VEHICLE SAFETY COMPLIANCE TESTING
FOR
FMVSS 208, OCCUPANT CRASH PROTECTION
FMVSS 212, WINDSHIELD MOUNTING
FMVSS 219, WINDSHIELD INTRUSION (PARTIAL)
FMVSS 301, FUEL SYSTEM INTEGRITY
FMVSS 305, ELECTROLYTE SPILLAGE & ELECTRICAL SHOCK PROTECTION

FORD MOTOR CO.
2009 FORD ESCAPE HYBRID MPV
NHTSA NO.: C90200

PREPARED BY:
MGA RESEARCH CORPORATION
5000 WARREN ROAD
BURLINGTON, WI 53105

TEST DATES: DECEMBER 30, 2008 – FEBRUARY 2, 2009

FINAL REPORT DATE: OCTOBER 27, 2010

PREPARED FOR:
U.S. DEPARTMENT OF TRANSPORTATION
NATIONAL HIGHWAY TRAFFIC SAFETY ADMINISTRATION
OFFICE OF ENFORCEMENT
OFFICE OF VEHICLE SAFETY COMPLIANCE
1200 NEW JERSEY AVENUE, S.E., NVS-220
WASHINGTON, D.C. 20590
This final test report was prepared for the U.S. Department of Transportation, National Highway Traffic Safety Administration, in response to Contract Number DTNH22-08-D-00086.

This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author(s) and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. If trade or manufacturers’ names or products are mentioned it is only because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers.

Prepared by: _____________________________ Date: October 27, 2010
Jeff Lewandowski, Project Engineer

Reviewed by: _____________________________ Date: October 27, 2010
David Winkelbauer, Facility Director

FINAL REPORT ACCEPTED BY OVSC:

Accepted By: _____________________________

Acceptance Date: ___________
Abstract
Compliance tests were conducted on the subject 2009 Ford Escape Hybrid in accordance with the specifications of the Office of Vehicle Safety Compliance Test Procedure No. TP208-14 for the determination of FMVSS 208 and 305 compliance. Test failures identified were as follows:

TEST FAILURES:
None

Key Words
- Frontal Impact
- 40 kmph Vehicle Safety Compliance Testing
- FMVSS 208, “Occupant Crash Protection”
- FMVSS 212, “Windshield Mounting”
- FMVSS 219, (partial), “Windshield Zone Intrusion”
- FMVSS 301, “Fuel System Integrity”
- FMVSS 305, “Electrolyte Spillage and Electrical Shock Protection”

Distribution Statement
Copies of this report are available from the following:
- U.S. Department of Transportation
 National Highway Traffic Safety Administration
 Technical Information Services (TIS), NPO-411
 1200 New Jersey Avenue, S.E. (Room E12-100)
 Washington, DC 20590
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Purpose of Compliance Tests</td>
</tr>
<tr>
<td>2</td>
<td>Tests Performed</td>
</tr>
<tr>
<td>3</td>
<td>Injury Result Summary</td>
</tr>
<tr>
<td>4</td>
<td>Discussion of Test (if applicable)</td>
</tr>
<tr>
<td>5</td>
<td>Test Data Sheets</td>
</tr>
</tbody>
</table>

Data Sheet

<table>
<thead>
<tr>
<th>Data Sheet</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COTR Vehicle Work Order</td>
</tr>
<tr>
<td>2</td>
<td>Report of Vehicle Condition</td>
</tr>
<tr>
<td>3</td>
<td>Certification Label and Tire Placard Information</td>
</tr>
<tr>
<td>4</td>
<td>Rear Seating Position Seat Belts</td>
</tr>
<tr>
<td>5</td>
<td>Air Bag Labels</td>
</tr>
<tr>
<td>6</td>
<td>FMVSS 208 Readiness Indicator</td>
</tr>
<tr>
<td>7</td>
<td>Passenger Air Bag Manual Cut-Off Device</td>
</tr>
<tr>
<td>8</td>
<td>Lap Belt Lockability</td>
</tr>
<tr>
<td>9</td>
<td>FMVSS Seat Belt Warning System Check</td>
</tr>
<tr>
<td>10</td>
<td>Belt Contact Force</td>
</tr>
<tr>
<td>11</td>
<td>Latch Plate Access</td>
</tr>
<tr>
<td>12</td>
<td>Seat Belt Retraction</td>
</tr>
<tr>
<td>13</td>
<td>Seat Belt Guides and Hardware</td>
</tr>
<tr>
<td>15</td>
<td>H-Point Determination for 50th Percentile Male Dummy</td>
</tr>
<tr>
<td>16</td>
<td>Air Bag Suppression Telltale</td>
</tr>
<tr>
<td>17</td>
<td>Suppression Test Using 12-Month CRABI Dummy</td>
</tr>
<tr>
<td>18</td>
<td>Suppression Test Using Newborn Infant Dummy</td>
</tr>
<tr>
<td>19</td>
<td>Suppression Test Using 3-YO Dummy and Booster Seats</td>
</tr>
<tr>
<td>20</td>
<td>Suppression Test Using 3-YO Dummy and Fwd Facing Restraints</td>
</tr>
<tr>
<td>21</td>
<td>Suppression Test Using an Unbelted 3-YO Dummy</td>
</tr>
<tr>
<td>22</td>
<td>Suppression Test Using 6-YO Dummy and Booster Seats</td>
</tr>
<tr>
<td>23</td>
<td>Suppression Test Using an Unbelted 6-YO Dummy</td>
</tr>
<tr>
<td>29</td>
<td>Summary of Low Risk Deployment Using an Unbelted 5th% Dummy Position 1</td>
</tr>
<tr>
<td>30</td>
<td>Summary of Low Risk Deployment Using an Unbelted 5th% Dummy Position 2</td>
</tr>
<tr>
<td>32</td>
<td>Vehicle Weight, Fuel Tank, and Attitude Data</td>
</tr>
<tr>
<td>33</td>
<td>Vehicle Accelerometer Locations and Measurements</td>
</tr>
<tr>
<td>34</td>
<td>Photographic Targets</td>
</tr>
<tr>
<td>Data Sheet</td>
<td>Page No</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>35 Camera Locations</td>
<td>108</td>
</tr>
<tr>
<td>36 Dummy Positioning</td>
<td>110</td>
</tr>
<tr>
<td>37 Dummy Measurements</td>
<td>117</td>
</tr>
<tr>
<td>38 Crash Test</td>
<td>120</td>
</tr>
<tr>
<td>40 Accident Investigation Measurements</td>
<td>121</td>
</tr>
<tr>
<td>41 Windshield Mounting (FMVSS 212)</td>
<td>123</td>
</tr>
<tr>
<td>42 Windshield Zone Intrusion (FMVSS 219)</td>
<td>125</td>
</tr>
<tr>
<td>43 Fuel System Integrity (FMVSS 301)</td>
<td>127</td>
</tr>
<tr>
<td>1-5 Electrolyte Spillage and Electrical Shock Protection (FMVSS 305)</td>
<td>129</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Crash Test Data</td>
<td>A-1</td>
</tr>
<tr>
<td>B Low Risk Test Data</td>
<td>B-1</td>
</tr>
<tr>
<td>C Crash Test Photographs</td>
<td>C-1</td>
</tr>
<tr>
<td>D Low Risk Photographs</td>
<td>D-1</td>
</tr>
<tr>
<td>E Suppression Photographs</td>
<td>E-1</td>
</tr>
<tr>
<td>F Instrumentation Calibration</td>
<td>F-1</td>
</tr>
<tr>
<td>G Notice of Test Failure (If Applicable)</td>
<td>G-1</td>
</tr>
</tbody>
</table>
SECTION 1
PURPOSE OF COMPLIANCE TESTS

