية لها هذه الحالة غير المتقدرة من القبول معاً أو رفضها معاً، اعتمادًا على اعتقاد أو عدم الاعتقاد فيها، بواسطة معظم العاملين في تلك الميادين.
الفصل الثالث عشر
الخيوط الأربعة
من الأفكار الانتشارية على مدى واسع ويشتركون فيها الناس أو مجموعة منهم رغم بساطتها عن العملية العلمية في تلك التي تَقَرَّها في الذاكرة مبدي مثال شاب ضد ما يعرف عن المؤسسة العلمية. حيث كان الأئمة الكنيسة قد ضُغِّقوا الفكرة والرجلين قد أقاموا أنفسهم كمدافعين عنها وسجنا لها في الوقت نفسه، فقد كانوا يضحكون بأي تحدث يبدئ ضدهم. وكانوا يرفضون الاستماع إلى النقد، والدخول في المناقشات أو الجدل أو قبول الدليل، كما حاولوا خنق أفكار ذلك المبدي.

تلك الفكرة التي يشتركون فيها عدد من الناس كانت قد دخلت إلى الفلسفة بlename

(6) توماس كون مؤلف الكتاب المهم "بناء أو تركيبة الثورات العلمية Structure of scientific Revolutions". طبقًا لكون فإن المؤسسة العلمية يتم تعريفها بإيمان أعضائها في مجموعة النظريات السائدة، والتي تكمن النظرة إلى العالم، أي النظرة النموذج. وهذه النظرة النموذج هي الجهاز أو الأدوات الفلسفية والنظرية التي من خلالها يلاحظ أصحابها ويفسرون كل شيء في خبرتهم. (من خلال تسبب يتضمن جزء من المعرفة، مثل الفيزياء، ويمكن حينئذ للمرء الحديث عن النموذج في هذا المجال) هل لأي ملاحظة أن تبدو وكأنها تتنتهي النموذج ذو الصلة، أصحاب هذه النظرية ببساطة لا يرون هذا الانتهاك، عندما يواجهون دليل على يكونون مضطرين لاعتباره نوعًا من الشذوذ، أو خطأ في التجربة، أو حيلة مخادعة - أو أي شيء يسمح بأن النموذج غير منتظم. وهذا هو ما جعل كون يعتقد أنها قيم علمية غير منفتحة على النقد، والقبول غير المؤقت للنظرية والأساليب العلمية في الاختبارات التجريبية، وهجرة

(6) توماس إس. كون (المت울 النظريات السائدة) قادر على الصعود أكثر فيما يتعلق بكل ما هو مبهم، وقادر أيضًا من ناحية النظر على تحويل السحر والشعور وراء وراء الكهنة التي يتم حجرها جميعًا عادة كلا استقر العلم وأخذ وضعه وقيمه، ونقلهم للعلماء غير المتزمن أو المرتبين بالنظريات السائدة والمرشدين للجزء بدورهم (الترجمة)
النظريات السائدة عندما تكون مرفوقة، وهي جميعاً من قبل ما يشبه الأسطورة التي تجعل التواضع ممكنًا عند سن أي قانون عندما يتعلق الأمر بموضوع علمي ذي معنى في مرحلة بداية.

تقبل أن في الموضوعات العلمية الهامشية يحدد شيء يشبه العمليات العلمية (كما أوضحت في الفصل الثالث) لأنه آمن بأن العلم يستأنف مسيرته عبر فترات زمنية بديلة: هناك "علم عادي"، كما أن هناك "علم ثوري" في عصر العلم العادي يؤمن أغلب العلماء في النظريات الأساسية السائدة، وحاولون بشدة إخضاع ملاحظاتهم ونظرياتهم الثانوية للتواصؤ مع تلك النظرية. تتكون أبحاثهم من ربط النهايات غير الثابتة، وإثبات التطبيقات العلمية للنظريات، وتصنيف إعادة تشكيلها وإثباتها. عندما تكون قابلة للتطبيق، ربما يستخدمون الطرق العلمية بمعناها البورجي (نسب إلى بورج)، ولكنهم لا يكتشفون أي شيء أساسي لأنهم لا يساهمون أبداً عن أي شيء أساسي. ومع هذا الاتجاه تظهر قلة من مثيري المتذيع الشبان، الذين ينكر بعض أساسيات المعتقد في النموذج القائم. وليس هذا في الحقيقة نقداً علمياً، لأن مثيري المتذيع ليسوا مسئولين عن التسبب أيضًا. إنهم برون العالم فقط من منظور نموذج جديد مختلف. كيف يتوصلون إليه؟ ضغط الدليل الذي يحتويه، وذكاء أو عبقرية شردته عبر النموذج القديم. أخيرًا ما يتسلل إليههم (ولعل هذا يكفي، ولو أن من الصعب رؤية كيف يستسلم المرء دون بصورة لضغط شكل الدليل وهو فرضية). وعلى أي حال، فإن عصرًا من التنموير العلمي يبدأ - الغالية التي لا تزال تعمل وفق العلم العادي في النموذج القديم، يحاربون بالوسائل العادية. والفاسدة المتداخلة مع السُّن و/or الطَّبَع، والاقتصاد للدخول في المناصب العلمية الموروثة، ومهاجمة الورث يذرون وسائل النشر، والضحاري من المحافظين القدامى، ويحاولون التسلل للمؤسسات صاحبة التأثير. قوة التفسير في النموذج الجديد بمصطلحاتها هي (لأن مصطلحات النموذج القديم تبدو متطرفة وغير مقنعة) غالبًا ما تخفي التضمين الجدلا غير المستسلمين من العلماء.
الشباب. ثمة مرتين على كلا الجبهتين. بعض من المحافظين يموتون، وأخيرًا جانب من
أيهم ينتصر. إذا انتصر الورثة، يصبحون هم أعضاء المؤسسة العلمية الجديدة،
ويدافعون عن نموذجهم الجديد، تمامًا دون بصيرة، كما سبق أن فعل القدامى، أما إذا
خسروا يصبحون مجرد حاشية في تاريخ العلم. وفي الحالتين يستمر العلم "العادي"
في طريقه.

وهكذا تبدو النظرية الكونية (نسبة إلى كون) للعملية العلمية طبيعية بالنسبة لكثير
من الناس، حيث تظهر أنها تشرح التغييرات المتكررة والمناقضة التي يقوم العلم
بإرغام أو إخضاع الأفكار الحديثة عليها، من خلال المساهمة البشرية اليومية والدفع
الذي نعتاد عليه: تطوير الأراء والتفاصيل السببية، عدم إنصار الدليل الذي يكون المرء
قد أخطأ به، قمع العارضة من خلال الرغبات الراسخة. كالرغبة في الحياة
الهادئة، وما إلها. وفي مقابل ذلك هناك تمرد الشباب، البحث في غير المألوف، متحمة
انتهاك التوابع، والصراع من أجل القوة. إغواء آخر في أفكار كون، وهو أنه وضع
العلماء في أحمامهم الحقيقية. لم يعد ممكنًا لهما ادعاء أنهم باحثون بلاة عن الحقيقة
التي تستخدم الطرق العقلية في الحدس، النقد والاختبارات التجريبية في حل المشاكل
وإعادة تفسيرات أكثر جودة عن العالم. كشف كون عن أنهم فرقاء متناقشون يلعبون
مباريات لا نهاية لها من أجل السيطرة على الحقيقة.

فكرة النموذج ذاتها ليست استثناءً. نحن نلاحظ العالم ونفهمه عبر مجموعة من
النظريات، وهي التي تشكل النظرية "النموذج" ولكن كون أخطأ في اعتبار أن تسكن
امرأة بالنموذج يعمه عن رؤية جدارة نموذج آخر، أو يمكنه من قدرة تغيير النموذج، أو
يمنع المرء من فهم نموذجين في وقت واحد. من أجل مناقشة تطبيقات أعم لهذا الخطر
انظر كتاب بوبر "الطريقة الإطار (6) "Myth of the frame work (6)

(6) مترجم للعربية وصادر ضمن سلسلة "عالم المعرفة" بعمره 192، يمين مفرد الخولي وآخر العدد 192 (الترجم)
ثمة خطرًا دائمًا في أننا قد نقلل من قيمة قوة التفسير في نظرية أساسية جديدة، أو نفتقد كليًا لمن نقوم بها من خلال الإطار العام للنظرية القديمة. لكنه مجرد خطر وبدعمان الفتنة الكافية والسلامة الإلهية، ربما نستطيع تجنبه.

ومن الصحيح أيضًا أن الناس ومن بينهم العلماء، وخاصة هؤلاء الحاصلين على المناصب ذات القدرة، يميلون للارتباط بالطريقة السائدة في عمل الأعمال، ويمكنهم أن يكونوا متشكدين في الأفكار الجديدة عندما يكونون مرشحين للك مناقشة، لا يمكن لأحد أن يدعى بأن كل العلماء يفرون بطريقة واحدة وأنهم كثيرًا الكشكش عقلانيا في تقويمهم للأفكار. الولاء غير المزدوج للمؤسسة هو بالطبع من قبيل السبب المألوف في الجدل بشأن العلم، كما في كل شيء آخر، ولكن باعتبارهم وصفًا أو تشريعاً للعملية العلمية، فقد عانت نظرية كون من خلل قاتل. لقد شرح شرح انتقال الأفكار إلى آخر عبر مصطلحات سوسوية وسوكديولوجية، أكثر مما كان عليه من الجووجه منهجيًا للمزايا الموضوعية للتفسيرات المنافسة. وبعد فإن، بدون فهم العلم على أنه بحث عن التفسير والشرح، فإن حقيقة أنه، فعلاً، يصل إلى تفسيرات ناجحة، كل منها أحسن موضوعيًا من الأخير الذي سبقه، تظل هذه الحقيقة متعددة على التعليق.

وهكذا كأن كون مضطراً على نحو تام وواضح إنكار أن ثمة تقدم موضوعي للتفسيرات العلمية الناجحة، وأن هذا التقدم ممكن ولو من حيث المبدأ.

فتمة (خطوة) يرغب كثير من فلاسفة العلم في أن يتخذوها والتي أرفضها، إنهم يرغبون في مقاومة النظريات على أنها تمثل للطبيعة، كما لو أنها عبارات (عما وراء)، حقيقة هناك ضامنين أن لا يوجد في تاريخ العلم نظريات صحيحة في نفس الوقت، ومع ذلك هم يبحثون فيما أن الأخيرة منهما تحوي تقريباً أفضل للحقيقة. وأعتقد أنه لا يمكن العثور على شيء من هذا النوع، (النقض ونمو المعرفة، صفحة 265). Growth of knowledge.

وهكذا فإن نمو المعرفة العلمية الموضوعية لا يمكن تفسيرها من خلال الصور التي نقدمها كون. وليس جيداً محاولة الأدباء أن التفسيرات الناجحة تكون أحسن.
بمصطلاحات نموذجها. هناك اختلافات موضوعية. نحن نستطيع الطيران، بينما الناس في معظم التاريخ البشري استطاعوا فقط الحلم به. القدماء لم يكونوا فائقين النظر إزاء كفاءة الاتنا الطائرة، لأنها ليست داخل النموذج الذي عرفوه. السبب في أننا نستطيع الطيران هو أننا فهمنا ما هو موجود هناك بالفعل. السبب في أن القدماء ليسوا كذلك فإنهم معرفتهم في درجة أدنى مما فهمناهم.

إذا قام المرء بتطبيق نظرية بحثية التقدم العلمي الموضوعي، فعليه توفير فكرة أن إذا كانت الابتداعات الرئيسية قام بها حفنة من محطات التماثيل الدينية العقارية. باقى المجتمع العلمي لهم استخداماتهم، ولكن في الموضوعات ذات المعنى والأهمية يتولون إعاقة المعرفة. هذه النظرية العاطفية (التي عادة ما تقدم مستقلة عن أفكار غون) لا تتفق بدورها مع الحقيقة. كان هناك بالطبع عباقرة قاموا بثروت العلم كله بفيديهم هم، بعضهم قد ذكرته في هذا الكتاب مثل جاليليو، نيوتن، وفرايداي، ودراوين، وأينشتاين، وجوبول، وتورنجر. ولكن على العموم فقد استطاع هؤلاء الناس تدبير العمل، والنشر واكتساب المعرفة بهم على الرغم من المعارضات التي لا مبرر فيها، والتي أبداه المحافظون الذين كانوا أشبه بالمتصقين بالأوائل (فاقصوا من جاليليو، وإن كان هذا لم يكن على أبدى منافسيه من العلماء) وعلى الرغم من أن أغلبهم عانى من مواجهات المعارضة غير العقلية فإن مستقبلهم العلمي لم يتجه نحو المضادين لتحتيم التماثيل من مؤسسة العلماء المقبولين. كما استفاد معظمهم من تفاعلهم مع العلماء السابقين على "النموذج"، الذين قدموا لهم الدعم.

أحيانًا ما وجدت نفسى في جانب الأقلية بالنسبة للمناقشات العلمية الأساسية. ولكنني أبداً لم أتقاطع مع وضع تيرن. بالطبع، وكما ذكرت، فإن أغلبية المجتمع العلمي لم تكن منفتحة تمامًا للنقد كمية يفرضه الأمر في الوضع الأتم. وأيًا ما كان الأمر فإن الامتداد الذي التصقت به وشيوعه يتعلق بـ "الخبرة العلمية الصحيحة" في قيادة البحث العلمي، والتي لم تكن بدورها خالية من الملاحظات.
سحتاج فقط لأن تُدعى إلى ندوة بحث في أي ميدان أساسي في العلم "الصعب"، لترى كيف يختلف بقوة سلوك الباحثين عن سلوك البشر عموما. هنا نرى أستاذًا معلّمًا يتم تعريفي على أنه كبير الخبراء في المجال كله وئاته سيليكي المحاضرة - قاعة الندوة مليئة بقوم من مختلف الدرجات في هرمية البحث الأكاديمي، بدأ بالطلبة المتخرجين الذين التحقوا بمساجل البحث منذ عدة أسابيع مضت فقط، حتى الأستاذة الجامعية التي تضموا قاماتهم قامة المتحدث نفسه. الهيكلية الأكاديمية هي بناء قوي ومعقد، والذي يساند ويدعم هؤلاء الناس باستمرار في مستقبلهم وتوفيهم وسمعتهم، وربما أكثر مما في أي مجلس إدارية أو ما شابه، وطالعة الندوة متعددة فمن الصعب على أي ملاح أو أشخاص أن يفوق بين مراتب أو درجات المشاركين. أصغر المتخرجين يسأل سؤالهم: هل معادلاك الثالثة قد جاءت من المعادلة الثانية؟ بالتأكيد المطلوب الذي أغلقت ليس قد يكمن بالإمكان "الأستاذ متلاك من أن التعبير هو" الجدير بالإجمال" وأن الطالب قد ارتكل خطأ بتقويمه لعمل قام به من هو أكثر منه خبرة. ما الذي يحدث بعد ذلك؟

في موقف مشابه، فإن رئيس تنفيذى قوي، والذي تعرض تقويمه لعمل مع عاصفة هيجها عليه مناوب جديد، ربما كان سيكون: انظر لقد سبق لي أن قمت بتقويمات كهذه أكثر مما حصلت عليه أنت من وجبات غذائية ساخنة. إذا قلتك أنه تقويم صالح، فهو إذا صالح. سياسة صغيرة ربما يرد على نقد أنه من مكان منعزل من أحد أعضاء الأحزاب الطموحة يقوله: في أي جانب أنت على أية حال؟ حتى أستاذنا الذي بدأنا به، وعبيدًا عن موضوع المحاضرة، وهو مثلا يلقي إحدى محاضراته على طلبة الجامعة، قد يجيب ببئرة طاردة ورافضة: ربما يكون عليك أن تتعلم المشى قبل أن تجري. أقرأ الكتاب أولا وحينئذ إن تضيع وقتنا ووقتك. ولكن في ندوة البحث لو أن شأناً رد من هذا النوع من النقد ربما يحدث موجه من الارتباط لدعم القاعة. قد يحمل الحاضرون أضرارهم، وعليهم سيماؤهم ما يدل على العناية والاجتهاد.

452
فيقومون بدراسة مذكراتهم. سوف تكون هناك ابتسامات متكتلة ونظرات جانبية. في مثل هذا الموقف فإن إغواء الشعور بالسلطة (على الأقل الصريح أو العلني منها) تكون غير مقبولة حتى لو كان الأستاذ الأكبر في المجال كله يوجه حديثه لأصغر متخرج من الحاضرين.

وهكذا يخض الأستاذ النقمة التي أثارها الطالب بجدية، ويجيب بشكل مختصر وإن كان في الدفاع المعادلة المثار بشأنها الجدل. سيذل الأستاذ قصائى جهده لثلا يبدو مغضوبًا من أنه تم انتقاده من مصدر متدين هكذا. معظم الأسئلة من القاعدة ستكون متذكرة شكل النقد، الذي لو كان صحيحا، فقد ينقص من شأن الأستاذ أو يدمر القيم التي قام عليها عمل حياته. ولكن بعث التنشط، وأوجه النقد المتعددة التي تتحمل حقائق مقبولة، كلاهما من أهم أهداف الندوة، كل واحد يضمن جيدًا أن الصدق أو الصلاحية ليست واضحة. وأن الحاجة الواضحة ليست إلى الصدق، وإنما أن الأفكار تقبل أو ترفض طبقا لاحتواها المرضي وليس جذورها. وهو ما يمكن لأكبر العقول أن تتطلبه في، وهو أيضا ما يجعل الموضوعات التي تبدو كأنها من سقوط المتاع هي بذاتها قد تكون المفتاح إلى اكتشاف عظيم جديد.