This Federal Motor Vehicle Safety Standard 208 compliance test is part of a program conducted for the National Highway Traffic Safety Administration (NHTSA) by MGA Research Corporation (MGA) under Contract No. DTNH22-08-D-00086. The purpose of this test was to determine whether the subject vehicle, a 2009 Ford Escape Hybrid, NHTSA No. C90200, meets certain performance requirements of FMVSS 208, "Occupant Crash Protection"; FMVSS 212, "Windshield Mounting"; FMVSS 219, "Windshield Zone Intrusion"; FMVSS 301, "Fuel System Integrity" and FMVSS 305, “Electric Powered Vehicles: Electrolyte Spillage and Electrical Shock Protection”. The compliance test was conducted in accordance with OVSC Laboratory Test Procedure No. TP208-14 dated April 16, 2008 and TP305-01 dated September 11, 2008.
SECTION 2
TESTS PERFORMED

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Dates: 12/30/08 - 2/02/09

The following checked items indicate the tests that were performed:

- 1. Rear seating position seat belts
- 2. Air bag labels (S4.5.1)
- 3. Readiness indicator (S4.5.2)
- 4. Passenger air bag manual cut-off device (S4.5.4)
- 5. Lap belt lockability (S7.1.1.5)
- 6. Seat belt warning system (S7.3)
- 7. Seat belt contact force (S7.4.4)
- 8. Seat belt latch plate access (S7.4.4)
- 9. Seat belt retraction (S7.4.5)
- 10. Seat belt guides and hardware (S7.4.6)
- 11. Air bag suppression telltale (S19.2.2)
- 12. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R)
- 13. Suppression tests with newborn infant (Part 572, Subpart K)
- 14. Suppression tests with 3-year-old dummy (Part 572, Subpart P)
- 15. Suppression tests with 6-year-old dummy (Part 572, Subpart N)
- 16. Test of reactivation of the passenger air bag system with an unbelted 5th percentile female dummy
- 17. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R)
- 18. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P)
- 19. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N)
- 20. Low risk deployment test with 5th female dummy (Part 572, Subpart O)
- 21. Impact Tests

- Frontal Oblique
 - Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a) (1) or S5.1.2(b))

- Frontal 0°
 - Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
 - Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a))
 - Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a))
 - Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.(b)(2))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Unbelted 50th male dummy passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
 - Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b))
 - Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))
 - 40% Offset 0° Belted 5th female dummy driver and passenger (0 to 40 kmph) (S18.1)
For the crash tests, the vehicle was instrumented with 14 accelerometers and 6 current sensors. The data from the vehicle and dummies were sampled at 10,000 samples per second and processed as specified in SAE J211/1 MAR95 and FMVSS 208, S4.13.

The dynamic tests were recorded using high-speed digital video.

The vehicle appears to meet all of the performance requirements to which it was tested.
SECTION 3
INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2009 Ford Escape Hybrid
NHTSA No.: C90200
Test Program: FMVSS 208 Compliance
Test Date: 1/15/09

5th Percentile Female Low Risk Deployments

5th Percentile Female SN 126 Position 1 (Chin On Module) 1/15/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>3</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>41.9</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>7.9</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>273.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>684</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>61</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>6</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>3</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>43</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>43</td>
</tr>
</tbody>
</table>

Second stage fire time of 150 ms; Injuries calculated on 0 ms to 275 ms

5th Percentile Female SN 126 Position 2 (Chin On Rim) 1/15/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>5</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>40.3</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>76.1</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>16.9</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>76.8</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>588</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>120</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>14</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>9</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>40</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>14</td>
</tr>
</tbody>
</table>

Second stage fire time of 150 ms; Injuries calculated on 0 ms to 275 ms
SECTION 3
INJURY RESULT SUMMARY FOR FMVSS 208 TESTS

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 2/02/09

40 kmph Frontal Crash

Impact Angle: Zero degrees

Belted Dummies: ___ Yes _X_ No
Speed Range: ___ 0 to 40 kmph _X_ 32 to 40 kmph
 ___ 0 to 48 kmph ___ 0 to 56 kmph
Test Speed: 39.9 kmph Test Weight: 1930.9 kg

Driver Dummy: ___ 5th female _X_ 50th male
Passenger Dummy: ___ 5th female _X_ 50th male

50th Percentile Male Frontal Crash Test

Vehicles certified to S5.1.1(b)(1), S5.1.1(b)(2), S5.1.2(a)(2), or S5.1.2(b)

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>85</td>
<td>163</td>
</tr>
<tr>
<td>Nle</td>
<td>1.0</td>
<td>0.5</td>
<td>0.1</td>
</tr>
<tr>
<td>Nlt</td>
<td>1.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Nce</td>
<td>1.0</td>
<td>0.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Ncf</td>
<td>1.0</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>4170 N</td>
<td>2242</td>
<td>603</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>4000 N</td>
<td>168</td>
<td>777</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>41</td>
<td>30</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>63 mm</td>
<td>19</td>
<td>9</td>
</tr>
<tr>
<td>Left Femur</td>
<td>10,000 N</td>
<td>7246</td>
<td>5247</td>
</tr>
<tr>
<td>Right Femur</td>
<td>10,000 N</td>
<td>6882</td>
<td>5987</td>
</tr>
</tbody>
</table>

Injury measures calculated for data collected from 0 ms to 300 ms.
A blanket and visor were not used in the suppression testing because they did not affect the sensing system used on the vehicle.

There was no valid data after 100 msec on the Instrument Panel (X) accelerometer during the frontal impact crash test.

The 2009 Ford Escape (C90200) Electronic Data Recorder (EDR) was monitored via twelve channels during the FMVSS 208 frontal impact. These included two tri-axial accelerometer packs. One was located on top of the EDR module and one on the vehicle structure near the EDR module. In addition six inductive sensors were on EDR channels. They were located as follows: one on each of the two stages of the driver frontal airbag; one on each of the two stages of the passenger frontal airbag; one on the driver belt pretensioner; and one on the passenger belt pretensioner.

The 2009 Ford Escape (C90200) was tested to FMVSS 305 in conjunction with the FMVSS 208 frontal impact. The test was performed in accordance with the specifications of the Office of Vehicle Safety Compliance (OVSC) Test Procedures TP-305-00 to determine compliance to the requirements of Federal Motor Vehicle Safety Standards (FMVSS) 305, “Electric Powered Vehicles: Electrolyte Spillage and Electrical Shock Protection”. This program is sponsored by the National Highway Traffic Safety Administration (NHTSA), under Contract No. DTNH22-06-C-00030.

Based on the test results, the 2009 Ford Escape Hybrid appears to meet the requirements of FMVSS 305 testing.
<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2009 Ford Escape Hybrid</th>
<th>NHTSA No.:</th>
<th>C90200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Dates:</td>
<td>12/30/08 - 2/02/09</td>
</tr>
</tbody>
</table>
DATA SHEET 1
COTR VEHICLE WORK ORDER

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
NHTSA No.: C90200
Test Dates: 12/30/08 - 2/02/09

COTR Signature: Brian Smith

Test to be performed for this vehicle are checked below:

1. Rear Seating Position Seat Belts
2. Air Bag Labels (S4.5.1)
3. Readiness Indicator (S4.5.2)
4. Passenger Air Bag Manual Cut-off Device (S4.5.4)
5. Lap Belt Lockability (S7.1.1.5)
6. Seat Belt Warning System (S7.3)
7. Seat Belt Contact Force (S7.4.3)
8. Seat Belt Latch Plate Access (S7.4.4)
9. Seat Belt Retraction (S7.4.5)
10. Seat Belt Guides and Hardware (S7.4.6)
11. Air bag suppression telltale (S19.2.2)
12. Suppression tests with 12-month-old CRABI dummy (Part 572, Subpart R) using the following indicated child restraints (mid-height seat position):
 - Section B – Rear Facing (unbelted and belted rear facing, unbelted forward facing)
 - Britax Handle with Care 191
 - Century Assura 4553
 - Century Smart Fit 4543
 - Cosco Arriva 02727
 - Cosco Opus 35 02603
 - Evenflo Discovery Adjust Right 212
 - Evenflo First Choice 204
 - Graco Infant 8457
 - Section C – Convertible (unbelted and belted rear facing, unbelted and belted forward facing)
 - Britax Roundabout 161
 - Century Encore 4612
 - Century STE 1000 4416
 - Cosco Olympian 02803
 - Cosco Touriva 02519
 - Evenflo Horizon V 425
 - Evenflo Medallion 254
13. Suppression tests with newborn infant (Part 572, Subpart K) using the following indicated child restraints (mid-height seat position).
 - Section A – Car Bed (Belted)
 - Cosco Dream Ride 02-719
14. Suppression tests with 3-year-old dummy (Part 572, Subpart P) using the following indicated child restraints where a child restraint is required (mid-height seat position):
Section C – Convertible (Belted forward-facing)

<table>
<thead>
<tr>
<th>Model</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roundabout 161</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Encore 4612</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Touriva 02519</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Medallion 254</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

Section D – Toddler/Belt Positioning Booster (Belted)

<table>
<thead>
<tr>
<th>Model</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roadster 9004</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco High Back Booster 02-442</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

15. Suppression tests with representative 3-year-old child using the following indicated child restraints where a child restraint is required (mid-height position). (Appendix H, Data Sheet 19H and 20H)

Section C – Convertible (Belted forward-facing)

<table>
<thead>
<tr>
<th>Model</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roundabout 161</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Encore 4612</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century STE 1000 4416</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Olympian 02803</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco Touriva 02519</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Horizon V 425</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Medallion 254</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

Section D – Toddler/Belt Positioning Booster (Belted)

<table>
<thead>
<tr>
<th>Model</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britax Roadster 9004</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Century Next Step 4920</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Cosco High Back Booster 02-442</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Evenflo Right Fit 245</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>

16. Suppression tests with 3-year-old dummy (Part 572, Subpart P) in the following positions (mid-height seat position):

<table>
<thead>
<tr>
<th>Position</th>
<th>Position</th>
<th>Position</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitting on seat with back against seat back (S22.2.2.1)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Sitting on seat with back against reclined seat back (S22.2.2.2)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Sitting on seat with back not against seat back (S22.2.2.3)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Standing on seat, facing forward (S22.2.2.5)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Kneeling on seat facing forward (S22.2.2.6)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Kneeling on seat facing rearward (S22.2.2.7)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
<tr>
<td>Lying on seat (S22.2.2.8)</td>
<td>Full Rearward</td>
<td>Mid Position</td>
<td>Full Forward</td>
</tr>
</tbody>
</table>
17. Suppression tests with representative 3-year-old child in the following positions (mid-height seat position):

- Sitting on seat with back against seat back (S22.2.2.1)
 - Full Rearward
 - Full Forward
- Sitting on seat with back against reclined seat back (S22.2.2.2)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat with back not against seat back (S22.2.2.3)
 - Full Rearward
 - Mid Position
 - Full Forward
- Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
 - Full Rearward
 - Mid Position
 - Full Forward
- Standing on seat, facing forward (S22.2.2.5)
 - Full Rearward
 - Mid Position
 - Full Forward
- Kneeling on seat facing forward (S22.2.2.6)
 - Full Rearward
 - Mid Position
 - Full Forward
- Kneeling on seat facing rearward (S22.2.2.7)
 - Full Rearward
 - Mid Position
 - Full Forward
- Lying on seat (S22.2.2.8)
 - Full Rearward
 - Mid Position
 - Full Forward

18. Suppression tests with 6-year-old dummy (Part 572, Subpart N) using the following indicated child restraints where a child restraint is required (mid-height seat position):

 Section D
 - Britax Roadster 9004
 - Full Rearward
 - Mid Position
 - Full Forward
 - Century Next Step 4920
 - Full Rearward
 - Mid Position
 - Full Forward
 - Cosco High Back Booster 02-442
 - Full Rearward
 - Mid Position
 - Full Forward
 - Evenflo Right Fit 245
 - Full Rearward
 - Mid Position
 - Full Forward

19. Suppression tests with representative 6-year-old child using the following indicated child restraints where a child restraint is required (mid-height seat position):

 Section D
 - Britax Roadster 9004
 - Full Rearward
 - Mid Position
 - Full Forward
 - Century Next Step 4920
 - Full Rearward
 - Mid Position
 - Full Forward
 - Cosco High Back Booster 02-442
 - Full Rearward
 - Mid Position
 - Full Forward
 - Evenflo Right Fit 245
 - Full Rearward
 - Mid Position
 - Full Forward

20. Suppression tests with 6-year-old dummy (Part 572, Subpart N) in the following positions (mid-height seat position):

 - Sitting on seat with back against seat back (S22.2.2.1)
 - Full Rearward
 - Mid Position
 - Full Forward
 - Sitting on seat with back against reclined seat back (S22.2.2.2)
 - Full Rearward
 - Mid Position
 - Full Forward
 - Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
 - Full Rearward
 - Mid Position
 - Full Forward
 - Sitting back in the seat and leaning on the right front passenger door (S24.2.3)
 - Full Rearward
 - Mid Position
 - Full Forward

21. Suppression tests with representative 6-year-old child in the following positions (mid-height seat position):

 - Sitting on seat with back against seat back (S22.2.2.1)
 - Full Rearward
 - Mid Position
 - Full Forward
 - Sitting on seat with back against reclined seat back (S22.2.2.2)
 - Full Rearward
 - Mid Position
 - Full Forward
 - Sitting on seat edge, spine vertical, hands by the child’s side (S22.2.2.4)
 - Full Rearward
 - Mid Position
 - Full Forward
 - Sitting back in the seat and leaning on the right front passenger door (S24.2.3)
22. Test of Reactivation of the Passenger Air Bag System with an Unbelted 5th percentile female dummy (S20.3, 22.3, S24.3) (mid-height seat position). Perform this test after the following suppression tests: After each restraint.