وهكذا فإن المشاركون في الندوة، طالما أنهم مرتبطين بالعلم فإنهم يتصرفون بمقاييس حادة من العقلانية العلمية ولكن الندوة انتهت الآن. دعنا نتابع المشاركون فيها إلى صالة الطعام على الفور، العادي من السلاك البشري الاجتماعي يعد ترتيب نفسه، المعاملة تختلف مع الأستاذ فهو يتصدر المائة مع من يقاربه في المرتبة من الأستاذة، ثم حفنة مختارة من الأقل رتبة يسعهم لهم بميزة التوافد على نفس المائدة. وتتحول المحادثة إلى حالة الطقس وما يتردد من شائعات (ويصفحة خاصة) حول السياسات الأكاديمية. وبعد مناقشة مثل هذه الموضوعات تعاود الظهور مرة أخرى الدوجماتية والأراء السبقة والزهو والولاء التهديدات والمحاميات جميعها من الأمور المعتادة والمألوفة في تفاعلات الناس مع بعضها في المواقف المشابهة. ثم يعود العلماء
ومن هنا تصبح المراتب في مجرى الحديث التي هي بلا صلة أصلاً مع الموضوعات المثارة.

هذا بالضبط، وعلى أي مستوى، ما يجري في المجالات التي عملت فيها.

وعلى الرغم من أن تاريخ نظرية الكم يبدنا بامتلاك عديد من تلقين العلماء غير العقلاني بما يمكن تسميته "نموذج سيكون من الصعب العثور على مشهد مطابق للمثل مثل نظرية كون عن تتابع "نموذج". اكتشاف نظرية الكم كان يمثل بدون شك مفهومًا ثوريًا، ربما الأعظم بعد جاليليو، وكان هناك بالطبع من لم يقبلها أبداً من هؤلاء المحافظين، لكن الشخصيات المعترفة في الفيزياء، ومن بينهم حتى هؤلاء الذين لم يكونوا متسامبين للمؤسسة العلمية، كانوا جميعًا على استعداد فوري لإهمال "نموذج القدليم". وبسرعة أصبحت أرضًا خصبة معتادة لاعتبار النظرية الجديدة تطلب الانفصال الجذري عن المفهوم التقليدي لتسنيع الواقع. التحدي الوحيد تمثل في على أي نحو سيكون المفهوم الجديد، وبعد حين تأسست أرثوذكسية بواسطة الفيزيائي نيلز نويه آبل. هذه الأرثوذكسية الجديدة لم يتم قبولها على مدى واسع بدرجة كافية على أنها وصف للحقيقة يمكن أن يسمى "نموذج"، ولو أن معظم الفيزيائيين صادقوا عليها بوضوح (مثل أينشتاين بشكل استثنائي لذاك)، ومن اللحظة أنها لم تكن تركز انتباهها على مقترح صدق نظرية الكم الجديدة. وعلى العكس، اعتمدته بحسب أن نظرية الكم على الأقل في شكلها السائد، هي نوع من الزيف! وطبعًا لمدرسة كوبنهاجن وتفسيرها.

(ه) نيلز بور* (1885-1962) فيزيائي دانماركي حاصل على جائزة نوبل عام 1922 وقد أسس المشروع الأول عن نتائج ميكانيكا الكم، كما شارك في مشروع القنبلة الذرية الذي أقيم في لوس ألامينو.

"The Atomic Phys" في بوكاير عام 1944، ومن أبرز مؤلفاته كتاب "الفيزياء الذرية والعبرة البشرية" والتي ضمنت مناقشة دارت بينه وبين ألبرت أينشتاين حول نظرية الكم تمامًا لأكثر من عقود من الزمان. (الترجمة)
فإن معادلات نظرية الكم تتحقق بالنسبة لموضوعات من الحقيقة الفيزيائية لم تتم ملاحظتها. في لحاظ من الملاحظة تحدث ثمة طرائز مختلفة من العمليات، من بينها التفاعل المباشر بين وعي الإنسان والفيزياء دون الذرية. ثمة حالة خاصة من الوعي تصبح حقيقة أما الباقية من الحالات هي فقط احتمالات. تفسير كوبنهاجن حدد هذه العملية المزعومة بشكل موجز، النصف الكامل كان يعتقد أنه هدفًا للمستقبل، أو ربما ليكون إلى الأبد واقعا وراء الفهم البشري، بالنسبة للأحداث غير المرتاحة التي تحدث ما بين الملاحظة الوعائية، لم يكن مسموحًا للمرء أن يسأل بشأنهاً كيف للفيزيائيين، حتى خلال ذروة "الوضعية" و"الآداب" أن يمكنهم قبول مثل هذه التعليمات الوعائية مثل وجهة نظر الأرثونكسيين هؤلاء بأن النظرية الأساسية هو سؤال للمورخين. لسنا محتملين هنا للاهتمام بالتفاصيل اللغزات لألوان كوبنهاجن، لأن لديها باعًا أساسيًا يقوم على تجنب النتيجة بأن الحقيقة لها قيمة عالية، وأنها لهذا السبب وحده فهيه من المعتذر تجاهها مع أي تفسير عبدي أو جيد للظواهر الكمية.

بعد حوالي عشرين عامًا عمل هيو إيفريت Hugh Everett خريج جامعة برنسيتون

John Archibald Archibald Wheeler (1911 - ...) في إسحاق الفيزيائي البازار جون أرشيبالد ويلر تحت إمارة الفيزيائي البازار جون أرشيبالد ويلر Princeton

في البداية كان قد ربط إقحام الأكوام المتعددة في نظرية الكم. لم يقبل Hulter بهذا. لقد كان (ولأزى) مقتنعاً بأن رؤية بور، ولو أنها غير كاملة، تعتبر أساساً لتفسير صحيح. ولكنه لهذا السبب تصرف على النحو الذي سلكه كون في فكرة المقبول

(الترجمة) black hole
على أنه يمكن أن يقودنا للتوقع؛ هل حاول أن يجمع أفكار علمي المروثة؟ على العكس
لقد خشى هويلر ألا تلقي أفكار علمي المروحة الكافية ومن ثم فقد كتب بنفسه بحثًا
صغيرًا ليصاحب البحث الذي نشره إيفريت، وقد ظهرت متعاقبة في صفحات مجلة
بحث هويلر شرح Reviews of Modern Physics
نظرية عامة على الفيزياء الحديثة
 الدفاع عن بحث إيفريت على نحو فعال، لدرجة أن عدويًا من القراء افترضوا أنها معا
مسؤولة عن محتواها. ونتيجة لذلك اعتبار نظرية تعدد الأكون، على نحو خاطئ،
على أنها نظرية إيفريت - هويلر. لعدة سنوات بعد ذلك مما تسبب في كثير من الكن
لهويلر.

اعتبار هويلر كقوة في مشايعه للعقلانية العلمية، ربما يكون مبالغًا فيها، ولكنها
Bryce De-بتبقى فريدة. وفي هذا سوف أشير إلى فيزيائي بارز آخر هو بريز د. ويت
والذي عارض إيفريت مبدئيًا. عبر تبادل تاريخي للرسائل، أوضح د. ويت سلسلة
تفاصيل من اعتراضات علمية لنظرية إيفريت، والذي كان عليه أن يرد عليها. أنهى د. ويت مناقشته بشرح نفسه غير رسمي، أوضح فيه أنه لا يتصور نفسه "مشكوكًا إلى عدد
من النسخ المتمايزة في كل مرة يتخذ فيها قرار. إيفريت في رده أعاد صدى ما قاله
جاليليو أثناء محاكمته. هل تشعر بأن الأرض تتحرك؟ كان سؤاله - الدلال على أن
نظرية الأكم تشترح لماذا لا يشعر المرء بأنه مشوق هكذا، هي تمامًا مثل نظرية جاليليو
عن القصور الذاتي عندما شرحت لماذا لا يشعر المرء بحركة الأرض. وهكذا اضطر د. ويت للاذعان.

ومع ذلك، لم يكتسب اكتشاف إيفريت قبولًا واسعًا. للأسف على مدى الأجيال ما
بين كوبنهاجن وإيفريت. أصاب الياس معظم الفيزيائيين من فكرة التفسير في النظرية
الكمية. وكما قلت كانت نذرة "الوضعية" في فلسفة العلوم. وأصبح رفض (أو عدم فهم)
tأويلات كوبنهاجن بالموازي مع ما يمكن تسميتها "الآدائية البرجمنية". كليهما معًا
يعتبران (ولا يزالان) شكلًا لسلوك النموذج تجاه أعمق النظريات المعروفة لنا عن

456
الحقيقة، إذ "الأدائية" هي عقيدة أن التفسير لا أهمية له لأن النظرية هي فقط آداة لصنع التنبؤات، فإن الأدائية البرمجامية هي التدريب على استخدام النظريات بدلاً من معرفتها أو الاهتمام بماذا تعني تلك النظريات، وفي هذا المعنى تولد التشاور لدى كُن. ولكن قصة كُون من كيف يحل "نموذج" محل "نماذج" سببته لم تولد على الإطلاق. وبمعنى من المعاني أصبحت الأدائية البرمجامية هي نفسها "نموذج" الذي تبناه الفيزيائيون لحيل ملح الفكرة التقليدية عن الحقيقة الموضوعية. وكان هذا النموذج الذي يمكن للمرء أن يفهم العالم من خلاله ولأي حال، وأيا كان ما يفعله الفيزيائيون الآخرون فلم تكن لهم نظرة إلى العالم من خلال نموذج الفيزياء التقليدية، والخالية، من بين أشياء أخرى، للواقعة الموضوعية والغائبة (الجبرية). معظمهم أُسقط الفيزياء القديمة بمجرد ظهور مفهوم ميكانيكا الكم ولم أنها أحدث تغيّرًا للعالم كله، الذي لم يكن له ما يتحدث من انتصار جاليليو في المناقشة العقليّة مع الذين حاكموه قبل حوالي الثلاثة قرون التي خلت.

الأدائية البرمجامية كانت ملائمة فقط لأن نظرية الكم لم يكن لديها طاقة شرح تستوعب معظم فروع الفيزياء. لقد استخدمت بطريقة غير مباشرة في اختيار النظريات الأخرى، وفقط لأنه كان شروطًا جيدة لتنبؤاتها. وأجيال من الفيزيائيين وجدوها كافية لاًستกรรม عمليات التداخل، مثل التي تحدث في جزء من ألف تريليون من الثانية عندما يتصادم عنصران أوليان مع بعضها، كما لو كانت صندوق أسود: برون مدخلاته ولاحظون مخرجات، إنهم يستخدمون معادلات نظرية الكم للتنبؤ بالواحد منهما عن الآخر، لكنهم لا يعرفون ولا يهتمون كيف أن المدخلات تخرج كنتيجة للمدخلات. ومع ذلك فشل فرعان من الفيزياء يستغلان معه مثل هذا السلوك لأن العمل الداخلي لنموذج ميكانيكي كم هو الذي يؤمن كل المادة/الموضوع لفرع الفيزياء هذين. هذان الفرعان هما "نظرية الحوسبة الكمية" و"الكونية الكمية" (النظرية الكمية للحقيقة الفيزيائية ككل). نظرية الحوسبة الكمية ستكون نظرية ضعيفة عندما تحتوي موضوعات
يتضح منها كيف نستخرج المخرجات من المدخلات إما بالنسبة للكونية الكمية فنحن لا نستطيع إعداد مدخلات للتعددية في البداية، ولا نستطيع في النهاية قياس أي مخرجات. فعملها الداخلي هو كل ما هو هناك. ولها هذا السبب نستخدم نظرية الكم بالكامل من خلال شكل التعددية، وذلك بمعرفة الأغلبية الكاسحة من الباحثين في هذه المجالين.

وهكذا كتبت قصة إيفريت بالطبع تمثل إبداعا من باحث شاب يتحدى به الإجماع السائد، وهي التي تم تجاهلها لعدة عقود تالية، وما جرى من أن نظرته تلك أصبحت هي الإجماع الجديد. ولكن أسسيات إبداع إيفريت لم تكن تدعى أن النظرية السائدة كانت زائفة، وإنما صادقة! ويعدون عن قابلية التفكير فقط من خلال مصطلحات نظريتهم، فقد استند على رفض هذا وإنما استخدام النظرية على النحو الآليات. وبعد فقد أسقطوا النموذج التفسيرى السابق، والفيزياء التقليدية مع القليل النادر من الشكوك. وذلك بمجرد أن أصبحت نظرية جديدة في متناول اليد.

شيء قريب من هذه الظاهرة الغريبة وقع أيضا للنظريات الثلاثة الأخرى التي تشکل الخيوط الأساسية لتفسير نسج البحث الحقيقي: نظريات الحوسبة، والتطور، والمعرفة. في كل هذه الحالات فالنظرية السائدة حاليا، والتي بالتأكيد حلت محل سواها وغيرها من النظريات المنافسة؛ لمعان استخدامها بشكل روتيني وطريق براجماتيك. ولم تفشل برمج ذلك في أن تصبح في النموذج الجديد بمعنى أنها لم تؤخذ بها على أنها تفسير أساسي للحقيقة بمعرفة هؤلاء الذين يعملون في المجال.

على سبيل المثال فإنه لم يتم أبدا وبصورة الشكل جديا في مبدأ تورنج على أنه صدق برامجيتي على الأقل في صيغته السجعية (مثل أن كمبيوتر شام "عالم "يمكنه محاكاة أي بيئة فيزيائية ممكنة). انتقادات روجر بنروز كانت تمثل استثناء نادراً حيث فهم أنه من التنافس استخدام مبدأ تورنج في التفكير جزئياً بشأن النظريات الجديدة في كل من الفيزياء والمعرفة، وبعض الافتراضات المثيرة في علم الأحياء أيضا. لا بنروز
ولا أي أحد أخر قد قدم لنا بالفعل وحتى الآن مقترحا ينافس مبدأ تورنج، وهكذا فهو يظل النظرية الأساسية الرائدة في الحوسبة. وبعد فإن مقترح الذكاء الاصطناعي، وكوس ممكنا من حيث المبدأ، والذي أتى من منطق بسيط أشتقت من النظرية السائدة، يتم اعتباره بكل وسائط أمراً مضموناً (الذكاء الاصطناعي هو برنامج كمبيوتر له خصائص العقل البشري بما فيها الذكاء والوعي، والإرادة الحرية، والعواطف، ويقوم بالعمل على "الهاردوير" بدون العقل البشري). إمكانية الذكاء البشري تم اختبارها بمرعة فلسفة بارزين (بما فيهم، يا للحمرة، بوير نفسه) وعلماء ورياضيين، وعلى الأقل أحد علماء الكمبيوتر المشهورين.

لكن يبدو أن قلة من هؤلاء فهموا أنهم ينقضون ما هو معروف عن المبدأ الأساسي للفكر الأساسي، إنهم لم يتفكروا في أساس دليل للنظام، كما فعل بنروز. إنهم كما لو كانوا ينكرون أننا نستطيع السفر إلى كوكب المريخ دون ملاحظة أن أحسن نظرياتنا في الهندسة والفيزياء تقول بأنه يمكننا ذلك، وهكذا انتهوا مبدأً رئيسيًا للعقلانية بأن التفسير الجيد لا يطرح جانبيًا تناوياً أو على سبيل المصادفة، ولكن ليس فقط المناوثون للذكاء الاصطناعي هم الذي فشلوا في توقيع مبدأ تورنج مع نموذجهم. قلة أخرى فعلت ذلك أيضاً، وحقيقة أن أربعة عقود قد مرت منذ اقتراح المبدأ قبل أن يقوم أحد بمذيع تطبيقاته في الفيزياء، وعقود أخرى مرت قبل اكتشاف الحوسبة الكمية، هذه الحقيقة كانت شاهدة على الأمر. قبل الناس المبدأ واستخدامه برمجاتياً في علم الكمبيوتر، ولكنه لم يعمّد في نظرتهم الشاملة للعالم.

نظرية المعرفة عند بوير أصبحت هي النظرية السائدة، وبكل معنى برمجاتي، في طبيعة ونمو المعرفة العلمية. وعندما نأتي على قواعد التجارب في أي مجال وقبولها لـ "دليل علمي" بمعرفة المترجمين في المجال، أو بمعرفة المنتظمات العلمية المحكمة لنشرها، أو بمعرفة الفيزيائيين لاختيار بين العلاجات الطبية المتنوعة، فإن الشعر المرفوع هو كما أراده بوير: الاختبار العلمي يكشف لل النقد، التفسير النظرى، والتعريف بقابلية
الإجراءات التجريبية للخطأ وأنها ليست معصوبة. في الاعتبارات العادية للعلم تتحول النظريات العلمية لتقديمها كحاسس جرى أكثر منه تداخل آن من المعلومات المتراكمة، والفرق بين العلم وقلة فلاك مثال الفلك في مسألة يتم شرحها على نحو صحيح بمصطلحات التذوق أكثر منها مسألة تأكيد أو إثبات. ففي المحال المدرسية يصبح تشكيك الفرضيات والاختبار نظام يومي. لم يعد التلاميذ يتوقعون التعلم من التجربة بمعنى ما كنت ومعاصري نفعل، بمعنى أنهم كانوا يعطونا بعض الأدوات ويوكلون لنا ما الذي نفعله بها، ولكن يقولون لنا إن النظريات التي تتواءم مع ما نصل إليه من نتائج. كان المامل أن نستنتجها نحن.