23. Test of Reactivation of the Passenger Air Bag System with a representative 5th percentile female (S20.3, 22.3, S24.3) (mid-height seat position). Perform this test after the following suppression tests:

24. Low risk deployment test with 12-month-old dummy (Part 572, Subpart R) using the following indicated child restraints (full forward, mid-height seat position)(S20.4):

 Section B
 - Britax Handle with Care 191
 - Century Assura 4553
 - Century Smart Fit 4543
 - Cosco Arriva 02727
 - Evenflo Discovery Adjust Right 212
 - Evenflo First Choice 204
 - Graco Infant 8457

 Section C
 - Britax Roundabout 161
 - Century Encore 4612
 - Century STE 1000 4416
 - Cosco Olympian 02803
 - Cosco Touriva 02519
 - Evenflo Horizon V 425
 - Evenflo Medallion 254

25. Low risk deployment test with 3-year-old dummy (Part 572, Subpart P) in the following positions:
 - Position 1 (rearmost, lowest seat position)
 - Position 2 (mid-height seat position)

26. Low risk deployment test with 6-year-old dummy (Part 572, Subpart N) in the following positions:
 - Position 1 (rearmost, lowest seat position)
 - Position 2 (mid-height seat position)

27. Low risk deployment test with 5th female dummy (Part 572, Subpart O) in the following positions:
 - X Position 1 (mid-height seat position)
 - X Position 2 (mid-height seat position)

28. Impact Tests
 - Frontal Oblique Impact Angle: Test Speed:
 - Belted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.1(a))
 - Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a)(1))
 - Unbelted 50th male dummy driver and passenger (32 to 40 kmph) (S5.1.2(a)(2) or S5.1.2(b))
Frontal 0° - Test Speed: 39.9 kmph

- Belted 50th male dummy driver (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
- Belted 50th male dummy passenger (0 to 48 kmph) (S5.1.1.(b)(1) or S5.1.1(a))
- Belted 5th female dummy driver (0 to 48 kmph) (S16.1(a)(1))
- Belted 5th female dummy passenger (0 to 48 kmph) (S16.1(a)(1))
- Belted 5th female dummy driver and passenger (0 to 56 kmph) (S16.1(a)(2))
- Belted 50th male dummy driver and passenger (0 to 56 kmph) (S5.1.1.(b)(2))
- Unbelted 50th male dummy driver and passenger (0 to 48 kmph) (S5.1.2(a) (1))
- Unbelted 50th male dummy driver (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
- Unbelted 50th male dummy passenger (32 to 40 kmph) (S5.1.2.(a)(2) or S5.1.2(b))
- Unbelted 5th female dummy driver (32 to 40 kmph) (S16.1(b))
- Unbelted 5th female dummy passenger (32 to 40 kmph) (S16.1(b))

40% Offset 0° Belted 5th female dummy driver and passenger (0 to 40 kmph) (S18.1)

Test Speed:

- 29. FMVSS 204 Indicant Test
- 30. FMVSS 212 Test
- 31. FMVSS 219 Indicant Test
- 32. FMVSS 301 Frontal Indicant Test
- 33. FMVSS 305 Frontal Indicant Test
DATA SHEET 2
REPORT OF VEHICLE CONDITION

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
NHTSA No.: C90200
Test Dates: 12/30/08 - 2/02/09

CONTRACT NO.: DTNH22-08-D-00086 Date: 2/09/09
FROM (Lab and rep name): MGA Research Corporation
TO: NHTSA, OVSC (NVS-220)

PURPOSE: (X) Initial Receipt () Received via Transfer (X) Present vehicle condition

MODEL YEAR/MAKE/MODEL/BODY STYLE: 2009 Ford Escape Hybrid MPV
MANUFACTURE DATE: 11/08
NHTSA NO. C90200
BODY COLOR: Silver
VIN: 1FMCU49399KA95726
GVWR: 2141 kg (4720 lbs)
GAWR (Fr): 1107 kg (2440 lbs)
GAWR (Rr): 1089 kg (2400 lbs)

ODOMETER READINGS: ARRIVAL (miles): 121 DATE: 12/17/08
COMPLETION (miles): 143 DATE: 2/02/09
PURCHASE PRICE: ($) $30,725
DEALER’S NAME: Boucher Fleet Group, 1421 E. Moreland Blvd. Waukesha, WI 53186

A. All options listed on window sticker are present on the test vehicle: _X Yes ___ No
B. Tires and wheel rims are new and the same as listed: _X Yes ___ No
C. There are no dents or other interior or exterior flaws: _X Yes ___ No
D. The vehicle has been properly prepared and is in running condition: _X Yes ___ No
E. Keyless remote is available and working: _X Yes ___ No
F. The glove box contains an owner’s manual, warranty document, consumer information, and extra set of keys: _X Yes ___ No
G. Proper fuel filler cap is supplied on the test vehicle: _X Yes ___ No
H. Using permanent marker, identify vehicle with NHTSA number and FMVSS test type(s) on roof line above driver door or for school buses, place a placard with NHTSA number inside the windshield and to the exterior front and rear side of bus: _X Yes ___ No
I. Place vehicle in storage area: _X Yes ___ No
J. Inspect the vehicle’s interior and exterior, including all windows, seats, doors, etc. to confirm that each system is complete and functional per the manufacturer’s specifications. Any damage, misadjustment, or other unusual condition that could influence the test program or test results shall be recorded. Report any abnormal condition to the NHTSA COTR before beginning any test: _X Vehicle OK ___ Conditions reported below
REPORT OF VEHICLE CONDITION AT THE COMPLETION OF TESTING

LIST OF FMVSS TESTS PERFORMED BY THIS LAB: FMVSS 208, 212, 219, 301, 305

VEHICLE: 2009 Ford Escape Hybrid NHTSA NO.: C90200

REMARKS:

Equipment that is no longer on the test vehicle as noted on previous page:
Right rear tail light, rear floor mats and trunk side panels

Explanation for equipment removal:
Components removed for instrumentation installation and to meet target weight.

Test Vehicle Condition:
25 mph frontal impact damage- front suspension & structure damaged, hood & front quarter panels damaged, radiator damaged, air bags & pretensioners deployed, Stoddard in fuel system

RECORDED BY: Jeff Lewandowski DATE: 2/09/2009
APPROVED BY: David Winkelbauer DATE: 2/09/2009

RELEASE OF TEST VEHICLE

The vehicle described above is released from MGA to be delivered to:

Date: Time: Odometer:
Lab Rep’s Signature:
Title:
Carrier/Customer Rep:
Date:
DATA SHEET 3
CERTIFICATION LABEL AND TIRE PLACARD INFORMATION

<table>
<thead>
<tr>
<th>Test Vehicle</th>
<th>2009 Ford Escape Hybrid</th>
<th>NHTSA No.</th>
<th>C90200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date</td>
<td>2/02/09</td>
</tr>
<tr>
<td>Test Technician</td>
<td>Jamie Aide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Certification Label (Part 567)

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Ford Motor Co.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date of Manufacture:</td>
<td>11/08</td>
</tr>
<tr>
<td>VIN:</td>
<td>1FMCU49399KA95726</td>
</tr>
<tr>
<td>Vehicle Certified As</td>
<td>MPV</td>
</tr>
<tr>
<td>Front Axle GVWR:</td>
<td>1107 kg (2440 lbs)</td>
</tr>
<tr>
<td>Rear Axle GVWR:</td>
<td>1089 kg (2400 lbs)</td>
</tr>
<tr>
<td>Total GVWR:</td>
<td>2141 kg (4720 lbs)</td>
</tr>
</tbody>
</table>

Tire Placard for Motor Vehicles with GVWR of 10,000 lb or Less and Passenger Cars (571.110)

<table>
<thead>
<tr>
<th>Vehicle Capacity Weight:</th>
<th>438 kg (967 lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designated Seating Capacity Front:</td>
<td>2</td>
</tr>
<tr>
<td>Designated Seating Capacity Rear:</td>
<td>3</td>
</tr>
<tr>
<td>Total Designated Seating Capacity:</td>
<td>5</td>
</tr>
<tr>
<td>Recommended Cold Tire Inflation Pressure Front:</td>
<td>240 kpa (35 psi)</td>
</tr>
<tr>
<td>Recommended Cold Tire Inflation Pressure Rear:</td>
<td>240 kpa (35 psi)</td>
</tr>
<tr>
<td>Recommended Tire Size:</td>
<td>P235/70R16</td>
</tr>
<tr>
<td>Tire Size on Vehicle:</td>
<td>P235/70R16</td>
</tr>
</tbody>
</table>

Signature: [Signature]

Date: 2/02/09
DATA SHEET 4
REAR SEATING POSITION SEAT BELTS

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 12/30/08
Test Technician: Alyssa Paul

<table>
<thead>
<tr>
<th>Do all rear seating positions have Type 2 seat belts?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

If NO, describe the seat belt installed, the seat location, and any other information about the seat that would explain why a Type 2 seat belt was not installed.

REMARKS:

Signature: [Signature]

Date: 12/30/08
DATA SHEET 5
AIR BAG LABELS (S4.5.1)

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 12/30/08
Test Technician: Alyssa Paul

1. Air Bag Maintenance Label and Owner’s Manual Instructions: (S4.5.1(a))
 1.1 Does the manufacturer recommend periodic maintenance or replacement of the air bag?
 [] Yes (Go to 1.2)
 [X] No (Go to 2)

 1.2 Does the vehicle have a label specifying air bag maintenance or replacement?
 [] Yes – Pass
 [] No – Fail

 1.3 Does the label contain one of the following?
 [] Yes – Pass
 [] No – Fail
 Check applicable schedule:
 __ Schedule on label specifies month and year (Record date______)
 __ Schedule on label specifies vehicle mileage (Record mileage______)
 __ Schedule on label specifies interval measured from date on certification label
 (Record interval______)

 1.4 Is the label permanently affixed within the passenger compartment such that it cannot be removed without destroying or defacing the label or vehicle part? (3/19/01 legal interpretation to Todd Mitchell)
 [] Yes – Pass
 [] No – Fail

 1.5 Is the label lettered in English?
 [] Yes – Pass
 [] No – Fail

 1.6 Is the label in block capitals and numerals?
 [] Yes – Pass
 [] No – Fail

 1.7 Are the letters and numerals at least 3/32 inches high?
 [] Yes – Pass
 [] No – Fail

 1.8 Does the owner’s manual set forth the recommended schedule for maintenance or replacement?
 [X] Yes – Pass
 [] No – Fail

2. Does the owner’s manual: (S4.5.1(f))
 2.1 Include a description of the vehicle’s air bag system in an easily understandable format?
 [X] Yes – Pass
 [] No – Fail

 2.2 Include a statement that the vehicle is equipped with an air bag and a lap/shoulder belt at the front outboard seating position?
 [X] Yes – Pass
 [] No – Fail

 2.3 Include a statement that the air bag is a supplemental restraint at the front outboard seating position?
 [X] Yes – Pass
 [] No – Fail
2.4 Emphasize that all occupants, including the driver, should always wear their seat belts whether or not an air bag is also provided at their seating positions to minimize the risk of severe injury or death in the event of a crash?
 - Yes – Pass
 - No – Fail

2.5 Provide any necessary precautions regarding the proper positioning of occupants, including children, at seating positions equipped with air bags to ensure maximum safety protection for those occupants?
 - Yes – Pass
 - No – Fail

2.6 Explain that no objects should be placed over or near the air bag on the steering wheel or on the instrument panel, because any such objects could cause harm if the vehicle is in a crash severe enough to cause the air bag to inflate?
 - Yes – Pass
 - No – Fail

2.7 Is the vehicle certified to meet the requirements of S14.5, S15, S17, S19, S21, S23, and S25? (Obtain answer to this question from the COTR) (S4.5.1(f)(2))
 - Yes – (Go to 2.7.1)
 - No – (Go to 3.)

2.7.1 Explain the proper functioning of the advanced air bag system? (S4.5.1(f)(2))
 - Yes – Pass
 - No – Fail

2.7.2 Provide a summary of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2))
 - Yes – Pass
 - No – Fail

2.7.3 Present and explain the main components of the advanced passenger air bag system? (S4.5.1(f)(2)(i))
 - Yes – Pass
 - No – Fail

2.7.4 Explain how the components function together as part of the advanced passenger air bag system? (S4.5.1(f)(2)(ii))
 - Yes – Pass
 - No – Fail

2.7.5 Contain the basic requirements for proper operation, including an explanation of the actions that may affect the proper functioning of the system? (S4.5.1(f)(2)(iii))
 - Yes – Pass
 - No – Fail

2.7.6 Is the vehicle certified to the requirements of S19.2, S21.2, or 23.2 (automatic suppression)?
 - Yes, continue with 2.7.6
 - No, go to 2.7.7

2.7.6.1 Contain a complete description of the passenger air bag suppression system installed in the vehicle, including a discussion of any suppression zone? (S4.5.1(f)(2)(iv))
 - Yes – Pass
 - No – Fail