وعلى الرغم من أن نظرية بوير للمعرفة أصبحت سائدة بهذا المعنى فقد شكل جزءًا من النظرية للعالم بالنسبة لقلة قليلة من الناس. شعبية نظرية كُون عن تعاقب "النموذج" هي خير شاهد على ذلك. ويشكل أكثر جدية فقد وافقنا قلة قليلة من الفلاسفة مع بوير في دعوته بأنه لم تعد هناك بعد مشكلة استقراء لأننا في الحقيقة لا نحول على النظريات أو نقومها من خلال الملاحظة، ولكننا نستمر على الطريق من خلال الحدود الشارقة والرفض بدلاً من الملاحظة. ليس لأن كثيرًا من الفلسفة يعتبرون استقراءيين، أو لديهم الكثير من عدم القبول لوصف بوير وما له من تقدم بالنسبة للطريقة العلمية أو اعتبارهم بأن النظريات العلمية بالفعل ليست مسموعة بسبيس موقفها الحقيقي. ولكن لأنهم يرفضون شروط بوير لكيف تعمل جميعًا. هذا مرة أخرى نجد صدى لقصة إيفريت. نظرية الغالبية أن هناك مشكلة فلسفية أساسية في الأسلوب البوعري، حتى ولو أن العلم (عندما يكون ناجحا) قد اتبعه دائما. الإبداع المروي لبوير أخذ شكلاً الدعوة بأن الأسلوبية صالحة على طول الخط. نظرية التطور الدراسون هي الأخرى النظرية السائدة في مجالها، بمعنى أنه لا أحد يشك بجدية أن التطور من خلال الانطلاق الطبيعي يعمل في التجمعات بطريقة عشوائية تنويعًا، أو في أصل الأنواع أو التكيف عمومًا. ليس من بيولوجي أو فيلسوف جيء ينسب أصل
الأنواع للخلق المقدس أو للتطور اللاماريكي (نسبة إلى لامارك)، اللاماركية نظرية في التطور أبطلتها الداروينية. وهي النظرية التي تنص على أن التطور البيولوجي إلى السمات الوراثية التي كافحت من أجلها الأعضاء الحيوية واكتسبتها أثناء حياتها).

وبعد، بالضبط كما مع الخيوط الثلاثة الأخرى، النظر بموضوعية للداروينية التقنية كتفسير لظاهرة المحيط الحيوي، متعدد الأوجه وواسع الاستنكار.

واحدة من مستويات هذه النظرية تركز على السؤال عما إذا كان في تاريخ المحيط الحيوي شيء كافٍ لكي يضمن هذا التعميق النهائية لكي يظهر من خلال الاختبار الطبيعي وحده. ليس شكل نظرية مثالية استطاعة أن تتقدم في تجسيد مثل هذه الموضوعية، فيما عدا الفكرة المفهومة التي قدمها مؤخراً الفيلسوف فريد هولِ (Fred) وشاندرا ويركا ماسنغي هولِ (Chandra Wickramasinghe) من أن التعميق الجزيئي الذي تقوم عليه الحياة يرجع لأصول من الفضاء الخارجي، ولكن النقطة الرئيسية في

(©) جين لامارك (Jean Baptiste Lamarck 1744-1829) بيولوجي فرنسي معروف بفكرته التي أسماها الموروثية، والتي تقول بأن السمات المكسيسة أو الأصيلة لا تموت وهي ذات الفكرة التي ناقشها تشارلز داروين فيما بعد – وفيم نقش في المعلومات عن كتابات اعتباره من الساقين على داروين مثل م. فانيلهي. و. أندر. و. هير. و. ديل. و. إيلس. و. ستراس. و. أشمش. وإن كانت توجد تراجع هامة لكتابات لامارك مثل مقالة الحياة الجيولوجية "Zoological Philosophy" عام 1864 وعاصم طبعه عام 1862 والمقالات "Hydrogeology" وهو العلم الذي يهتم بنظرية الحياة، والتنوعات في الأرض وفي التربة، وتحت الصحراء وفي الجو، ووفق أن "بُبت" في كاروزي، والذين يُذكر عام 1964، ومن المعروف أيضًا أنه أصيب بالصمم وأنه مات قريباً.

هذه الموضوعية لا تتعارض كثيراً مع النموذج الدياريني باكتر من الآراء يرى بالفعل فيما يتعلق بأن ما نلاحظه من تكيف في الحياة الهيروي، كيف نفس وجوده.

ولقد أثبتت الديارينية على أنها دائرة لما تعلمه من أن "البقاء للأصلح" كمفهوم، بينما الأصلح يتم تعريفه بطريقة استعادية للماضي، على أنهم (حولاء الأصلح) قد عاشوا بالفعل من قبل. وبدلاً من ذلك بمصطلحات التعريف المستقل لـ "الأصلح" فإن فكرة أن التطور يفضل "الأصلح" تبدو وكأنها متناقضة مع الحقائق. على سبيل المثال فإن أكثر التعاريف حاسمة للأصلح بيولوجيا سيكون: "الأصلح" من الأنواع للبقاء في "كوة" معينة، بمعنى أن النمر هو الآلة الأصلح التي تشغل "الكوة" التي تشغلها النمور. الأمثلة النموذجية المعاكسة لهذا النوع من "البقاء للأصلح" هي التكيفات مثل: ذئب الطاووس، الذي يبدو أنه يجعل العضو أفقز تأثراً في استغلال الكوا التي يشغلها. مثيل هذه الموضوعيات تبدو أنها تقلل من قابلية نظرية داروين للاستدامة أو القدرة على الحفاظ، والتي تشرح أن التصميم الواضح في العناصر الحية يمكن أن يكون قد أتى للوجود، من خلال عمليات قوانين فيزياء عمياء على مادة غير حية دون تدخل من مصمم غائب.

الذي وضعه في كتابه "الجين الأدائي" Richard Dawkins و"
"The Selfish Gene" و "The Blind Watchmaker" وصانع الاعتقادات الأخلاقية هو دعوى أخرى لصحة النظرية الغالبة. لقد ناقش أن لا واحدة من الموضوعيات السائدة في فهم النموذج الدياريني تتحول، من خلال البحث المثبط أو الحذر، لأن تصريح ذات جوهر. وبكلمات أخرى فإن دعوى داوكنز أن نظرية داروين عن التطور لا تتمايز بتفسير كامل على أصل تكيف الأنواع البيولوجية. داوكنز يُفصل أو يُحكم نظرية داروين في شكلها الحديث كنظرية في إعادة النسخ. الناسخ الصالح هو الذي يجعل إعادة نسخ نفسه في بيئة معينة، وهو الذي أخيراً يحتفظ بكل أنواعه، لأنهم.
وتالتعريف، هم الأكفاء الذين يستحقون جعل أنفسهم يعاد نسخها. ليست الأنواع الصالحة في التي تبقى (دارون لم يتعرف على ذلك بالضبط) ولكن أنواع الجينات الصالحة هي التي تبقى. أحد النتائج التي تلتو ذلك هو أنه أحيانًا قد يقم الجين بإزاحة أو عزل جينات أخرى (مثل جينات دبول أقل إرهاقا في الطوارئ) بوسائل (مثل الانتقاء الجنسي) التي لا تعرَّ ز�صفة خاصة الأصل (مثل ما في إعادة النسخ)
من آحسن الجينات التي تعيد نسخ ذواتها. ومن هنا جاء مصطلح "الجين الأناني". ففصل داوكنز كل الموضوعيات ووضح أن نظرية دارون كانت تؤدي صحيحاً، وأنها لا تشتمل على أيّة صدوع يجري الحديث عنها، وأنها بالفعل فسرت أصل "التكيف".

إنها بالذات وجهة نظر داوكنز في الدارونية التي أصبحت النظرية الغالبة في التطور بالمعنى البرامجي. ومع ذلك تظل بكل المعاني "النموذج الغالب. كثير من البيولوجيين والفلاسفة تنتابهم أفكار بأن ثمة فجوة في هذا التفسير، على سبيل المثال ويمثل ما ذهب إلى نظرية كون في "التفصيل العلمي" وتحدياتها الصورة البرونية للعلم، ثمة نظرية تتطور ذات صلة تتضمن صورة داوكنز عن التطور. وهي نظرية التوزان المتقطع" punctuated equilibrium التي تقول بأن التطور يحدث في شكل تفجيرات قصيرة فيما بين فترات طويلة من التغيرات غير الانتقائية بين كل تفجر وأخر. هذه النظرية قد تبدو حتى كحقيقة صحيحة. إنها لا تتناقض مع نظرية "الجين الأناني" باكترما تتعارض نظرية المعرفة البرونية مع الاقتراح أن الأثر المفهوم لا تقع كل يوم، أو أن العلماء وما يقاومون الإبداعات الرئيسية. ولكن بالضبط كما حدث مع نظرية كون، فإن الطريقة التي قدمت بها نظرية "التوزان المتقطع" وكل سيئيويات الأثرالتنوعية الأخرى، كحل للمشاركون المزعم إلغائها أو عدم الانتهاء لها في النظرية الثورية الغالبة، تكشف إلى أي مدى لم يتم بعد استيعاب قوة التفسير في نظرية داوكنز.

463
لم تزل بعد نتيجة سيرة الحظ لكل "الخيبوت الأربعة" وهي أن النظريات الغالبة قد
تم رفضها كنتيجة بدون وجود تفسير تنافسي جاد استطاع أن يصبح سائداً. ذلك أن
مناصري النظريات الغالبة - بور، تورنج، إيفريت، داوكز - وكل ما قدموه من دعم، قد
وجدوا أنفسهم في حالة دفاع ضد النظريات المهجرة. التحدي بين بور ومعظم ناقديه
وكما قلت في الفصول الثلاث والسابع كان يدور بفعلية حول الاستقراء. تورنج قضى
السنوات الأخيرة الفاعلة في حياته مدافعا عن الاقتراح القائل بأن الفعل البشري
لا يعمل بواسطة قوياً طبيعياً فائقة القدرة، كما ترك إيفريت البحث العلمي عندما لم
 يصل إلى أي طريق ولعدة سنوات لم يتم إبراز نظرية "التعديدية" كنظرية قائدة إلا
ب kutrta بريس دى ويت منتشرًا حتى حد تقدم في الكونية الكمية خلال السبعينات من
القرن الماضي، والتي أجبرت الآخرين على القبول البرامجات لها في المجال. ولكن
مناصري نظرية التعديدية كتب تسعير نادرًا ما وجدوا تفسيرات منافسة. (نظرية دافيد
بوهم التي أشرت إليها في الفصل الرابع تمثل استثناء) وبدلاً من ذلك ركز في لاحظ مرة
عندما تأتي المسألة إلى تأويل ميكانيكا الكم
al kowen دينيس سكياما
فإن معيارية المناقشة تصل فجأة إلى الصفر. مناصروا نظرية تعدد الكونك واجهوا
 تمامًا غواية جزءية وغير هيبة لكنها كنتية وغير متماسكة لتأويلات كوبنهاجن والتي
يصعب حالياً العثور على من يظل معتدلاً فيها وأخيراً داكرز الذي أصبح إلى حد ما
الدافع العام عن الفلسفة العلمية ضد الخلق من بين كل الأشياء، وبصفة أكثر عمومية
ضد النظرة إلى العالم قبل العلمية والتي تمت هجرتها منذ جاليليو.

المزعج حقاً في ذلك أنه طالما أن المناصرين لأحسن نظرياتنا التي تشکل نسج
الحقيقة عليهم أن ينفقوا طاقاتهم العقلية في الرفض الذي لا طائل وراءه وإعادة رفض
نظريات تم تبنيها زمناً طويلة. فإن حالة أعمق معرفتنا لا يمكنها أن تحقق
تقدمًا. كل من تورنج وإيفريت قد اكتشفا بسهولة النظرية الكمية للحوسبة. واستطاع
بور أن يفصل نظرية التفسير العلمي (وبعدياً لا بد أن نعرف هنالك ما هو، وفند
بعض الصلاط بين نظرية المعرفة ونظرية التطور). واستطاع داونز، على سبيل المثال، أن يكون متقدماً في نظريته في تطور أفكار التفسير (المُنِسِّق)。

النظرية الموحدة لنسبيج الحقيقة والتي هي موضوع هذا الكتاب وعلى أكثر المستويات وضوءاً واستقامة هي مجرد تجميع النظريات الغالبة الأربعة الأساسية في مجالاتها. وبهذا المعنى فهي النظريات الغالبة في هذه المجالات الأربعة عندما تأخذ كل كل، حتى بعض الصلاط بين الخيوط الأربعة أصبحت معروفة على نحو واسع والفرضية التي أظهرها هنا إذا تأخذ شكل "النظرية الغالبة صائقة بعد كل شيء أنا لست أعلم فقط أخذ كل من النظريات الأساسية مأخذ الجد كتفسير للمادة/الموضوع لها، ولكنني أناقش أن أخذهم معاً سيمدنا بممستوى جديد من التفسير لنسبيج موحد للحقيقة.

وقد ناقشت أن أيًا من الخيوط الأربعة لا يمكن فهمه بدقة منفردًا أو مستقلًا عن الثلاثة الأخرى ربما يكون هذا هو المفتاح للسبب في أن هذه النظريات الأربعة لم تصادف التصديق بها أو الاعتقاد فيها. كل من التفسيرات الأربعة منفردًا شارك الآخرين في خاصة غير جيدة حيث تنوع النقد الموجه لها بين "مثالية" و"غير واقعية" و"ضيقة" و"غير ناضجة" وأيضًا "باردة" و"سيكاكية" و"ينقصها الحس الإنساني" أعتقد أن هناك بعض الحقيقة في الشعور الشجاع وراء مثل هذا النقد على سبيل المثال أن بين هؤلاء من ينكرون إمكانية الذكاء الصناعي ويجدون أنفسهم من ناحية الآثر ينكرون أن الدماغ شيء فوريائي، وقلة يحاولون حقيقة التعبير عن نقد أكثر معقولية: إن تفسير تورنجر للحوسبة يبدو أنه لا يدع مجالًا حتى من حيث المبدأ لأي تفسير مستقبلي بمصطلحات الفيزياء لسافة عقلية مثل الوعي والإرادة الحرة وليس جيداً كفاية أن يبرد المتحمسين للذكاء الصناعي بفظاظة بأن بدأ تورنجر يضمن أن الكمبيوتر يستطيع أن شيء يمكن للعقل أن يفعله. هذا بالطبع حقيقي ولكنها إجابة تستخدم مصطلحات التنبؤ والمشكلة أو المضلة هي جزء من التفسير. ثمة فجوة تفسيرية.
وأعتقد أنه يمكن ملء هذه الفجوة بدون استحضار الثلاثة خيوط الأخرى الآن، وكما قلت سابقاً تحميني هو أن العقل البشري هو كمبيوتر تقليدي وليس كمبيوتر كمي، وإذا فناناً لا أتوقع أن يكون تفسير النوع من أي نوع من ظاهرة الحوسبة الكمية. ومع ذلك أتوقع أن التوحيد بين الحوسبة ونظرية الكم وربما التوحيد الأعمد لكل الخيوط الأربعة ليكون أساسياً للتقدم الفلسفي الأساسي الذي يجعل فهم النوع سيفض علينا ذات يوم، ومخايفة أن يجب القارئ في هذا تناضغاً دعمني استحضار مشابهة لشكل مماثلة من عصور مبكرة وما الحياة؟. هذه المشكلة قام داروين بحلها. وروح ذاك الحل هي فكرة أن التعقيد والغائية الواضحة للتصميم البدائي على الأعضاء الحية، لم يتم بناؤها في الواقع أو الحقيقة منذ البداية، ولكنها نتيجة انبثاق في عمليات قوانين الفيزياء. قوانين الفيزياء لم تندب بصفة خاصة أشكال المثلية والطواويس بأي طريقة أكثر مما فعل "الخالق". إنهم لا يقيمون أي مرجعية للمخرجات، خاصة الانبثاثي منها، وإنهم فقط يحددون القواعد التي تخضع لها الذرات ومثلها "التعقيد". الآن هذا المفهوم لقانون الطبيعة كمجموعة قوانين الحركة قد أصبح مؤخراً قريب الصلة. وأعتقد أنه يمكن أن ينسب لجاليليو بصفة خاصة، إلـى حد ما لنيوتن. كان المفهوم السابق لأن قانون الطبيعة يقصد به القاعدة التي تقرر ما يحدث والمثال على ذلك هو قوانين جوهان كبلر عن حركة الكواكب، التي تصف أن الكواكب تتحرك في مدارات في hannes kepler بشكل الناقص، وهي تتوافق مع قوانين يوتوس التي هي قوانين فيزيائية بالمعنى الحديث. إنها لم تشير إلى أي قطع ناقص ولو أنها أحداً إنتاج توقعات كبلر وصحبتها تحت الظروف المألوفة، لم يستطع أحد أن يفسر ما هي الحياة في ظل مفهوم كبلر عن "قوانين الفيزياء"؛ لأنهم كانوا ينظرون وبحكم عن قانون يندب الأفكار بنفس الطريقة التي انتهت بها قوانين كبلر القطع الناقص ولكن داروين كان قادرًا على التعجب إزاء كيفية عدم ذكر قوانين طبيعة للأفكار تجعل القوانين ذاتها تتنجهم تماماً كما أن تحدود قوانين يوتوس القطع الناقص، وبرغم أن نيوتن لم يستخدم أياً من قوانين كبلر فما كان لاكتشافه أن يكون مفهوماً دون النظره للعالم التي توضح تلك
القوانين. هذا هو المعنى الذي أوضح من خلاله جل معضلة لما إذا الوعي أن يعتمد على نظرية الكم. لا يتوسل بناءً عليه عمليات ميكانيكية كمية خاصة، بل يعتمد بحسب على الميكانيكا الكمية، وبصفة خاصة على الأقان المتعددة كصورية للعالم.

ما هو دليل على ذلك؟ لقد قدمت بعضًا منه في الفصل الثامن عندما ناقشت النظرية التعددية للمعرفة. ولو أننا لا نعرف ما هو الوعي، فمن الواضح علاقته الصريحة بنمو وتجسد المعرفة في الدماغ. لا يبدو متشابهاً إذن أننا سوف نكون قادرين على تفسير ما هو الوعي كعملية فيزيائية قبل أن نعرف المعرفة بمصطلحات فيزيائية. كان مثل هذا التفسير مراوغًا ومحيرًا في النظرية التقليدية للحوسبة ولكن كما شرحت في نظرية الكم ثمة أساس جديد للحل. المعرفة يمكن أن تفهم كتعقيد والذي يمتد عبر عدد كبير من الأقان.

وهناك مساهمة عقلية ذات صلة إلى حد ما بالوعي وهي الإراده الحرية. الإرادة الحرية في الأخرى تحور سمعة سيئة في صعوبة فهمها في ظل صورة العالم التقليدية. الصعوبة في إحداث الصلح بين الإراده الحرية وبين الفيزياء عادة ما تنسب إلى الفانية (الإيبير) ولكن الفانية ليست هي الخطأ. هو (وكما شرحت في الفصل 11) الزمكان التقليدي، في الزمكان ثمة ما يحدث له في لحظة معينة من مستقبل حتى لو أن ما يحدث هو من غير المنبأ به، فهو بالفعل هناك. في المقطع العرضي الملازم من الزمكان. وحديثي عن تغيير ما يحدث في هذا المقطع العرضي سيكون بلا معنى. الزمكان لا يستطيع ومن ثم أنا لا أستطيع أيضًا، ومع فيزياء الزمكان لا استراتيجيات تصور أو تخيل السبب، والأثر، ولا انتهاج المستقبل أو الإراده الحرية.

هكذا بإخلال عدم الفانية (الإيبيرية) محل القوانين الفانية للحركة سوف يجعلنا لا نفعل شيئًا لحل مشكلة الإراده الحرية طالما بقيت القوانين تقليدية. الحرية لا علاقة لها بالعشوائية. نحن نقيم وزنًا لإرادتنا الحرية كقدرة على التعبير، من خلال تصرفاتنا،
عن من نكون كأفراد. من الذي سيقيم وزناً لأن نكون مجرد عشوائية؟ ما الذي نفكر فيه على أن تصرفتنا الحرة ليست هي العشوائية أو غير غائبة بل تلك الغائبة على مدى واسع بمعنی ما تكون عليه، وما الذي نفكر فيه، وما هو الموضوع أساسيًا (ولو أنها غائبة على مدى واسع، فهي قد تكون غير متناسب بها على مدى واسع في الواقع العملي لأسباب تعود لـ "التمييق").

خذ في اعتبارك هذه العبارة النموذجية التي تشير إلى الإرادة الحرة: "بعد تفكير حذر اختيرت أن أقوم بالعمل X ولم أكن لاختيار غيره إن الاختيار الصبان أنا أجد اتخاذ مثل هذه القرارات. في غيّ بصفة تقليلية في العالم ستكون هذه العبارة بدون معنى تماماً. في صورة التعدديّة سيكون تجسيد فيزيائي واضح كما يظهر في القائمة/ الشكل (12-1) أنا هنا لا أقترح تعريفًا أخلاقيًا أو جماليًا في مصطلحات هذا التجسيد، أنا فقط أريد أن أشير إلى أن عبارة الشكل لسنا التعدديّة في الحقيقة الكمية، فإن الإرادة الحرة والفلاسفة ذات الصلة قد أصبحت الآن متناقضة مع الفيزياء.

ومن هنا فإن مفهوم تورنتن عن الحوسية يبدو أقل من حيث عدم اتصاله بالقيم البشرية، وليس ثمة عواقب لفهم الخواص البشرية كالإرادة الحرة، بالإضافة إلى أنها مفهومة في ظل متعدد الأكوام. نفس المثال يبرر نظرية إيفريت نفسها، على السطح فيها ثمة فهم لظاهرة التداخل هو أن نشئ أو فتاير خطوة عديدة من العضلات الفلسفية. ولكن هنا وفوق كثير من الأمثلة التي أعطيتها في هذا الكتاب نرى أن الحالة هي العكس. إن إثارة نظرية التعددي كخصائصية للحل لعديد من المشكلات الفلسفية التي ظلت طويلاً بدون حل، هذه الثمار عظيمة لدرجة استحقاقها لأن نتبناها ولو لم يقم David Lewis، من الفلسفية على الإطلاق، بالطبع فقد ادعى الفيلسوف دافيد لويس بوجود التعددي لأسباب On the plurality of worlds في كتابة عن تعدد العوالم الفلسفية فقط.
بعد تفكير حذر اخترت أن أفعل "X"
بعض النسخ منى اخترت شيئاً آخر
لم أستطيع أن اختار شيئاً آخر
ملخصة: (١٢-١٦) تمثل الفيزيات لبعض العبارات التي تشير إلى الإرادة الحرة
قد كنت صائباً في اتخاذ هذا القرار
النسخ منى التي اخترت X وتلك التي اخترت نفس القرار الصحيح في مثل هذه المواقف: تتوفر عدداً تلك التي لم تفعل ذلك.
قد كان القرار الصحيح
لقد كنت صائباً في اتخاذ هذا القرار

في التحول مرة أخرى لنظرية التطور يمكن أن أحسب نفس المعنى لهؤلاء الذين انتهجوا التطور الدارويني على أرضية أن من غير المنقفل مع خصائص مثل هذا التكيف المعقد يمكن أن يظهر أو يبرز في وقت معين. كما أن هناك مبدأ داوينز أراد أن يندفعه من المحيط الحيوي كما فعل لو أن كومة من قطع الغيار قد قذف بها جميعاً بحيث تسقط على نموذج طائرة بوينج ٧٤٧ على السطح من ذلك أن هذا التقد يقيم مشابهة جبرية بين: على جانب منها بلايين السنين من المحاولات الواسعة للكواكب في الخطأ، وعلى الجانب الآخر الواقع الفوري "السقوط هذه الكومة دفعة واحدة" سيكون هذا مبدأ أساسيًا لافتقار النقطة كلها أو الهدف من التفسير التدريجي، ومع ذلك هل
كان موقع داوكنز المضاد كافٍ تمامًاً كتفسير؟ لقد أراد داوكنز ألا نشهد من أن هذا التكيف المعقد قد ظهر بالوجود بشكل عفوي، وبكلمات أخرى فقد أدى أن نظرية عن الجين الأنيمي هي تفسير كامل ليس في مجري تكيف معين ولكن كيف يمكن لثل هذا التكيف المعقد أن يحوز صفة الوجود.

ولكن ليس تفسيرًا كاملاً، شبه فجوة تفسيرية ونحن نعرف الآن أكثر كثيراً كيف للخيوم الأخرى أن تملأها. لقد رأينا حقيقة أن التطورات الفيزيائية يمكنها تخزين المعلومات، يمكنها أن تتفاعل مع بعضها لكي تتقل هذه المعلومات أو إعادة نسخها، وأن هذه العمليات مستقرة، وكلها تعتمد على تفاصيل نظرية الكم. والأكثر من ذلك أتتنا رأينا أن وجود معبد النسيج التكيفين بشدة يعتمد على الملاحة الفيزيائية لجيل الحقيقة أدق وبطبيعة الدور، والتي يمكن فهمها كنتيجة لبداً عميق، مبدأ تورنر، الذي يربط بين الفيزياء ونظرية الحوسبة. والذي لا يشير بوضوح لميعاد النسيخ أو التطور أو البيولوجيا على الإطلاق.

وهكذا فجوة مشابهة في نظرية المعروفة البوربروية، حيث إن نقادها تجربوا كيف للأسلوب العلمي أن يعمل أو ما الذي يقومه اعتقادنا على النظريات الأحسن. وهذا قادهم إلى التوقيت المثير إلى مبدأ الاستقراء أو شيء من هذا النوع (ولو إنه بالنسبة للأستاذين اللذين، فإنهم عادة ما يدركون أن مثل هذا المبدأ لا يشرح ولا يقوم أي شيء أً مثلاً،) وبالنسبة للبربريين للرد على ذلك فقد قالوا بأنه ليس شيء اسمه "التهميم" أو أنه ليس على سبيل العقلانية الاعتماد على النظريات فيما لم تدنا بالتفسير، وحتى بورن قال: "ليس شئة نظرية للمعرفة تطمح لأن تشرح لنا ماذا نحن ناجحو في محاولتنا لتفسير الأشياء." (المعروفة الموضوعية ص 23). ولكن بمجرد فهمنا لأن نمو المعروفة البشرية هو عملية فيزيائية فسوف نرى أنه لا يمكن أن يكون من غير شرعي أو غير الصحيح أن نفسر كيف ولماذا حدث. إنها نظرية واقعية أو حقيقية تلك التي تتعلق بالظروف التي في ظلها ينمو أو لا ينمو أي كم فيزيائي (المعروفة).
التاكيد الواضح لهذه النظرية مقبول بشكل واسع، ولكنه لا يمكننا العثور على تفسير لما إذا كانت حقيقة معزول عن نظرية المعرفة ذاتها: في هذا المقام الضيق كان بوبير على حق. لا بد للشرح أن يشمل الفيزياء الكمية ومبدأ تورنر وكما شدد بوبير، نظرية التطور.

المتاصرون للنظريات الغالبة في كل من الحالات الأربع كانوا دائما في حالة دفاع إزاء توق ناقدهم لهذه الفجوات التفسيرية. وهذا أجمهره عادة على التراجع إلى مجرى نظرياتهم. أتفقت، ولا يستطيع فعل أي شيء آخر هذا هو جوابهم الدائم، حيث يعتمدون على الدليل الذاتي غير العقلاني لهج النظرية الأساسية غير المتلفة في ميدانهم المعين وهذا يجعلهم ضيقين جدا بالنسبة لناقدهم وهو ما يولد تشاواما بالنسبة للمشهد في مزيد من التفسير الأساسي.

على الرغم من كل الأذاعات التي قدمتها للنقاد، يجب أن نقسمهم على النظريات المركزية، فإن تاريخ كل الخيوط الأربعة يوضح أن شيئًا سبيًّا قد حدث للعلوم الأساسية والفلسفة على مدى معظم القرن العشرين. شبيه ”الوضعية“ والآداتية في النظرة للعلم قد تم الوصل بينها وبين صورة ذهنية قليلة الثقة بذاتها ومتشائمة إزاء التفسيرات الذكية في وقت سادت فيه الوجاهة واللافتة وبالطبع تمويل للبحوث الأساسية... كلها جميعًا في مستواها الأعلى. كانت هناك شهة استثناءات فردية بما فيهم الابطال الأربعة في هذا الفصل. ولكن الأمر الذي لا يسبقه له مثل أن نظرية طيف كشفت مع ذلك وتم تجاهلهم كأنهم يتحدثون لأنفسهم. وأنا لا أدعى أن لدى تفسير كامل لهذه الظاهرة ومهمها كان ما تسبب فيه فيبدو أننا نخرج من الآن.

لقد أوضح سببًا واحدًا على طريق المساحة وأعني به أن كل نظرية من الأربعة ويشكل منفرد لديها فجوات تفسيرية والتي تجعلهم يبدوان ضيقين وغير إنسانين ويدفعون إلى التشاؤم. ولكننا اقتربنا بأنه لم تم الأخذ بأبرعهم معا أو مجتمعين كتفسير متحد لنيسن الحقيقة، فإنه يمكن لهذه الخصائص سبئه الحظ أن
تنعكس أو تتحول. وبعيدًا عن إنكار الإرادة الحرة، وعبيدًا عن وضع القيم البشرية في كتب بحيث يصبحون من نافلة القول أو بدون معنى، وبعيدًا عن أن تكون متشائمين، إنها نظرة للعالم أساسية ومتفائلة تلك التي تضع العقول البشرية في قلب الكون الفيزيائي وتفعيل التفسير والفهم في مركز الأهداف البشرية. وأما أن نقصي وقتًا طويلاً في النظر للخلف للدفاع عن هذه النظرة المتحدة في ظل عدم وجود نظرة منافسة لها. لن يكون هناك نقص في المنافسين، عندما نأخذ هذه النظرة المتحدة لنسيج الحقيقة، بشكل جاد وندعمها على نحو أكثر من ذي قبل. إنه الوقت للتحرك إلى الأمام.

اصطلاحات.

<table>
<thead>
<tr>
<th>مجموعة الأفكار التي من خلالها ينظرون المثقعون بها أنهم يلاحظون ويشتركون كل شيء طبقًا لخبراتهم فيه، وطبقا لتتيار الكون فإن التمسك ب.Mouse</th>
<th>Paradigm</th>
</tr>
</thead>
<tbody>
<tr>
<td>هى فكرة لجعل الأمر أكثر سهولة في تجنب تعقيدات نظرية الككم لطبيعة الحقيقة. في لحظات الملاحظة فإن الخروجات في واحد من الأفكار يفترض أنها تكون حقيقية، بينما في سائر الأفكار الأخرى - حتى تلك التي تساهم في تلك الخروجات - يصبح الأمر على نحو آخر كما لا كان غير موجود. وفي ظل هذه النظرة ليس مسموحًا للمرء أن يسأل عما يحدث في الحقيقة فيما بين الملاحظات الوعية.</td>
<td>Copenhagen interpretation of quantum mechanics</td>
</tr>
</tbody>
</table>
الخلاصة:
التوزيع العاقلة للنظريات الأساسية للخيوت الأربعة تشمل على توازنات ملحوظة. أربعتهم تم قبوله في وقت واحد (لللاستخدام العملي) كما تم تجاهلهم (كتفسير للحقيقة). وسبب واحد لذلك يتمثل في أنه تم الأخذ بكل منهم منفردة وكل منها لديه فجوات تفسيرية، بحيث تبدو باردة وتدعو للتشاؤم. لتأسيس نظرة للعالم بناء على أي منها منفردة فإن ذلك من شأنه وعلى نحو تعميمي أن يؤدي إلى الإنقاص بينما لو تم الأخذ بهن مجتمعات مما كتفسير متحد لتسليح الحقيقة فإن reductionist الأمر لن يستمر كذلك.
ماذا بعد؟
الفصل الرابع عشر
نهايات الكون
ولو أن التاريخ لا معنى له فإننا نستطيع أن نعطيه المعنى.
كاري بور في كتابه "المجتمع المفتوح وأعداؤه".

Open society and its Enemies

عندما كنت في مجرد بحث عن أسس أو جذرات ميكانيكا الكم كنت متبها في البداية إلى الروابط بين فيزياء الكم والحوسبة ونظرية المعرفة، ونظرت إلى هذه الروابط كائنة على الاتجاه التاريخي لأن تبتلع الفيزياء موضوعات بدت في السابق كأنها لا صلة لها بها. على سبيل المثال فإن الفلك كان يربط بفيزياء المحيط الأرضي أو السحري أو المرتبت بضائعة الأرض، وذلك بواسطة قوانين نيوتن، ولعدة قرون بعدها ذاب أغلبها لتصبح فيزياء الفلك. وبدأت الكيمياء تحضر خلاصة أو ذروة الفيزياء بواسطة اكتشافات فاراداي في الكيمياء الكهربية. وقدمت نظرية الكم جزءاً ملحوظاً في الكيمياء الأساسية التي تم التنبؤ بها مباشرة عبر قوانين الفيزياء وحدها. وابتعدت النظرية العامة للنسبية لاب thừaاين الهندسة في جمعتها، واستطاعت بذلك إنقاذ كل من الكونية ونظرية الزمن من حالتها السابقة التي تلخصت في الفلسفة المحددة ودمجتها بالكامل كفروع للفيزياء. ومؤخراً، كما أسفلت، أدمجت بدورها نظرية ارتحال الزمن.

وهيما حوى المشهد المتقدم لفيزياء الكم ليس فقط نظرية الكم، ولكن أيضًا - من بين كل الأشياء - نظرية البرهان التي كان لها اسم بديل هو ما وراء الرياضيات والاسمان يبدوان لي كدليل على الاتجاهين: أولاً أن المعرفة البشرية ككل كانت مستمرة في سعيها للوصول إلى بناء وحدي تضمن في أن يكون مفهومًا بالمعنى القوي للفهم كما أمل فيه. وثانياً: أن البناء الوحدي ذاك سوف يستمر على أعرض وأعمق نظرية عن الفيزياء الأساسية.
سيعرف القارئ أنني قد غيّرت رأيي عن النقطة الثانية. سماحًا نسيج الحقيقة الذي أقترحه الآن ليس عن الفيزياء الأساسية وحدها. وعلى سبيل المثال فإن نظرية الكم للحوسبة لم تؤسس على استنباط المبادئ الخاصة بالحوسبة من الفيزياء الكم وحدها وإنما شملت مبدأ تورنجز الذي كان يحمل بالفعل مسمى حدس تشرش/ تورنجز كأساس لنظرية الحوسبة. ولم تستخدم أبدا في مجال الفيزياء ولكنّي ناقشت كيف لكي نفهمها جيدا فمن الواجب احتسابها كمبدأ في الفيزياء. إنها تتساوي مع مبدأ حفظ الطاقة والقوانين الأخرى للديناميكا الحرارية بمعنى أنه في حدود أقصى ما نعتبرها تمثل اضطرابًا أو كبحًا تطابق معه باقي النظم. ولكن على غير ما هي عليه القوانين القائمة للفيزياء فإن لها سمة انتباهية تشير مباشرة لخواص الماكينات أو الآلات المعقدة وبالتالي إلى العملية والموضوعات دون النظرية (ومن القابل للمناقشة في ذلك القانون الثاني للديناميكا الحرارية - مبدأ انتشار الطاقة ومعامل قياسه - وكلاهما له نفس السمة).