2.7.6.2 Discuss the telltale light, specifying its location in the vehicle and explaining when the light is illuminated?
 - Yes – Pass
 - No – Fail
2.7.7 Explain the interaction of the advanced passenger air bag system with other vehicle components, such as seat belts, seats or other components? (S4.5.1(f)(2)(v))

Yes – Pass
No – Fail

2.7.8 Summarize the expected outcomes when child restraint systems, children and small teenagers or adults are both properly and improperly positioned in the passenger seat, including cautionary advice against improper placement of child restraint systems? (S4.5.1(f)(2)(vi))

Yes – Pass
No – Fail

2.7.9 Provide information on how to contact the vehicle manufacturer concerning modifications for persons with disabilities that may affect the advanced air bag system? (S4.5.1(f)(2)(vii))

Yes – Pass
No – Fail

3. Sun Visor Air Bag Warning Label (S4.5.1(b)): Vehicles certified to meet the requirements of S19, S21 and S23. (S4.5.1(b)(3))

3.1 Is the label permanently affixed (including permanent marking on the visor material or molding into the visor material) to either side of the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(b)(3)) (3/19/01 legal interpretation to Todd Mitchell)

Driver Side, Yes – Pass
Driver Side, No – Fail
Passenger Side, Yes – Pass
Passenger Side, No – Fail
3.2 Does the label conform in content to the label shown in Figure 11 at each front outboard seating position? (S4.5.1(b)(2)) (Vehicles without back seats or the back seat is too small to accommodate a rear-facing child restraint may omit the statement: “Never put a rear-facing child seat in the front.” (S4.5.1(b)(3)(v)))

[Image of WARNING label]

Figure 11. Sun Visor Label Visible when Visor is in Down Position.

3.3 Is the label heading area yellow with the word “WARNING” and the alert symbol in black? (S4.5.1(b)(3)(i))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail

3.4 Is the message area white with black text? (S4.5.1(b)(3)(ii))

- Driver Side, Yes – Pass
- Driver Side, No – Fail
- Passenger Side, Yes – Pass
- Passenger Side, No – Fail
3.5 Is the message area at least 30 cm²? (S4.5.1(b)(3)(ii))

The message area consists of the total label area minus the yellow heading area and the pictogram. The pictogram is enclosed on the left side and bottom by the edge of the label. The top edge of the pictogram area is defined by a horizontal line midway between the uppermost edge of the pictogram and the lowermost edge of the text. The right side of the pictogram is defined by a vertical line midway between the rightmost edge of the pictogram and the left most edge of the text, including any bullets. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

Driver Side: Length 87 mm, Width 35 mm
Passenger Side: Length 87 mm, Width 35 mm
Driver actual message area 30.5 cm²
Passenger actual message area 30.5 cm²

X Driver Side, Yes – Pass
 Driver Side, No – Fail
X Passenger Side, Yes – Pass
 Passenger Side, No – Fail

3.6 Is the pictogram black on a white background? (S4.5.1(b)(3)(iii))

X Driver Side, Yes – Pass
 Driver Side, No – Fail
X Passenger Side, Yes – Pass
 Passenger Side, No – Fail

3.7 Is the pictogram at least 30 mm in length? (S4.5.1(b)(3)(iii))

Driver side: Length: 33 mm
Passenger side: Length: 33 mm
X Driver Side, Yes – Pass
 Driver Side, No – Fail
X Passenger Side, Yes – Pass
 Passenger Side, No – Fail

3.8 Is the same side of the sun visor that contains the air bag warning label free of other information with the exception of the air bag maintenance label and/or the rollover-warning label? (S4.5.1(b)(5)(i))

X Driver Side, Yes – Pass
 Driver Side, No – Fail
X Passenger Side, Yes – Pass
 Passenger Side, No – Fail

3.9 Is the sun visor free of other information about air bags or the need to wear seat belts with the exception of the air bag alert label and/or the rollover-warning label? (S4.5.1(b)(5)(ii))

X Driver Side, Yes – Pass
 Driver Side, No – Fail
X Passenger Side, Yes – Pass
 Passenger Side, No – Fail

3.10 Does the driver side visor contain a rollover-warning label on the same side of the visor as the air bag warning label?

X Yes (go to 3.10.1)
 No (go to 4., skipping 3.10.1 through 3.10.3)
3.10.1 Are both the rollover-warning label and the air bag warning label surrounded by a continuous solid-lined border?

__ Yes (go to 3.10.2 and skip 3.10.3)

X No (go to 3.10.3 and skip 3.10.2)

3.10.2 Is the shortest distance from the border of the rollover label to the border of the air bag warning label at least 1 cm? (575.105 (d)(1)(iv)(B))

_________ actual distance

__Yes-Pass __No-FAIL

X 3.10.3 Is the shortest distance from any of the lettering or graphics on the rollover-warning label to any of the lettering or graphics of the air bag warning label at least 3 cm? (575.105 (d)(1)(iv)(A))

6.1 cm actual distance

X Yes-Pass __No-FAIL

X 4. Air Bag Alert Label (S4.5.1(c) (A “Rollover Warning Label” or “Rollover Alert Label” may be on the same side of the driver’s sun visor as the “Air Bag Alert Label.” 575.105(d))

X 4.1 Is the Sun Visor Warning Label visible when the sun visor is in the stowed position?

X If yes for driver and passenger, go to 5.

X Driver Side, Yes

X Driver Side, No

X Passenger Side, Yes

X Passenger Side, No

4.2 Is the air bag alert label permanently affixed (including permanent marking on the visor material or molding into the visor material) to the sun visor at each front outboard seating position such that it cannot be removed without destroying or defacing the label or the sun visor? (S4.5.1(c)) (3/19/01 legal interpretation to Todd Mitchell)

__ Driver Side, Yes – Pass

__ Driver Side, No – Fail

__ Passenger Side, Yes – Pass

__ Passenger Side, No – Fail

4.3 Is the air bag alert label visible when the visor is in the stowed position? (S4.5.1(c))

__ Driver Side, Yes – Pass

__ Driver Side, No – Fail

__ Passenger Side, Yes – Pass

__ Passenger Side, No – Fail
4.4 Does the label conform in content to the label shown in Figure 6C? (S4.5.1(c))

<table>
<thead>
<tr>
<th>Side</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Driver Side, No</td>
<td>Fail</td>
</tr>
<tr>
<td>Passenger Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Passenger Side, No</td>
<td>Fail</td>
</tr>
</tbody>
</table>

4.5 Is the message area black with yellow text? (S4.5.1(c)(1))

<table>
<thead>
<tr>
<th>Side</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Driver Side, No</td>
<td>Fail</td>
</tr>
<tr>
<td>Passenger Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Passenger Side, No</td>
<td>Fail</td>
</tr>
</tbody>
</table>

4.6 Is the message area at least 20 cm²? (S4.5.1(c)(1))

The message area consists of the black part of the label.