وبالمثل لو فهمنا العلاقة والتكيف كبناء يتمت عبر عدد كبير من الأكوان، فستوقع أن مبادئ نظرية المعنة والتطور سيكونان قابلين للتعبير عنهما مباشرة كقوانين لبناء متعدد الأكوان. بمعنى أنهما قوانين فزيائية، ولكن عند مستوى معين من الإنتباخ وعلني أعرف أن نظرية التعقيد الكمية لم تصل بعد للحد الذي يمكن معه التعبير بمصطلحات فزيائية عن مقتراح أن المعنة يمكنها أن يتم فقط في حالة تطابق فيها مع النموذج الذي قدمه بوب ووضوح ففي الشكل (2-2). ولكن هذا نوع من المقترحات أن تظهره في النظرية الوليدة "نظرية كل شيء: نظرية التفسير الشامل والتنبؤ لكل الخيوط الأربعة.

وبما أن الأمر كذلك، فإن مشهد أن فيزياء الكم تتبع باقي الخيوط، يجب النظر إليه على أنه مجرد مشهد فزيائي ضيق فيما شابه التلعب أو الإفساد عبر الإنصاق بالطبع لأن كلاً من الخيوط الثلاثة الأخرى تبلغ من الإثراء درجة تكفيف reductionism.
لأن يشكل بعض الناس نظرتهم للعالم بنفس الطريقة التي تفعلها به الفيزياء الأساسية.
وقد فكر رينيه ديكارت داونكنز مرة بقوله، إذا استطاعت مخلوقات فضائية متفوقة أن تزور الأرض، فإن أول سؤال سيتبادر إليهم هو (هل اكتشفوا التطور بعد؟). كما وافق على أن نظرية المعرفة هي التي Rene Descartes فلسفة كثيرة مع رينيه ديكارت "cogito ergo sum" تحدد كل أنواع المعرفة الأخرى وأن شيئاً مثل جدليته "cogito ergo sum" هي التفسير الجذري الذي لدينا. وكثير من علماء الكمبيوتر تأثروا بالابتكارات المؤخرة عن الصلات بين الفيزياء والحوسبة لدرجة أنهم استنتجوا أن الكون هو كمبيوتر وأن قوانين الفيزياء هي البرامج الذي يعرضه الكمبيوتر. ولكن كل هذه مشاهد ضيقة ومراوغة حتى بشأن النسبي الحقيقي للحقيقة. ومن الناحية الموضوعية فإن التركيب الجديد له سمعته الخاصة به، والتي تختلف جوهرياً عن كل الخيوط الأربعة التي يوحدها.

على سبيل المثال فقد لاحظت أن النظريات الأساسية التي تمثل الخيوط الأربعة قد تم نقلها، وفي جزء من النقد كان الهدف هو تقويمها، وشمل النقد "عدم النضج" وأنها "ضيقة" أو "فائرة وهكذا... وكان ذلك من قبل الفيزيائيين أتباع الإنجيل مثل حين يقول "الجنس البشري هو مجرد نفاية كيميائية Stephen Howking ستيفن هوكينج لا أفهمية فيزيوفيكنكية لها". ومن جانبه فكر ستيفن وينبرج "كملا بدًا Steven Weinberg الكون أنه أكثر قابلية للفهم كملا بدًا" ولكن إن لم يكن مرة عزة لا تشير The first بحوثنا، فهناك عزة لنا في البحوث ذاتها في كتابنا دقائق الثلاثة الأولى. (المترجم) "cogito ergo sum" هو الكوجينتو الديكارتي "أنا أفكر أنا إذن موجود" وأول عن صك رينيه ديكارت باعتباره الخطوة الأولى للحصول على المعرفة المبينة، وهي العبارة التي اجتازت اختيار فلسفة الشكلية. لأنه لو أن شيئاً موجوداً حاول أن يخدعنا فلا بد أن يكون موجوداً لكي يخدعنا.
zione لا تؤثر على العقل. إذاً، لا تتعلق فقط في رفعة الحواسبية التي هي جارية بالفعل.

بالنسبة له لم تكن هذه المقولة معبرة عن صرخة يأس وإنما على العكس. وإنما نقاد النظرة الكيبوتية للعالم لم يشعروا أن يروا أنفسهم كأنهم يجرون برنامج الله أخرون على كمبيوتر لا يخصهم أيضًا. وعلى نحو ضيق استنتجوا نظرية مبتكرة تعتبر أننا مجرد "عربات" لجنياتنا ومماثلاً لنرى نسخ نفسها، ورفضت أن تكون السؤال لماذا صاغ التطور تحوّل لإبداع تمكّن معقد مثل هذا، أو أن هذا التكيف المعقد يلعب دورا في المخطط العام للأشياء، نفس الأمر بالنسبة للإستقرائيين اللغزين كان نقدهم لنظرية المعرفة البوربية بأنه بينما تقرر النظرية شروط نمو العلمية، فهي تبدو غير مفسرة لماذا تنمو - لماذا تبدع نظريات تحقق الاستخدام.

وكما شرحنا فان الرد عليهم في كل حالة يعتمد على إضافة تفسيرات من بعض الخيوط الأخرى. نحن لسنا مجرد "نافذة كيميائية" لأن (مثلًا) السلوك الإجباري للكيتكنا والنجم والجراث يتوافق على كمية فيزيائية طارئة ولكنها أساسية. هي المعرفة في مثل هذه النافذة. إبداع العلم بالمعرفة النافعة وإبداع التطور للتكييف يجب أن يفهم على أنهما أنيابا للتشابه الذاتي الذي تم التعامل معه بمعرفة مبدأ فيزيائي هو مبدأ تورنج وهكذا...

(*) Thommaso Toffoli هو أمريكى من أصل إيطالي يعمل أستاذًا للكبيراء وهو دبلوماس الكامبيوتر بجامعة بوسطن. حصل على الدكتوراه في الفيزياء من جامعة روما عام 1967، وفي عام 1976 حصل على دكتوراه أخرى في الحاسب وعلوم الحاسوب من جامعة ميشيغان. وهو يعرف بإكتشاف ما أصبح يعرف بـ"نافذة توزفولي". كما تركز أعماله على "الخليطات الأوتوماتية" ونظرية "الحياة الاصطناعية".

480
وعلى هذا النحو فإن المشكلة في اتخاذ أي من هذه الخطوط بشكل منفرد كأساس لتشكيل نظرة عن العالم من خلالها وحدًا، تتلخص في أن كل منها إلى حد ما يعتبر من قبيل "الأشكال" بمعنى أنهم يتكشفون عن وحدة كلية متناغمة لبناء تفسيري من خلاله يبدو كل شيء يأتي تابعا لأفكار عميقة جداً. ولكن هذا يترك مجالاً لعناصر غير مشروعة أو مفسرة تمامًا. ويتناقض مع ذلك أن البناء التفسيري لنسخة الحقيقة الذي تمدنا به وهي مجتمعية ليس ترابيًا أو هرميًا، كل من الخطوط الأربعة تتحلى على مبادئ فهي نتائج من المشهد العام للثلاثة الأخريات، ومهمها يكن في تساعد في تفسيرهم.

ثلاثة من الخطوط الأربعة يبدو أنها تحكم الجنس البشري والقيم الإنسانية عبر مستوي أساسي من التفسير. أمًّا الخطط الرابعة وهو نظرية المعرفة فيجعل المعرفة مسألة لها الأولوية، ولا يمكننا سبباً لنظرية المعرفة هي نتائج المعرفة في ذاتها على أنها ذات صلة تقع وراء نفسيات جنسنا البشري. المعروف تبدو مفهومة جزئيًّا حتى تنظر إليها من منظور التجديدية. ولكن إذا كانت المعاني هي تفسيرات أساسية فيمكننا أن نسأل ما هو نوع الدور الذي يبدو الآن وكأن إبداع المعرفة في ذاوننا داخل نسخة الحقيقة وتعد إجابته عبر Frank Tipler الوردي. هذا السؤال ساعد الكوينيات فرانك تير نظرية "The omega point theory" مثلًاً جيدًا لنظرية حول نسخة الحقيقة ككل في إطار المعنى الذي يعنيه هذا الكتاب. إنها لا تتشكل عبر واحدة فقط من الخطوط الأربعة ولكن عبر الأربعة معًا وعلى نحو لا يمكن إنقاصه أو اختزاله. وللأسف فإن تبلر نفسه في كتابه "فيزياء الخلوذ" عاد إلى دعاوي مبالي فيهما عن موضوعه أدت إلى رفضها من قبل معظم العلماء والفلسفة، وجعلها بعيدة عن التناول، وبالتالي افتقد المجري الأساسي للفكرة الجيدة التي ساكاتبها توا بالشرح.
من منظورى أنا فإن أبسط نقطة يمكن الولوج منها لنظرية نقطة النهاية هي مبدأ تورنج. مواد الحقيقة التقديرية العالمية هو ممكن فيزيائيًا. ومثل هذه الآلة يمكنها محاكاة أي بيئة ممكنة فيزيائية وأيضاً الكينونات المفترضة والمجردة، ولا يدري من الدقة نزعربها. وعلى فائ الخبيثاء الخاص به لمتطلبات جوهير غير محدودة من الذاكرة الإضافية، ويمكن أن يتمب خطوات غير محدودة العدد. وكان من قبيل التوافه إعداده في حل نظرية الحوسبة التقليدية حيث كان يمكن للمكبيتر العالمي على أنه مسألة تجريديّة بحتة. ادعى تورنج لنفسه شريط ذاكرة لا نهائي الطول (له خاصية دقيق للغاية للاضافة لا يحتوي قوة طاقة ولا صيانة، ووقت متاح له غير محدود: وجعل النموذج أكثر عملية بالسماح بالصيانة على فترات فإن هذا لم ينشئ أعبارًا في المبدأ – ولكن المتطلبات الثلاثة الأخرى: قدرة الذاكرة غير المحدودة، والوقت غير المحدود لجريان العملية، ودحر دائم للطاقة – هي مسألة إشكالية في ضوء النظرية القائمة للكمبيوترات. في بعض النماذج الكونية الساذجة بعد وقت محدود وغير محدود أيضًا. سوف ينهار العالم في انكماش كبير وهذا النموذج كروية ثلاثية وهي الأبعاد الثلاثة التي نتناول البعدين على سطح كره وعلى ذلك السطح فإن مثل هذه النظرية الكونية تضع حداً لقدرة الذاكرة ولعد خطوات العمليات التي يمكن للآلة أن تنفذها قبل أن ينتهي العالم. كل يجد هذا الكمبيوتر العالمي في حدود المستحيل وعلى ذلك ينتمى مبدأ تورنج في النماذج الكونية الأخرى لأن الكون سوف يستمر في التمدد للأبد في إطار حيز مكاني لا محدود والذي يبدو أنه يسمح بمصدر غير محدود للمواد التي يصنع منها شريط إضافي للذاكرة. والأسف فإنه في معظم هذه النماذج فإن كثافة الطاقة المتاحة والمفترض أن تم الكمبيوتر ليستمر في عمله، سوف تختفي مع استمرار الكون في التمدد، وسيتوقف الأمر جمعها من كل مجال خارج الحقل أو المجال، ولأن قوانين الفيزياء تضع حدًا للاقتصاء سرعة وهو سرعة الوضوء فإن على نوبات الذاكرة في الكمبيوتر أن تخفض من خطوها ومن
ثم تصبح النتيجة النهائية متحصلة في محدودية العمليات الحوسبية التي يمكن أن يحققها الكمبيوتر.

والكشف المفتاح في نظرية نقطة النهاية يكمن في مستوى أنها تقدم نموذجاً كونياً والذي من خلاله، ولو أن الكون محدد في المكان والزمن، فإنه قدرة الذاكرة، وعدد خطوات الحوسبة الممكنة، والإمداد الكفؤ للطاقة تكون ثلاثة غير محدودة. هذه الصعوبة أو قل الاستحالة يمكننا أن نتحدث بمثابة العنف للانهائية للحات النهائية لانهيار الكون في "الانسحاق الكبير". ومثل الانفجار الكبير والانسحاب الكبير سوف توجد أماكن هادئة أو ساكنة نادرة وبعدية لدرجة تجعلها لا تستحق العناية بها. وشكل الكون سيتحول من الأبعاد الكروية الثلاثة إلى الأبعاد الثلاثة المرتفعة لأبعاد مجسم القطب الناقص وبعد ذلك يتناقص، ثم ينتشر مرة أخرى وعلى نحو أسرع بمعنى وجود مهور مختلف للدوران وكلا من الانسجام من ناحية وتوازي التقلب من ناحية أخرى sẽ تتشكل بدون حدود إلى حتي تصل إلى "نقطة التفرد" "singularity" ولدرجة أن عددًا غير محدود على (نحو حرف) من التقلب أو التذبذب سوف يحدث ولو أن النهائية ستأتي في وقت محدود. المادة وكما نعرف سوف لن تبقى، كل المادة وحتى الذرات نفسها التي سوف تمزق بشدة خلال قوى الجاذبية التي ستندفع نتيجة لتشوه الزمكان. ومع ذلك فإن هذه القوى الساحقة سوف تم الصورة بمصدر غير محدود للطاقة المتاحة، التي يمكن أن تسبر القوة اللازمة لتشغيل الكمبيوتر. كيف للكمبيوتر أن يوجد في ظل مثل هذه الشروط؟ إن الأشياء التي تستكشف وحدها بعد هذه الصورة والتي يمكنها بناء الكمبيوتر سوف تكون من عناصر أولية والجاذبية نفسها والتي يفترض أنها ستكون في حالات كمية غريبة للغاية، والتي يجعلها وجودها لا نزال نقتصر إلى نظرية كفؤة للجاذبية الكمية غير قابلة من ناحية الدقة لقبولها أو تأكيدها أو رفضها أو إنكارها (مع ملاحظة أنها من ناحية التجريب ستكون خارج المناقشة). إذا كان ثمة حالات مناسبة لتواجد العناصر ومجالات أو حقول جاذبية، فإنها ستندم بقدرة ذاكرة.
لا نهائيّة، وسوف ينكمش الكون بسرعة لدرجة أن عدّادًا لا نهائيًا من نوويات الذاكرة سوف تكون ملائمة لزمن محدود قبل النهاية. نقطة النهاية في الانهيار الجانبي.

الانسحاب الكوني الكبير هو ما يسميه تبرّر "نقطة النهاية".

الآن: بدأ تورنوج يفترض أنه ليس متأكدة على عدد الخطوات الكمبيوترية الممكنة فيزيائيًا. وعلى فقّيّة تلك الحالة المبينة كنقطة النهاية الكونيّة (في ظل قانون جدّية بالتصديق) تكّون هي النموذج الوحيد الذي يتحقق فيه عدد لا نهائيّ من العمليات الكمبيوترية، ويمكننا أن نتصور أن رمزانا الفعلي، لا بد، يحوّز شكلًا لنقطة النهاية. طالما أن كل الحوسبة ما إن تمكّنت بتغييرات متعدّدة لا أكثر لاحصل المعلومات في السلسلة تصور أن المتغيرات الفيزيائية الضرورية (وربما ثلاثتهم من النوع الجانبي الكمي) ستتواجد في الأخرى إلى ما حتى نقطة النهاية.

ربما لمتشكل أن يجادل في مثل هذا النوع من التسبيح يستخدم استقراء شرخًا وغير مقوؤً. لقد خبرنا الكمبيوترات العالمية فقط في أكثر البيئات تفصيلًا لدينا التي لا تشابه الراحل نهائيّة من العالم. وخبرناها تنفذ عدّة محدودًا أو نهائيًا من الخطوات الكمبيوترية، ونستخدمها كمية نهائيّة من الذاكرة. كيف لها أن تكون صالحة لأن تستنتج من هذه الأعداد نهائيّة أعدادًا لا نهائيّة؟ ويكلمات أخرى: كيف لنا ذلك ونحن نعلم أن بدأ تورنوج في أقوى تشكّلاته هو بدأ صحيح؟ ما هو الدليل هناك على أن الحقيقة تدعم أكثر من عالمية تقريبية؟

هذا المشبك بالطبع سيكون استقرائيًا. والأكثر من ذلك أن هذا هو بالضبط نوع التفكير (كما ناقشت في فصل سابق) الذي يمنعنا من فهم أساليب نظريتنا وأن نتقدّم ببناء عليها. ما هو الاستنباط أو الاستقراء الذي يمكن أو لا يمكن أن يعتمد على نظرية يمكن للمرء البدء بها، إذا بدأ المرء ببعض ما هو غامض لكن جزءًا مما هو عادي أو مألوف من الحوسبة، مفهوم يتيح بأحسن أنها نتائج من التفسيرات في الموضوع، فإن المرء سيجد تطبيقًا للنظرية خارج الظروف المألوفة وسيعتبر "استقراء غير مقوّم". ولكن إذا
بدأ المرء بتفسيرات من أكثر المتاح من النظرية الأساسية، فإنه سيصبح نفس الفكرة
كحالة سوية تشوبها بعض الضبابية والتي تقع مع حد أقصى من الظروف كاستقراء
غير مقيم. لكي نفهم نظريتنا لا بد أن نأخذها بالجدية الواجبة كتفسيرات
الحقيقية، وليس النظر إليها ك مجرد خيالات للملاحظات القائمة. مبدأ تورننج هو أحسن
نظريتنا في أسس الحوسبة. بالطبع نحن نعرف عدًا نهائياً من اللحظات التي يتحقق
فيها. ولكن هذا صحيح بالنسبة لأى نظرية علمية. حيث تبقى وستظل دائمًا باقية تلك
الإمكانية المنافسة في الحوسبة تدعى ذلك ولسبب جيد، لأن مبدأ العالمة التقريبية لا يجوز
قوة تفسيرية. ولعث مثلما أردنا أن نفهم لماذا يبدو العالم قابلًا للفهم، سيكون التفسير هو
أن العالم قابل للفهم. مثل هذا التفسير يستطبع، وهو بالفعل كذلك، أن يكون مناسبًا
لتفسيرات أخرى في ميادين أخرى. ولكن نظرية أن العالم هو نصف مفهوم لا تشرح
شيئًا ولا يمكن أن تتناسب مع شروط أخرى في مجالات أخرى إذا إذا كانت الأخيرة
قادرًا على شرحها. إنها ببساطة تعبر وضع المشكلة وتنتج ثابتاً غير مشروط أو نصف
هذا الثابت، وباختصار فإن ما يُقوم ب'affirmation أن مبدأ تورننج بالكامل سيكون قائما في
نهاية العالم، هو أن افتراض آخر يفسد تفسيرًا جيدًا لما يحدث هنا والآن. يتحول الأمر
إلى أن هذا النوع من التذبذب للقضاء الذي سيصنعه في نقطة النهاية سيكون غير
مستقر بدرجة عالية (بطريقة الهوس أو "الاكوس" أو الفوضى التقليدية) وكذلك العنف
الذي سيصاحبه. وسيزدادان بدرجة لا نهائية كلما اقتربت نقطة النهاية. وانحراف
صغير عن الشكل الصحيح سوف ينمو بسرعة تتناقض مع استمرار الحوسبة وهكذا
سيقع الانسحاب الكبير بعد عدد محدود من خطوات الحوسبة. وعلى ذلك كي يتوافق
الأمر مع مبدأ تورننج ونقطة النهاية معًا، فإن الكون سيكون مستمرًا في التوجه للخلف
وفقًا للمسارات المتحينة الصحيحة. أوضح تبار كيف يمكن حدوث ذلك، بأعمال مبدأ
الجانبية على كل الفضاء، على سبيل الافتراء (ومرة أخرى سنشتى نظرية الكم
لجانبية للتأكد مما نعرفه) لو أن التقنية التي نحتاج إليها لتحقيق توازن النظام الآلي،
وتخزين المعلومات، ستتقدم باستمرار - بالطبع تتقدم في عدد نهائي من المواقف - كما تصبح الكثافة والضغط أكثر شدة باك جديد. هذا سيطلب استمرارية إبداع معالفة جديدة، التي تخبرنا عن نظرية بور للمعرفة، بأنها تتطلب حضور نقد عقلاني وهكذا تتباعدة كينونات عبقرية. وعلى ذلك علينا أن نستخلص فقط من مبدأ تورنر وبعض الفروض المتفاوتة الأخرى، والتي جرى تقويمها، أقول نستخلص أن الذكاء سبقي، وسيستمر إبداع المعارف حتى نهاية الكون.

إجراءات التنوين والاثبات والصاحب لها من عمليات إبداع المعارف، سوف يتزايدان بسرعة إلى ما حتى نويتها الجنوية الأخيرة، كمية نهائية من كل منهما تحدث في زمن محدود. نحن لا نعرف سببًا لما إذا لا توجد مصادر فيزيائية متاحة لتفعل ذلك، ولكن للمرء أن يعجب لما على السكان أن يعبأوا بالذكاء إلى متاعب من هذا النوع. لما يستمرون حريصين على الإنجيبي للمعرفة الجنوية خللال، قال، الثانية الأخيرة للكون؟ إذا بقيت لديك ثانية واحدة في الحياة لما لا تجلس وتأخذ الأمر ببساطة في النهاية؟ ولكن بالطبع هذا عرض سيئ للفوضى. ويمكن أن يكون من قبيل العرض الأسوا. بالنسبة لمحول هؤلاء الناس ستجري كما تجري البرامج في كمبيوترات تزداد سرعتها الفيزيائية بدون حدود. أفكر مثلاً أنافكنا ستكون من قبل الحقيقة التقديري التي تحاكي ما تتفنن هذه الكمبيوترات. ومن الصحيح أنه في نهاية تلك الثانوية النهائية سوف تتحطم كل هذه النظم الآلية المريحة. ولكننا نعرف أن السريان الموضوعي لخبرة الحقيقة التقديري يتحدث ليس عن طريق الزمن الماضي ولكن بالحوسبات التي تحققها عبر هذا الزمن. في عدد لا نهائي من الخطوات الحوسية هناك وقت لعدد نهائي من الأفكار - كثير من الوقت لوضع المفكرون أنفسهم في بيئة حقيقة تقديرية يتردونها وليكروها لأي مدى زمني يرغبونه. وإذا تعبوا من هذه البيئة يمكنهم الضغط على الزر للتحول إلى بيئة أخرى، أو لأي عدد من البيئات يهمهم بتصميمها. موضوعيًا لن يكونوا في المراحل الأخيرة لحياتهم ولكن في بدايتها وله
يكونوا في عجلة من أمرهم لأنهم، موضوعًا، سيعيشون للأبد في ثانية واحدة أو حتى ما يقربون الثانية سيكون لديهم كل الزمن في العالم ليفعلوا ويخبروا المزيج وإبداع المزيد والمزيد بلا نهاية كما لم يستطع أن يفعل أي واحد في التعددية من قبل. وهكذا سيكون لديهم كل الباعة لتروج عنهاناتهم للتعامل مع مصارفهم أو وسائهم. ويفعلهم هذا سيكون مجرد مستعدين للإجابة مستقبلهم، مستقبل مفتوح ولا نهاية الذي سيكون فيه مسيطران بالكامل، وفي أي وقت، على ما سيجدونه أو ينلون فيه.

ربما نأمل في أن يكون الذكاء في لحظة النهاية مشتملاً على من انضموا عنا. وأقول المنحدرون عن مثال أن كتابتنا الحالية لن تستطيع البقاء قرباً من لحظة النهاية. وفي بعض المرات سوف يحمل الأدمير بالكليوت برامج الكمبيوتر التي هي عقولهم إلى فارودور أكثر قوة ونضجًا. بالطبع سوف يفعلون ذلك أخيرًا في عدد نهائى من الأزمنة.

الأنظمة الآلية التي ستوجه الكون إلى نقطة النهاية تتطلب أفعالاً تجري في الفضاء. ويتبع ذلك أن هذا النكاء عليه أن ينتشر عبر الكون في زمن يستطيع فيه القيام بالخطوات الضرورة للتثبيت أو التوفيق والتي هي واحدة من سلسلة الخطوات التي أوضح تيلر أنها ستستغرق بها، كما أوضح إن التقيات لكل منها، طبعًا لأحسن معلوماتنا الحالية، سيكون ممكنًا فيزيائيًا، أول خطة حاسمة كما (المحت في الفصل الثامن) هي أن الشمس لم تترك على ما هي عليه من ميزات وبعد حوالي خمسة بلدين من السنوات من الآن، ستتصبح نجمًا عملاقًا أحمر وتتهبنا بحرارتها. لا بد أن نتعلم السيطرة على الشمس وتجنب مثل هذا التأثير قبل حدوث ذلك. وبدعها علينا أن نستعمل مجرتنا وبدعها العقود الملي من المجرات، وبدعها الكون كله. علينا أن نفعل كل من هذه الأشياء بدرجة كافية قبل الانتقاء بالخليطة الحاسمة المتصلة بالموضوع ولكن علينا ألا نتقم بسرعة لدرجة استخدام كل الوسائل الضرورية قبل تنمية المستوى التالي من التقنية.
أقول إنه يجب علينا أن نفعل كل ذلك، ولكن ذلك فقط بافتراض أننا كنا السلف الفعلي للذكاء الذي سيوجد في لحظة النهاية. نحن لا نحتاج لأن نغلب هذا الدور إذا كنا لا نريده. إذا اخترنا عدم الرغبة فيه، وإذا كان مبدأ تورنجر صحيح، إذن علينا أن نكون متأكدين أن بعضًا غرينا (افتراضيًا) بعض العانشين الأذكياء خارج جو الأرض.

وفي هذه الأثناء، في الأكوان المتوازية، فإن نظرائنا يتذكرون نفس الخيارات. هل سينجحون جميعًا؟ أو لنضع ذلك على نحو آخر، هل لأحد ما سينجح بالضرورة في إنشاء أو خلق نقطة نهاية في كوننا؟ هذا يعتمد على التفضيل الرقيق الصافي أو البالغ لبدأ تورنجر الذي يقول أن الكمبيوتر العالمي ممكن فيزيائيًا؟ وَممكنًا عادة ما تعني "على" في هذا الكون أو في بعض الأكوان الأخرى. هل يطلب المبدأ بناء كمبيوتر عالمي في كل الأكوان أو في بعضها فقط أو ربما في معظمها؟نحن لا نعرف المبدأ بعد بالدرجة الكافية لأن نقرر. بعض مبادئ الفيزياء مثل مبدأ بقاء الطاقة يسري في مجموعة من الأكوان ربما ينتهي في ظل بعض الظروف في أكوان منفردة، وبعضها مثل مبدأ بقاء الشحنة يتحقق بصرامة في كل كون. وأكثر شكلين بساطة لمبدأ تورنجر سيكون:

1- هناك كمبيوتر عالمي في كل الأكوان.

أو

2- هناك كمبيوتر عالمي على الأقل في بعض الأكوان.

وجهة النظر القائلة بـ"كل الأكوان تبدو قوية جدًا للتعبير عن الفكرة الجوهرية بأن مثل هذا الكمبيوتر ممكن فيزيائيًا. ولكن على الأقل في بعض الأكوان تبدو ضعيفة، وعلى السطح من ذلك، طالما أن العالمية تقوم في قليل من الأكوان وبالتالي تفقد قوتها التفسيرية. لكن في "معظم الأكوان" سوف تتطلب مبدأ تحديد نسبة مئوية معينة، فلتقل
58% والتي تبدو مقولة أو مقبولة جداً (ليس ثمة ثوابت طبيعية في الفيزياء تذهب للجد الأقصى فيما عدا الصفر) وعلى ذلك أثر تبلي كل العوالم وأنا أوافق. على أن هذا هو أكثر الخيارات طبيعية في حدود القليل الذي نعرفه.

هذا هو كل شيء يجب قوله عن نظرية حظة النهاية أو مكونها العلمي الذي أدافع عنه. والرّاء يستطيع الوصول لنفس النتيجة عبر عدة نقاط باء مختلفة في ثلاثة من الخيوط الأربعة. واحدة منها تتمثل في مبدأ نظرية الضرورة القائل بأن الحقيقة هي القابلية للفهم. هذا المبدأ أيضاً قد تم تقويمه منفذاً حتى الآن على أنه حدود نظرية بوير للمعرفة. ولكن تشكيلات القائمة تُعد غامضة بالنسبة لنتائج مطلقة غير مقدّرة عن مثلا عدم القيّم في التمثيل الفيزيائي للمعرفة التي يمكن أن يستخرج عنها. لذلك أفضل ألا استقرئ منها مباشرة ولكن استنتجها من مبدأ تورنجر (وهذا مثل أخير على القوة التفسيرية العظيمة المتاحة عند اعتبار الخيوط الأربعة أساسيين كمتص اللصاع أو مرتبطين ببعضهم البعض) تبلي نفسه استنتاج أن الحياة ستستمر إلى الأبد أو أن عمليات المعرفة سوف تستمر إلى الأبد. من وجهة نظراً الحالية فكل من الاستنتاجين يبدو غير أساسي. الميزة التي حققها مبدأ تورنجر ترجع لسبب مستقل عن الكونية، وإنظر إليه كمبدأ أساسي في الطبيعة - مع اعتراض أنه ليس دائماً في شكله القوي - ولكننا ناقشت أن هذا الشكل القوي للمبادئ يكون ضرورياً لو أن المبدأ جرى دمجه أو توحيده في الفيزياء.

حدد تبلي المسألة بأن علم الكونيّات قد تحول لدراسة مضيّز الزمكان (بالطبع الماضي البعيد أساسيًا) لكن معظم الزمكان يقع في مستقبل العصر الحاضر. علم الكونيّات القائم يضع المسألة في أن الكون سيتعود الانهيار. ولكن بعيداً عن هذا فإن هناك بحوث نظرية قليلاً في الجزء الأكبر من الزمكان وبصعة خاصة تلك التي تقدّم إلى الانسحاب الكبير وهو الجانب الأقل فيما لو نسب إلى تلك الأحداث التي وقعت في أعقاب انفجار الكبير. ورأى تبلي أن نقطة النهاية هي التي ستمائها هذه الفجوة. وأعتقد
أن نظرية نقطة النهاية تستحق أن تكون النظرية الغالبة عن مستقبل الزمان فعلاً لم ترفض تجريبًا. (الرفس بناء على التجريب ممكن لأن وجود نقطة النهاية في المستقبلنا يضع قيدًا ملحوظًا على حالة الكون في يومًا هذا).

وبعد تأسيس سيناريو نقطة النهاية، وضع تبر بعض الفرص الإضافية، بعضها معقول وبعضها أقل من ذلك - والتي مكنته من صنع مزيد من التفاصيل للتاريخ المستقبلي - وهي مسألة سؤال أو بحث الدين أو قل تفسير الدين للتاريخ المستقبلي، وفشي في التمييز بين هذا التفسير والنظرية العلمية الملثة، والتي متعدت من أخذ الأخيرة بجدية. لاحظ تبر أن كمية لِنهاية من المعارف ستكون قد أنشئت عند زمن لحظة النهاية، وبالتالي افترض أن الذاك القائم وقتها في هذا المستقبل البدع، مثلما سيرغف (أو ربما يحتاج) في اكتشاف معرفة أكثر من التي هي ضرورية الآن وذلك من أجل البقاء، بالطبع سيكون كابنًا فيهم بالضرورة رغبة اكتشاف كل المعارف القابلة لأن تُعرف فيزيائيًا، وافترض تبر أنهم سيجعلون ذلك.

هكذا بمعنى ما فإن نقطة النهاية سوف تكون كائناً (كلٌّ العلم "عليًا بكل شيء"
وكلّ القدرة أو الروح ذاته). ولكن هذا بمعنى ما. وإدخال خصائص كهذه أو حتى وجود فيزيائي ل نقطة النهاية، استخدم تبر مرزية لغوية في متناول اليد وشائعة تمامًا في الفيزياء الرياضية، ولكنها قد تخدع إذا ما تم الأخذ بها على نحو حرفي جدًا. وتلك المزية تتمثل في تعريف نقطة محدودة للتوالية ما بواسطة هذه المتوالية. وذلك حين يقول إن نقطة النهاية تعبر فهو يعني أنها معروفة بمعرفة بعض الكائنات النهائية قبل وقت نقطة النهاية، وبالتالي كنتيجة لذلك لن تصبح منسية. والذي لا يقصده أو يعنيه أن هناك كائنات حرفية عارفة، في نهاية الانهيار الجاذبي، لأنه لن تكون هناك كائنات فيزيائية قائمة على الإطلاق. وهذا باقصي المعاني حرفية لنقطة النهاية يعني أنها لن تعبر شيئًا. ويمكن القول بأنها موجودة فقط لأن بعض تفسيراتنا لنسيج الحقيقة تشير إلى خصائص محدودة لأحداث فيزيائية في المستقبل البعيد.
استخدام تبّل المصطلح الديني (كلي العلم “العالم بكل شيء وكل القدرة”) لسبب
سيصبح عاما قريبًا مفارقةً، ولكن دعني أشير هنا وفى هذه اللحظة أنّي في هذا الاستعمال فلا يعني معناه الكامل التأسيسي التقليدي. نقطة النهاية لن تعرف كل شيء. القدر الهائل من الحقائق المجردة مثل الحقائق المتمثلة على بيئة الكانتوجرو وما يشبهها سوف لن تكون قابلة للتعويل عليها كما هي بالنسبة لنا. الآن، دائما أن الفضاء كله سوف يكون مليئًا بالكمبيوتر الذكي، أي أنه سيكون عالما بكل شيء، وكل القدرة والوجود (ولأن ذلك سيكون بعد تاريخ معين). دائما أن سيكون مستمرًا في بناء نفسه ومنقدًا للانهيار الجانبي، فإنه يمكن القول بأنه سيكون مسيئًا على كل ما يحدث للكون المادي (أو في متعدد الأكون إذا ما وقعت ظاهرة لحظة النهاية في كل الأكون) وهكذا قال تبّل بأنها ستكون كلية العلم وكلية القدرة. ولكن مراة ثانية هذه الكلية في العلم والقدرة ليست مطالبة. بل على العكس ستكون صارمة الحدودية طبقًا للمادة والطاقة المتاحة ولأنها موضوع خاضع لقوانين الفيزياء.

وطالما أن الذكاءات في الكمبيوتر سوف تكون على نحو مفكورين مبدين، فلا بد من تصنيفهم كما لو أنهم “أنسان”. وقد ناقش تبّل على نحو صحيح أن أي تصنيف آخر سوف يكون من قبيل التمييز غير المبرر بين الأشياء أو العنصرية. وهكذا ادعى أنه عند حد نقطة النهاية سيكون هناك كلي المعرفة كلي القدرة. وإن ليس مطلقًا. كلي القدرة كلي المعرفة كلي الوجود هو مجتمع من الناس، وهو المجتمع الذي عرفه تبّل على أنه الرب.