<table>
<thead>
<tr>
<th>Side</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Driver Side, No</td>
<td>Fail</td>
</tr>
<tr>
<td>Passenger Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Passenger Side, No</td>
<td>Fail</td>
</tr>
</tbody>
</table>

4.7 Is the pictogram black with a red circle and slash on a white background? (S4.5.1(c)(2))

<table>
<thead>
<tr>
<th>Side</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Driver Side, No</td>
<td>Fail</td>
</tr>
<tr>
<td>Passenger Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Passenger Side, No</td>
<td>Fail</td>
</tr>
</tbody>
</table>

4.8 Is the pictogram at least 20 mm in diameter? (S4.5.1(c)(2))

<table>
<thead>
<tr>
<th>Side</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Driver Side</td>
<td></td>
</tr>
<tr>
<td>Passenger Side</td>
<td></td>
</tr>
<tr>
<td>Driver Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Driver Side, No</td>
<td>Fail</td>
</tr>
<tr>
<td>Passenger Side, Yes</td>
<td>Pass</td>
</tr>
<tr>
<td>Passenger Side, No</td>
<td>Fail</td>
</tr>
</tbody>
</table>
5. Label on the Dashboard: Vehicles certified to meet the requirements of S19, S21 and S23?

5.1 Does the vehicle have a label on the dash or steering wheel hub? (S4.5.1(e)(3))

 Yes – Pass The label was missing and it could not be determined when it was removed. Therefore it was not evaluated.

 No – Fail

5.2 Is the label clearly visible from all front seating positions? (S4.5.1(e)(3))

 Yes – Pass

 No – Fail

5.3 Does the label conform in content to the label shown in Figure 12? (S4.5.1(e)(3))

 Vehicles without back seats may omit the statement: “The back seat is the safest place for children.” Vehicles without back seats or too small to accommodate a rear-facing child restraint consistent with S4.5.4.1 as determined in DATA SHEET 7 may omit the statement “Never put a rear-facing child seat in the front.” (S4.5.1(e)(3)(iii))

 Yes – Pass

 No – Fail

5.4 Is the heading area yellow with black text? (S4.5.1(e)(3)(i))

 Yes – Pass

 No – Fail

5.5 Is the message white with black text? (S4.5.1(e)(3)(ii))

 Yes – Pass

 No – Fail

5.6 Is the message area at least 30 cm²? (S4.5.1(e)(3)(ii)) The message area consists of the total label area minus the yellow heading area. (See 5/6/03 interpretation to Gerald Plante on behalf of Subaru)

 Length __________, Width __________

 Actual message area __________ cm²

 Yes – Pass

 No – Fail

I certify that I have read and performed each instruction.

Signature: __________________________

Date: 12/30/08
An occupant restraint system that deploys in the event of a crash shall have a monitoring system with a readiness indicator. A totally mechanical system is exempt from this requirement. (11/8/94 legal interpretation to Lawrence F. Hennegerger on behalf of Breed)

1. Is the system totally mechanical? (If Yes, this Data Sheet is complete).
 - Yes
 - No

2. Describe the location of the readiness indicator: Instrument Cluster

3. Is the readiness indicator clearly visible to the driver?
 - Yes – Pass
 - No - Fail

4. Is a list of the elements in the occupant restraint system, being monitored by the readiness indicator, provided on a label or in the owner’s manual?
 - Yes – Pass
 - No - Fail

5. Does the vehicle have an on-off switch for the passenger air bag?
 - If Yes (go to 6)
 - If No (this form is complete)

6. Is the air bag readiness indicator off when the passenger air bag switch is in the off position?
 - Yes – Pass
 - No - Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: ______________________

Date: 12/30/08
1. Is the vehicle equipped with an on-off switch that deactivates the air bag installed at the right front outboard seating position?
 - Yes, go to 2
 - No, this sheet is complete

2. Does the vehicle have any forward-facing rear designated seating positions? (S4.5.4.1(a))
 - Yes, go to 3
 - No, go to 4

3. Verification there is room for a child restraint in the rear seat behind the driver’s seat. (S4.5.4.1(b))
 3.1 Using all the controls that affect the fore-aft movement of the seat, move the seat to the rearmost position. Mark this position.
 - N/A – the seat does not have fore-aft adjustment
 3.2 Using all the controls that affect the fore-aft movement of the seat, move the seat to the foremost position. Mark this position.
 - N/A – the seat does not have fore-aft adjustment
 3.3 Move the seat to the middle of the foremost and rearmost positions. (S8.1.2)
 - N/A – the seat does not have a fore-aft adjustment
 3.4 If the driver’s seat height is adjustable, use all the controls that affect height to put it in the lowest position while maintaining the middle fore-aft position. (S8.1.2)
 - N/A – No seat height adjustment
 3.5 Position the driver’s seat adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A – No lumbar adjustment
 3.6 The driver’s seat back angle, if adjustable, is set at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. (S4.5.4.1(b) and S8.1.3)
 - N/A – No seat back angle adjustment
 - Manufacturer’s design driver’s seat back angle __________
 - Tested driver’s seat back angle __________

3.7 Is the driver seat a bucket seat?
 - Yes, go to 3.7.1 and skip 3.7.2.
 - No, go to 3.7.2 and skip 3.7.1.

3.7.1 Bucket seats:
 3.7.1.1 Locate and mark a vertical Plane B through the longitudinal centerline of the driver’s seat cushion. The longitudinal centerline of a bucket seat cushion is determined at SgRP. (S16.3.1.10) (S4.5.4.1(b)(1))
 3.7.1.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion behind the driver’s seat. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the driver’s seat.
 - mm distance
 - less than 720 mm – Pass
 - more than 720 mm – FAIL
 Go to 4
3.7.2 Bench seats (including split bench seats):

3.7.2.1 Locate and mark a vertical Plane B through the center of the steering wheel parallel to the vehicle longitudinal centerline. (S4.5.4.1(b)(2))

3.7.2.2 Locate the longitudinal horizontal line in plane B that is tangent to the highest point of the rear seat cushion. Measure along this line from the front of the seat back of the rear seat to the rear of the seat back of the front seat.