لقد أشارت لمدة معاني متفرقة على أن الرب الذي عناه تبّل يختلف عن رب الأرب earthquake’s متفاوتة على أن الرب الذي عناه تبّل يختلف عن رب الأرب الذي يعتقد فيه معظم المقدسين. وهناك ثمة فروقات أكثر من ذلك أيضًا. على سبيل المثال فإن الناس القريبين من نقطة النهاية لا يمكن أن يتحدثوا إليها، حتى لو رغبوا في ذلك، أو يوصلون لنا رغباتهم أو أن يصنعوا المعجزات (اليوم). إنهم لم يخلقوا الكون ولم يبتزوا قوانين الفيزياء ولم يستطيعوا أن ينتهكوا هذه القوانين فيما
او أرادوا ذلك. ربما يستمتعون إلى الصلوات التي تنتمى في أيازانا الحالية هذه (ربما من خلال استكشاف أقل الإشارات خفيفة) ولكنهم لا يستطيعون الإجابة عليها. إنهم مضادون للإيمان الدينى (وهذا يمكننا استنتاجه من نظرية العقيدة البوبوية)، ولا يرغبون في أن يكونوا مقدسين أو أصحاب قداسة وهم جرا. ولكن تيلر استمر في حركة الأرض وناقش أن معظم سمات الرب في مجرى الديانة المسيحية اليهودية هي أيضًا من خصائص نقطة النهاية. وأعتقد أن معظم المدينين لن يوافقوا تيلر على ما تكون سمات مجريات أديانهم.

وبصفة خاصة فقد أشار تيلر أن ما يكفي من التقنية المتقدمة سوف تكون قادرة على إحياء الموتى. سوف تستطيع ذلك بطرق متعددة والتي سيكون أبسطها هو ما يلي: بمجرد حيازة المرء لقوة كمبيوترية (و يتذكر أخيرًا أن أي كمية أو قدر من الرغبات ستكون متاحة) يستطيع المرء أن يجري محاكاة الكون كله - بالطبع متعدد الأكوان باكمليه - بدأ من الانفجار الكبير، ولدى أي درجة مرغوبة من النقطة. وإذا كان المرء لا يعرف بدرجة كافية من الدقة كيف كانت الحالة المبديئة، فإن المرء يمكنه اختيار أفضل العينات لكل الحالات المبديئة الممكنة على نحو اعتباطي وبديلا جميلا في وقت متزامن، والمحاكاة يمكنها أن تتوقف لأسباب من التعقيد، إذا ما كانت البيئة أو الفترة التي تجري محاكاتها أصبحت قريبة من الوضع الفعلي الذي تجري فيه الحكامة. ولكنها وفي وقت قريب ستكون قابلة للاستمرار طالما تواجدت الطاقة للخط. في كمبيوترات نقطة النهاية لا شيء هناك غير قابل للتثبيط. هناك ما هو كمبيوتر أو قابل للحوسبة، وما هو غير كمبيوتر أو غير قابل للحوسبة. ومحاكاة البيئات الحقيقية بالتأكيد ستكون عبر مستوى ما هو كمبيوتر أو قابل للحوسبة. وفي مجرى هذه الحكامة سيظهر كوكب الأرض وتنوعات عديدة منه، والحياة، وأخيرًا الجنس البشري، سوف يظهرون كل البشر الذين سبق واشعا في متعدد الأكوان (معنى الذين كان وجودهم ممكنًا فيزيائيًا) سوف يظهرون في هذه الحكامة الواسعة. وهكذا كل سكان الفضاء
والذكاء الاصطناعي الذي سبق أن وجدنا، سيبحث البرنامج الحاكم عن كل هذه الكائنات الذكية. إذا ما أراد ذلك، ويضعهم في مكانهم الأحسن في الحقيقة التقديرية - والذين ربما لن يموتون مرة أخرى، سوف يضمنون رغباتهم (أو على الأقل المعمية منها، أو التي لم يكونوا يرغبون أن وسيلة الكمبيوتر يمكن أن تحققها) لماذا ستفعل الحاكمة ذلك؟ سبب واحد ربما يكون أخلاقيًا: على مستوى المستقبل البعيد فإن البيئة التي نحيا فيها أيامنا هذه خشنة أو فظة للغاية ونحن نعتني شناعاتها، وربما تعتبر من غير الأخلاقي عدم إنقاذ الناس منها وإعطائهم فرصة الحياة الأفضل. ولكن ربما يكون من غير المثير وضعهم مباشرة في حضارة معاصرة في وقت عادتهم من الموت: في الحال سوف يبتكون ويشعرون بالإدانة والانهاش، ولذا يقول تيلر: يمكننا أن نتخيل أن تعود الحياة في بيئة بالضرورة نحن معتادون عليها، وتتوقع رفع كل العوامل غير المرغوبة منها، وأن تضاف إليها كل العوامل المريحة والرغوية ويكاملاً أخرى: الجنة.

وأستمر تيلر على هذا النحو لإنشاء عدد من العناصر الأخرى من منظور الأديان التقليدية عن طريق إعادة تعريفها على أنها جواهر أو كينونات فيزيائية أو عوامل يتوقع أن تكون معقولة أو مقبولة على الأقل ظاهريًا، وقريبة الوجود من حظة النهاية. والآن دعنا نترك جانبا السؤال عم إذا كانت الأوجه المعا دينشاها تصدق مع تلك المشابهة الدينية. كل القصة بما سيفعله أذكياء المستقبل البعيد أو ما لم يفعلوه تقوم على أساس خيط من الفروض، حتى لو استنتجنا أن كل هذه الفروض منفردًا قابل للتصديق ولو ظاهريًا، فإن النتائج كلها لا يمكنها إدعاء أنها أكثر من منظور إخباري. منظور كهذا يستحق التحقيق، ولكن من المهم التفرقة بينهم وبين جديلة وجود لحظة النهاية نفسها، وبين خصائص نظرية لحظة النهاية الفيزيائية والمرفية. بالنسبة لهذه الجدلات، فإنها لا تفترض أكثر من أن نسيخ الحقيقة يتطابق مع أحسن نظرياتنا، وهو فرض يمكن تقويمه منفردًا.
وكتب النحاس ضد عدم الاعتماد على منظور إكباري دعوى استبدال البناء الرئيسي في الفصل الأول بمعارفه السابقة على المعرفة العلمية في العمارة الهندسية. لقد أصبحنا منفصلين عنه من خلال فجوة حضارية كبيرة حتى أنها تبدو صعبة هائلة للواقعين فيه أن يستكشفوا صورة عامة لحضاراتنا. ولكننا أيضًا نتعاطرًا معا تقريبًا بالمقارنة مع الهوة الكبيرة التي بيننا وبين اللحظة الباكرة المختلفة لما اعتبره تبر إعادة الحياة من الوقت. الآن، افترض أن البناء الرئيسي أو العلوي ذاك تحيل مشهدًا لمستقبل صناعة البناء. وبواسطة رمية من غير حرام أو من خلال تقنية سعيدة الحظ أسقطته بدقة متناهية على تقنية الأيام الحالية. إذن سيعرف آنا من بين أشياء أخرى، قادرون على إنشاء مبانٍ أوعز وأكثر تأثيرًا عن الكاتدرائيات الكبرى في عهده، يمكننا بناء كاتدرائية بارتفاع الميل إذا ما اختارنا ذلك. ويمكن أن نفعل ذلك بجزء صغير من ثرواتنا وفي وقت أقل وبدون بعض أقل، أكثر مما كان يحتاجه لبناء كاتدرائية متواضعة. وذلك سيكون راضيًا عن تنبؤه بأننا مع العام 2000 (وما بعده) سوف تكون هناك كاتدرائيات بارتفاع ميل، وسيكون مخطئًا وشدة لاعتقادنا أنهن نحو تقنية بناء مثل هذه الأبنية، ولكننا اختبرنا أنها تفعل. بالطبع لا يبدو هذا متشابهًا مع أن مثل هذه الأبنية لم يتم بناؤها. وحتى مع هذا نحن نفترض القريب من أن يكون معاصرًا لنا، ليكون محقًا بالنسبة لنا. سوف يكون مخطئًا تمامًا بشأن أفضلياتنا. سوف يكون مخطئًا بسبب أن بعض افتراضاته غير القابلة للتساؤل حول ما يحفز البشر سوف تكون مهجورة أو عبئية بعد قليل من القرون.

وبالمثل فرصة يبدو طبيعيًا بالنسبة لنا أن ذكاء لحظة النهاية لأسباب تاريخية أو تلك المتعلقة بعلوم الآثار أو الشفقة، أو الواجب الأخلاقي أو لمجرد النزوة أو الصراع، سوف تنشئ في النهاية محاكاة حقيقية تقريبية لنا، وأنه بعد انتهاء تجربتهم سوف يضمنون لنا أن وسيلة الكمبيوتر أثناء ضرره اليهودية سيظل لنا أن نعيش أبداً في الجنة (أنا نفسى سوف أفضل أن يسمح لي بالانضمام التدريجي لحضاراتهم) ولكننا...
لا تستطيع معرفة ما الذي سيريدونه، بالطبع ليس ثمة محاولة للتنبؤ بتقدم واسع المدى في شئون البشر (أو البشر الفائق) يمكن أن يقدم نتائج يعتمد عليها. كما قال بور موضحاً: مجري شئون البشرية في المستقبل يعتمد على مستقبل نمو المعرفة. ولا يمكننا التنبؤ بما في المعرفة المحددة التي سيتم إنشاؤها أو ابتكارها في المستقبل، لأننا لا نستطيع، فسوف يمكننا - بالتعريف - تحقيقها في الحاضر.

لست فقط المعرفة العلمية التي تخبر الناس عن أفضليةهم أو التي تحدد ما يخاطرون أن يتصرفوا على نحوه. هناك أيضًا، مثلًا، معايير أخلاقية يفهم فيها ما هو "صحيح" وما هو "خطأ" بالنسبة للأعمال الممكنة. مثل هذه القيم تميزت بصعوبة احترام النظرية العلمية إلى العالم لها. يبدو أنها شكلت بناءً تفسيرًا محلقاً لذاتها، منفصلًا عن العالم الفيزيائي. وكما أشار دافيد هيم (David Hume) أن "تستنبت يجب من تؤمن ومع ذلك نحن نستخدم هذه القيم (كلهما) لتفسير وشرح وتحديد تصرفاتنا الفيزيائية.

ضعف (الصلة) ذالك في المساواة الأخلاقية ليست له فائدة. ما دام يبدو أن من السهل فهم ما هو "مفيد" موضوعيًا وما هو "غير مفيد" أكثر من الفهم الموضوعي لما هو "صحيح" وما هو "خطأ" وكانت ثمة مجالات لتعريف "الأخلاقية" عبر مصطلحات مختلفة التشكيلات من "النقعة". هناك على سبيل المثال أخلاقيات ثورية التي أوضح أن أشكالًا جديدة للتصورات أو السلوكيات تفسّرها بمصطلحات أخلاقية مثل عدم فعل أو ارتكاب الانتقام أو عدم الغش عند التعاون مع الآخرين، والتي لها شبيه في سلوك (David Hume) (1711 - 1776) فيلسوف إسكتلندي، جاز شهارة ما بسبب فلسفة الشكية والتجريبية. ويفكره عن تعرض الفكر البشري للانطباعات التي لا يمكن - من وجهة نظره - إثبات حقيقتها كما كتب عدة مقالات عن الأخلاق، واشتهر بالتاريخ إنجلترا، وهو في الأساس يعبر تجريبيًا ممّا حيث أخذ من تجريبية نيوتن نموذجًا له وكذلك "المعرفة" كما قدمها الفيلسوف الإنجليزي دون لوك حيث لمعرفة وراء التجريب. (الترجمة)
الحيوانات. وثمة فرع في نظرية ثورية: "علم الاجتماع الحيوي" الذي تأسس من خلال فهم أن التفسيرات الخلقية بالنسبة للخوارزميات البشرية هي مجرد وسيلة تجصلي لفرض الوجاهة الاجتماعية، وأن الأخلاقية ليس لها أساس موضوعي بالمرة. وقولة "الأخلاقية" وخطة هي ببساطة بطاقات نووية ليست ما طبع فينا بالأرث ليحدثنا على التصرف في هذا الاتجاه دون ذاك الاتجاه. ووجه آخر لنفس التفسير يستبدل الجينات والمولعات (جمع ممة) يبدو أن المصلحات الأخلاقية هي مجرد واجهة تجصلي للأحوال أو الشروط الاجتماعية. مع ذلك ليس أي من هذه التفسيرات يناسب أو يتطابق مع الواقع من ناحية نحن لا نميل لتفسير سلوكيتنا الموروث – قل السلوكي الصرعي - من خلال خيار مصلحات أخلاقيات: لدينا فكرة عن التصرفات التطوعية (الإنراعية) وتلك غير التطوعية (غير الإنراعية) وحدها ذات الطابع الإرادي التطوعي هي التي لها تفسير أخلاقي. ومن الناحية الأخرى فمن الصعب التفكير في واحد من السلوكي البشري الموروث – تجنب الألم أو المزاسة الجنسية أو تناول الطعام أو أي ما كان - لا يتجاهل البشر احتمالية في ظل ظروف معينة الأسباب أخلاقيات: نفس الأمر حقيقي وحتى أكثر شيوعًا، بالنسبة للسلوك الشروطي الاجتماعي. بالطبع فإن تجاهل أو تجاوز السلوكي الشرطي الاجتماعي والسلوك الموروث هو نفسه يمثل سمة في السلوك البشري. ولذلك يتم تفسيره (مثل هذه التفسيرات) عبر مصلحات أخلاقيات. وليس هناك لأي من هذه التصرفات شبيه في الحيوانات، وليس من بينها ما يمكن تفسيره أخلاقيًا مما يمكن استنتاجه من مصلحات "الجينات" أو "الألات". هذا أنه على سبيل الخطأ عبر هذه المستوى من النظريات. هل يمكن أن يكون هناك جينات تتجاهل جينات أخرى عندما يشعر المرء أنه يريد ذلك؟ الشرط الاجتماعي هل هو الذي يشجع أو يقود للعصيان؟ ربما، ولكن هذا يُبيقي الشكلة على ما هي عليه بالنسبة لكيف نختار ما نفعله بدلاً من فعل آخر، وما الذي نعنيه عندما نفسر عصياناً بادعاء أننا ببساطة كنا على
حق وأن السلوك الموصوف بواسطة جيناتنا أو مجتمعاتنا في هذه الحالة هو تفسير
ببسيط شرير.

هذه النظريات الجينية يمكن النظر إليها كحالات خاصة من خدعة بارعة أوسع
بمعنى أن إنكار الحكم الأخلاقي له معنى، على أرضية أننا فعلنا لا نختار تصرفاتنا،
وأن الإرادة الحرة هي وهم لا مهرب منه مع الفيزياء. ولكن في الواقع، وكما رأينا في
الفصل 12 أن الإرادة الحرة يمكن تحميلها مع الفيزياء وتطابق طبيعيًا مع نسيج
الحقيقة التي وصفتها.

(5) كانت بمثابة محاولة بائسة لتصور تفسير أخلاقي مع
النظرة العلمية للعالم عبر ما هو "نافع". هنا تم تعريف ما هو "نافع" بـ "السعادة
البشرية". صنع الخيارات الأخلاقية تم تعريفه عن طريق حساب أي التصرفات التي
ستثمر أكثر إسهاما لذا بالنسبة لشخص واحد (وهنا تبدو النظرية أكثر غموضًا) أو
بالنسبة لأكبر عدد من الناس. أوجه مختلفة للنظرية استبدلت المتعة أو "الأفضلية محل
الأخلاق، لم تكن النفعية

"السعادة". وباعتبارها رفضًا لنظام السلطوية

الاستثناء من ذلك. وبمعنى أنها ببساطة تعلن رفض مثل هذه العقيدة، وتعمل على نظرية
التفضيل، فقد بقيت تكافح عقلانيا، وعلى أن كل شخص عقلاني هو "نافع". ولكن
كمحاولة لحل المشكلة التي لناشكتها هنا، والخاصة بشرح معنى الحكم الأخلاقي، كما
أن لها أيضًا مجرى خاطئ: نحن نختار ما نفضله. وبشكل أدق نحن نغير أفضلياتنا،

(6) النفعية

اتجاه فلسفي أخلاقي أخذ منحى المدرسة الفكرية ومن أبرز دعاه في القرن
John Steuart باعتجالهم كل من الفلاسفة جيرمي بنتام و Jeremy Bentham
وجون ستيوارت ميل Mill. وهي من بين النظريات الثنائية
Teleological، وهي تعني بدأ الفعل الذي يحكم على ما هو صح أو غلط من خلال الحكم على قيمة الحالة مثل قيمة حيوان الناس أي أن السعادة (المتعة) ليست فقط
الفعل الفاعل ولكن في كل من يثير fim الفعل، أي أنها تركز على من يثيرون بالفعل وليس فقط جوهر
الفعل أو الدوافع إليه. (المترجم)
وانعطى تفسيراً أخلاقياً ونحن نفعل ذلك. ومن ثم هذا التفسير لا يمكن نقله أو ترجمته إلى مصطلحات نفيعة. هل هناك أفضلية رئيسية محددة يمكنها أن تحفز تغيير أفضلية لنا؟ وإذا كان الأمر كذلك، فإنها لا يمكن تغييرها هي ذاتها وبالتالي سوف تنفسخ "التفسير" إلى النظرية الجينية الأخلاقية شرحاً.

وما هي الملاحظة بين القيم الأخلاقية وبين النظرية العلمية المميزة للعالم التي أعلنها عبر هذا الكتاب؟ على الأقل أستطيع مناقشة أنه لا يوجد عائق أساسي من تشكيل هذه العلاقة. المشكله مع كل النظريات العلمية السابقة للعالم لها بناء تفسيري هرمي أو تراتبي كما لو كان مستحيلًا مع مثل هذا البناء التكوين أو الحكم بأن النظريات العلمية صادقة، وهذا لا يستطيع المرء أن يحكم على مجري تصرف على أنه صحيح (بسبب كيف يمكن للمرء إذن أن يحكم على البناء ككل على أنه صحيح).

وكما قلت كل من الخيوط الأربعة له بناء هيراركي أو هرمي أو تراتبي. ولكن نسيج الحقائق ككل ليس كذلك. وهذا فإن تفسير القيم الأخلاقية كشيء تهم في العمليات الفيزيائية لا يحتاج إلى استنتاج من أي شيء آخر، حتى من حيث البداية. تمامًا مثل الكينونات الرياضية المجردة، سوف تكون السؤال ما سوف تساهم به في التفسير - سواء كانت الحقائق الفيزيائية يمكن أو لا يمكن فهمها دون مساهمة الحقيقة مع هذه القيم.

وإذا أشار إلى أن "الนานثيا" مبناة القياسية أو المعياري هو واحد من السبل في مختلف الخيوط التي يمكن بها جعله على اتصال. وحتى الآن كنت أعتبر حقيقة ما يمكن تسميتها "ابتائه تنبيه" على سبيل المثال نحن نعتقد أن تنبيهات نظرية التطور تتبع منطقية قوانين الفيزياء حتى لو أثبتنا أن "العلامة" يمكن أن تكون قابلة للتطبيق الحوسي. ولكن التفسيرات في نظرية التطور لا يعتقد في أنها تتبع أو تتبع من قوانين الفيزياء على الإطلاق. ومع ذلك فليس أي بناء تفسيري تتابعي يسمح بإمكانية النظرية التفسيري. افترض جدلاً أن حكماً أخلاقياً يمكن تفسيره على أنه
حيح بمعنى نفعي ضيق. مثل: 'أنا أريد ذاك، إنه لياض أحدها. وعلى ذلك فهو صحيح'. الآن هذا الحكم يمكن أن يكون في يوم ما محل تساؤل. ربما أتساءل 'هل على أن أرغب في ذلك؟ أو 'هل أنا قولاً محق في أنه لياض أحدها؟' فإذا كانت المسألة من أحكم بأنه غير ضار له، فهي نفسها تعتمد على فرضية أخلاقية. جلسيه هادئاً على مقعد في منزله ربما يؤدي من ربما يستفيدون من خروجها لمساعدتهم في هذه اللحظة، وتؤذي أي عدد من اللصوص الذي يرغبون في سرقة المقد المقد أو أنتي ذهبت إلى مكان آخر لفترة قصيرة، وهم جراً. لحل هذه المسألة أضيف أو أورد مزيد من النظريات الأخلاقية والتي تتضمن تفسيرات جديدة لوضعية الأخلاقي. عندما يكون مثل هذا التفسير مرضيًا. سوف استخدمه بطريقة مؤقتة لتقرير ما هو الصحيح وما هو الخاطئ. ولكن التفسير ولو أنه مرضي بشكل مؤكد، لا يبرز على مستوى نفعي.

ولكن افترض الآن أن أحدهم شكل نظرية عامة عن مثل هذه التفسيرات ذاتها. افترض أنهم اتجهوا مفهومًا له مستوى عالي. مثل تفوق الإنسان. وحسن ماذا تكون مقدمة هذا المفهوم. ستكون أنه بالنسبة لمستوى معين للمشاكل الأخلاقية مثل الذي وصفته حالًا. من شأنها دومًا أن تولد تفسيرات جديدة تقوم بحل الإشكال بالمعنى النفعي. وافترض أكثر. أن هذه النظرية عن التفسير هي ذاتها نظرية مفسرة. إنها تفسر، بصيغات خارقة، مما يكون من الأفضل تحليل المشاكل عبر مصطلحات "حقوق الإنسان" (بالمعنى المفهوم). على سبيل المثال ربما تشرح على أرضيه نظرية المعرفة. مما يجبر أن احترام "حقوق الإنسان" من شأنه أن يسوق أو يشجع على نمو المعرفة، الذي هو نفسه يعتبر شرطاً مسبقًا لحل المشاكل الأخلاقية.

إذا بدأ التفسير جيدًا، فسوف تكون مثل هذه النظرية جيدة بالتالي. والأكثر من ذلك أنه طالما أن الحسابات النفعية تستحيل قابليتها للتطبيق، بينما تحليل الوقوف بمصطلحات حقوق الإنسان من المقبول عادة، فربما يصبح الأبد استخدم تحليل
حقوق الإنسان كأهمية عن أي نظرية محددة عن تطبيقات السعادة التي تتنتم عن تصرف معين. إذا كان كل هذا صحيحً فإنه يمكن أن يصبح مفهوم حقوق الإنسان غير قابل للتعبير عنه، حتى من حيث المبدأ، بمصطلحات السعادة - إنه ليس مفهومًا نفعيًا على الإطلاق - يمكن أن نسمي مفهومًا أخلاقيًا. العلاقة بين الاثنين تتم عبر التفسير الانتقائي وليس التنبؤ الانتقائي.

أما لست أعلم على وجه التخصص هذا الاقتراح المميز، أنا مجرد أثير الطريق التي يمكن من خلالها أن تتواجد القيم الأخلاقية على نحو شخصي بأن تلعب دورًا في التفسير الانتقائي. إذا كان هذا الاقتراح صالحًا فإنه سوف يفسر كيف أن الأخلاق تمثل نوعًا من "الانتباه المنفي".

وبطريقة مماثلة "القيمة الفنية والمبادئ الجمالية الأخرى دائمًا ما يصعب تفسيرها بمصطلحات موضوعية. إنها عادة ما تفسر أيضًا كسمات حركية أو إجبارية للحضارة، أو كأفضلية مروبة. ومرة ثانية قد رأيت أنها ليست كذلك بالضرورة. تمامًا كما تم وصل "الأخلاقية بالتفع، كذلك القيم الفنية تحوز تصميمًا لنظام مفاهيمي أقل إثارة في التعريف ولكن أكثر قوة. مرة ثانية فإن قيمة السمة المصممة تكون مفهومة فقط على أساس ما هو الغرض المعنوي للشيء المصمم. ولكننا قد نجد من الممكن تحسين التصميمات بمعايير جمالية جدي لمعيار التصميم. مثل هذا المعيار الجمالي قد يكون عن غير الممكن قابلته للحساب من خلال معيار التصميم، واحدًا من منافعه قد تكون تحسين معايير التصميم ذاتها. مرة أخرى تصبح العلاقة واحدة من التفسيرات الانتقائية، والقيمة الجمالية أو الجمال يصبحان نوعين من انتباق التصميم.

الثقة الزائدة لدى تبر في التنبؤ بما سيحفز الناس القريبين من نقطة النهاية تسبب له في أن يبخس قيمة تطبيق هام لنظرية لحظة النهاية المتمثل في دور الذكاء في التعددية. لأن الذكاء لن يكون هناك فقط للسيطرة على الأحداث الفيزيائية على
المستوى الواسع، إنه هناك لاختيار ما الذي سيحدث. نهایات الكون ستكون كما قال بوير لنا، للاختيار منها. بالطبع، وعلى مدى امتداد كبير فإن محتوى الأفكار في الذكاء المستقبلي تتنقض ما الذي سيحدث، لأن في النهاية سيكون كل الفضاء وكل محتواه عبارة عن كمبيوتر. الكون في النهاية سيكون مشتملاً، حرفياً، على عمليات فكرية ذكية، وفي مكان ما في اتجاه النهاية البعيدة لهذه المادة الفكرية ستكون هناك، ربما، كل المعرفة الفيزيائية الممكنة، معبرًا عنها بنتائج مذكورة.

الأخلاقيات والجماليات كتفسير مُرُوٍ في ستكون أيضًا ممثلة بنتائج مذكورة كمخرجات لمله هذا التفكير المتزامن. بالطبع سواء كانت شتة نقطة نهاية أو لم تكن، فلما توجد المعرفة في متعدد الأكوان (التعقيد عبر عدد من الأكوان) فلا بد أن شتة أثار فيزيائية للأخلاقية والجمالية كسبب يحدد أي نوع من المشاكل ستقوم بحله خاصية المعرفة المبتكرة هناك. قبل أن تكون أي قطعة معرفة حقيقية مشابهة من خلال عصف من الأكوان. الأحكام الجمالية الأخلاقية لا بد بالفعل أن تكون مشابهة عبر تلك الأكوان وتستتبع ذلك أن مثل هذه الأحكام تشتمل أيضًا على معرفة موضوعية بالمعنى الفيزيائي والتعديدية. وهذا يقود لنا استخدام مصطلحات نظرية المعرفة مثل "مشكلة وحل وتسبب والعرفة في مجال الأخلاقيات والجماليات. وهكذا إذا كانت على العموم متناسخة أو متضمنة مع النظرية للعالم المغلق في هذا الكتاب، فإن "الجمال والصحة" لا بد أن يكون موضوعين كالحقيقة العلمية والرياضياتية. ولا بد أن keats (كِيتس) يبتكر بطرق مشابهة من خلال الحواس وال النقد العقلي. ول└هذا كان كيتسيس على حق حين قال: إن الجمال هو الحقيقة والحقيقية هي الجمال، إنها ليست نفس الشيء ولكنها من هذا النوع من الأشياء، ويتم إبداعهما بنفس الطريقة، وما يتصالح
بما يتعذر فصله (ولكنه كان مخطئًا عندما واصل قوله) "هذا هو كل ما تعرفونه على الأرض، وهو كل ما تحتاجون إلى معرفته)."

من قلب هذا الحماس (بالمعنى الأصلي للكلمة)، أهمل تبلج جزء من الدرس البوييري عن ماذا سيكون عليه شكل نمو المعرفة. إذا كانت نقطة النهاية موجودة وإذا كانت على النحو الذي قدمه تبلج، فإن الكون المتاخر لا بد بالطبع سيشمل على أفكار كائنة معه لحكمة غير قابلة للادراك، وإبداعية وأرقام مطلقة. ولكن التفكير هو حل المشاكل، وحل المشاكل يعني حدوس غالية، أخطاء، نقد، رفض، مراجعة. وأعتبر أنه في الحدود (التي لم يخربها أحد) في لحظة انتهاء الكون كل شيء يمكن إدراكه سيكون مفهوما ولكن في أي حكمة أخيرة أو نهائية فإن المعرفة لدى نسنا سوف تعمها الأخطاء. معرفتهم ستكون أعظم وأعمق، وأعرض عما يمكن أن نتخيله ولكنهم سيصبحون في نفس الوقت أخطاء على مستوى هائل أيضًا.

مثلنا لن يعرفوا أبدًا اليقين أو الأمن الفيزيائي لبقائهم، ومتنا سوف يعتمدون على إبداعاتهم وتيارهم المستمر من المعرفة الجديدة. ولو فشلوا ولو مرة واحدة في توسيع أو تزايد سرعة الحوسبة وقدرة الذاكرة خلال الفترة المتاحة لهم، والسابق تحديده بعلاقة قانون فيزيائي متصلب ومتعذر تطبيقه، سوف تضيق السماء فوقهم وسيموتون. سوف تكون حضارتهم سلمية وخيرية إلى ما هو أبعد من أشرس أحلامنا، ومع ذلك لن تكون هادئة. سوف تقع على حل عدد هائل من المشاكل ودمرت عبر جدليات سريعة الفضي، وللذين البيلو أنها لا تشبه أنه من الفهي النظر إليها على أنها "شخص". وإنما على أنها عدد واسع من الناس يتفاعلون مع عدد مستويات عديدة وطرق عديدة مختلفة ولكن بدون اتفاق بين الأطراف. وسوف لن يحدثوا بصوت واحد باكثر مما يحدث العلماء الآن في نذوة بحثية بصوت واحد، وحتى عندما يتفقون بالصدفة، سوف يخطئون عادةً، وسوف تظل أخطاهم غير مصححة لمد طويلة على نحو اعتباطي (موضوعيًا). ولن تكون حضارتهم متجانسة أخلاقيًا لنفس السبب. لن
يكون هناك شيء مقدس (بالتأكيد هذا اختلاف آخر عن الدين التقليدي أو الاصطلاح)، وسوف يتبادل الناس باستمرار عن افتراضات اعتبارها أساس أخرى على أنها من قبيل الحقائق الأخلاقية الأساسية. بالطبع لكي تكون الأخلاق حقيقية يجب أن تكون مدركة بوسائل التعقيبة وبالتالي ستتحل كل مسألة تقليدية فيها. ولكن سيحل محلها مزيد من التقليديات الأكثر إثارة وأساسية. مثل هذا التنافض وألوانه مجموعة متقندة من المجتمعات المتشابكة أو المتداخلة حتى الموافقة يختلف تماما عن فكرة الرب السائر في معظم المتدينين. ولكنه بدأ ثانويا لديها، وهو الذي سيعيدنا من الموت لو كان تبرًا محقة.

من منظور كل الأفكار التوحيدية التي تناولتها مثل الحوسبة الكمية، نظرية المعفة التقدمية، ومفاهيم التعددية في المعفة، الإدراك الحرة والزمن، كان واضحًا لي أن اتجاهنا الحالي في فهما الشامل للحقيقة هو بالضبط كما كنت آمل أن يكون عليه وأنه بعد طول لم أزل، وأصبحت معرفتنا أعرضا وأعمق معا كما أوضحت في الفصل الأول، العمق ينتصر. ولكنني أدعوك ما هو أكثر من ذلك في هذا الكتاب. لقد أعلنت نظرة مميزة موحدة للعالم تقوم على الخيوط الأربعة: التعددية في فيزياء الكم، ونظرية المعفة عند بوير، ونظرية داروين/ دوكنج عن التطور، والوجه القوى لمبدأ تورنجر عن الحوسبة العالمية. ويبدو لي أنه عن الحالة السائدة لمعترفنا العلمي، هذه هي النظرية الطبيعية التي يجب أن نتمسك بها إنها النظرية المحافظة وهي التي لا تفترض تغيّرا مروحا في أي من أحسن تفسيراتها الأساسية. ومن ثم يجب أن تكون هي النظرية الغالية، وهي التي تتضاد مع ابتداع مفترض لتقويمها. تلك هي القاعدة التي أدعو إليها ولست أملًا في إنشاء أثرًا كيميائي جديدًا بعيدًا عنها. وكما قلت اعتقد أنه حان الوقت للتحرك لإمام، ولكننا يمكننا التحرك إلى نظريات أفضل فقط لو أخذنا أحسن نظرياتنا القائمة بجدية، كتفسيرات للعالم من حولنا.
المؤلف في سطور:

David Eliesser Deutsch

- من مواليد عام 1953 بمدينة حيفا، ويعمل باحثًا في الفيزياء بجامعة أوكسفورد ومحاضرًا زائراً (بدوام مؤقت) بوكالة فيزياء اللازير والذرية بمركز الحوسبة الكمية بعمل كلارنيدون.

- من الرواد في مجال الكمبيوترات الكمية باعتباره أول من صاغ نظريات من الحساب يختص تحديداً بالحوسبة الكمية، كما أنه من مشاهير نظرية تعدد العوالم التي تعد رافداً من روافد نظرية الكم، وباعتبارها تعريفًا ممكنًا فيزيائيًا للحقائق المتصلة بفهم العالم (أو العوالم) والبشر كذلك.

- من مناصري "التحرر" (بصفة خاصة حرية الإرادة في الفكر والعمل)، فضلًا عن أنه ينتمي للأدرينين (من يرون أن وجود الله وطبيعته وأصل الكون من الأمور التي لا سبيل إلى معرفتها).

Dirac Prize

الترجم في سطور:

منير حسين عبد الله شريف

- من مواليد 1939 بالمنصورة - محافظة الدقهلية.
- وأيضًا على ليسانس الآداب قسم الفلسفة من جامعة القاهرة في مايو 1973 (بتقدير عام جيد جداً).
- ودبلوم المعهد العالي للنقد الفني بأكاديمية الفنون صيف 1985 (بتقدير عام امتياز).
- له عدة ترجمات تحت الطبع بالمركز القومي للترجمة وهي "الاقتراب من الله"، "وكيف تبنى آلة زمن" و"أصل الحياة"، وثلاثتهم للدكتور بول دايفز.

505
المراجع في سطور:
عادل أبو المجد

المؤهلات العلمية:
- دبلوم في الفيزياء النظرية النووية من جامعة موسكو (روسيا) 1963م.
- دكتوراه الفلسفة Ph.D في الفيزياء الرياضية من جامعة خاركوف (أوكرانيا) 1996م.
- دكتوراه العلوم DSc في الفيزياء النظرية من جامعة القاهرة 1979م.

الوظائف:
- تدرج في الوظائف من معيد إلى أستاذ مروراً بجامعة القاهرة وجامعة الملك عبد العزيز بالسعودية وأستاذًا زائرًا بمعهد ماسك بلانك للفيزياء النووية بجامعة برلين في ألمانيا، ثم جامعة ويسكونسن بالولايات المتحدة الأمريكية.
- ثم جامعة الإمارات العربية المتحدة أستاذًا بقسم الرياضيات.
- واستمر كأستاذ متفرغ بقسم الرياضيات بكلية العلوم جامعة الزقازيق، وبعدها
- حتى الآن كأستاذ غير متفرغ للفيزياء بكلية الهندسة جامعة سيناء.

عضوية الجمعيات العلمية:
- عضو مشارك بالمركز الدولي للفيزياء النظرية في تريستا بإيطاليا منذ 1966م.
- زميل جمعية ألكسندر فون هومبولدت في بون ألمانيا منذ 1974م.

506
عضو اللجنة الاستشارية بالمعهد الدولي للفيزياء النظرية والتطبيقية في "أيوا" بالولايات الأمريكية منذ 1995م.

الجوائز والأوسمة:

- وسام العلم الفنون من الطبقة الأولى عام 1971م.
- وسام الاستحقاق من الطبقة الثانية عام 1979م.
- حصل مؤخراً على جائزة الدولة للفوق العلمي عن عام 2008م.
التصحيح اللغوي: أحمد الشقيري
الإشراف الفني: حسن كامل