____ mm distance
less than 720 mm – Pass
more than 720 mm - FAIL

Go to 4

4. Does the device turn the air bag on and off using the vehicle's ignition key? (S4.5.4.2)
 - Yes – Pass
 - No – Fail

5. Is the on-off device separate from the ignition switch? (S4.5.4.2)
 - Yes – Pass
 - No – Fail

6. Is there a telltale light that comes on when the passenger air bag is turned off? (S4.5.4.2)
 - Yes – Pass
 - No – Fail

7. Telltale light (S4.5.4.3)
 7.1 Is the light yellow? S4.5.4.3(a))
 - Yes – Pass
 - No – Fail
 7.2 Are the words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” (S4.5.4.3(b)) on the telltale?
 - Yes – Pass, go to 7.3
 - No – go to 7.2.2
 7.2.2 within 25 mm of the telltale?
 Measurement from the edge of the telltale light (mm):
 - Yes – Pass
 - No – Fail
 7.3 Does the telltale remain illuminated while the air bag is turned off? (S4.5.4.3c)) (Leave the air bag off for 5 minutes.)
 - Yes – Pass
 - No – Fail
 7.4 Is the telltale illuminated while the air bag is turned on? (S4.5.4.3(d))
 - Yes – Fail
 - No – Pass
 7.5 Is the telltale combined with the air bag readiness indicator? (S4.5.4.3(e))
 - Yes – Fail
 - No – Pass

 8.1 Does the owner's manual contain complete instructions on the operation of the on-off switch? (S4.5.4.4(a))
 - Yes – Pass
 - No – Fail
8.2 Does the owner’s manual contain a statement that the on-off switch should only be used when a member of one of the following risk groups is occupying the right front passenger seating position? (S4.5.4.4(b))

- Infants:
 - there is no back seat
 - the rear seat is too small to accommodate a child restraint
 - there is a medical condition that must be monitored constantly

- Children aged 1 to 12:
 - there is no back seat
 - space is not always available in the rear seat
 - there is a medical condition that must be monitored constantly

- Medical condition:
 - medical risk causes special risk for passenger
 - greater risk for harm than with the air bag on

- Yes – Pass
- No – Fail

8.3 Does the owner’s manual contain a warning about the safety consequences of using the on-off switch at other times?

- Yes – Pass
- No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature:

Date: 12/30/08
DATA SHEET 8
LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Vehicle:</td>
<td>2009 Ford Escape Hybrid</td>
</tr>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
</tr>
<tr>
<td>NHTSA No.:</td>
<td>C90200</td>
</tr>
<tr>
<td>Test Date:</td>
<td>12/30/08</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Alyssa Paul</td>
</tr>
</tbody>
</table>

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Front Passenger

1. Record test fore-aft seat position: **REAR**
 (S7.1.1.5(c)(1)(1)) (Any position is acceptable)

2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does **NOT** have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 - **Yes** – Pass
 - **No** – Fail

3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does **NOT** require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 - **Yes** – Pass
 - **No** – Fail

4. Place any adjustable seat belt anchorage in the lowest adjustment position.
 - **N/A** The anchorage is not adjustable.

5. Buckle the seat belt. (S7.1.1.5(c)(1))

6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))

7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))

8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 - **Yes** (go to 8.1)
 - **No** (go to 9)

8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 - **Yes** – Pass
 - **No** – Fail

9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))

10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
 - Measured distance between A and B (inches): **72**
11. Readjust the belt system so that the webbing between points A and B is at ½ the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle: 10 degrees (spec. 5 - 15 degrees)

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B: 36 inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate: 20 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
 Measured distance between A and B: 36 inches (S7.1.1.5(c)(6))

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle: 10 degrees (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B: 24 ¾ inches

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate: 20 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))
 Measured distance between A and B: 25 inches (S7.1.1.5(c)(6))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

 14 – 13 = 36 – 36 = 0 inches;
 18 – 17 = 25 – 24 ¾ = ¾ inches

 Yes – Pass
 No – Fail
20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

\[
\begin{align*}
10-14 &= 72 - 36 = 36 \text{ inches;} \\
10-18 &= 72 - 25 = 47 \text{ inches}
\end{align*}
\]

Yes - Pass
No - Fail

REMARKS:

Signature: _________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 8
LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 12/30/08
Test Technician: Alyssa Paul

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver's seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION: Left Rear Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A – No retractor is at this position</td>
</tr>
<tr>
<td>N/A – The retractor is an automatic locking retractor ONLY</td>
</tr>
<tr>
<td>X 1. Record test fore-aft seat position: FIXED</td>
</tr>
<tr>
<td>(S7.1.1.5(c)(1)) (Any position is acceptable)</td>
</tr>
<tr>
<td>X 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))</td>
</tr>
<tr>
<td>X Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
</tr>
<tr>
<td>X 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))</td>
</tr>
<tr>
<td>X Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
</tr>
<tr>
<td>X 4. Place any adjustable seat belt anchorage in the lowest adjustment position.</td>
</tr>
<tr>
<td>X N/A The anchorage is not adjustable.</td>
</tr>
<tr>
<td>X 5. Buckle the seat belt. (S7.1.1.5(c)(1))</td>
</tr>
<tr>
<td>X 6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>X 7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>X 8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?</td>
</tr>
<tr>
<td>X Yes (go to 8.1)</td>
</tr>
<tr>
<td>No (go to 9)</td>
</tr>
<tr>
<td>X 8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))</td>
</tr>
<tr>
<td>X Yes – Pass</td>
</tr>
<tr>
<td>No – Fail</td>
</tr>
<tr>
<td>X 9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))</td>
</tr>
<tr>
<td>X 10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))</td>
</tr>
<tr>
<td>X Measured distance between A and B (inches): 78</td>
</tr>
</tbody>
</table>

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 12/30/08
Test Technician: Alyssa Paul
11. Readjust the belt system so that the webbing between points A and B is at ½ the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled.

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

Yes – Pass
No – Fail
20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

- \(10-14 = 78 - 40 \frac{1}{2} = 37 \frac{1}{2} \) inches;
- \(10-18 = 78 - 27 \frac{5}{8} = 50 \frac{3}{8} \) inches

Yes – Pass
No – Fail

REMARKS:
Signature: _________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 8
LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Test Vehicle:	2009 Ford Escape Hybrid	NHTSA No.:	C90200
Test Program:	FMVSS 208 Compliance	Test Date:	12/30/08
Test Technician:	Alyssa Paul		

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Center Rear Passenger

1. N/A – No retractor is at this position
 N/A – The retractor is an automatic locking retractor ONLY

2. **Record test fore-aft seat position:** FIXED
 (S7.1.1.5(c)(1)) (Any position is acceptable)

3. **Yes – Pass**
 No – Fail

4. N/A – The anchorage is not adjustable.

5. **Buckle the seat belt. (S7.1.1.5(c)(1))**

6. **Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))**

7. **Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))**

8. **Yes (go to 8.1)**
 No (go to 9)

8.1 **Yes – Pass**
 No – Fail

9. **Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))**

10. **Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))**

 Measured distance between A and B (inches): 85
11. Readjust the belt system so that the webbing between points A and B is at ½ the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle: 10° (spec. 5 - 15 degrees)

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B: 40 ¾ inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate: 20 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

 Measured distance between A and B: 40 ¾ inches (S7.1.1.5(c)(6))

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

 Measured force application angle: 10° (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

 Measured distance between A and B: 22 inches

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

 Record onset rate: 20 lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

 Measured distance between A and B: 23 ½ inches (S7.1.1.5(c)(6))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

 14 – 13 = 40 ¾ - 40 ¾ = 0 inches;
 18 – 17 = 23 ½ - 22 = 1 ½ inches

 Yes – Pass
 No – Fail
20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

10-14 = \(85 - 40 \frac{3}{4}\) = 44 \(\frac{3}{4}\) inches;
10-18 = \(85 - 23 \frac{1}{2}\) = 61 \(\frac{1}{2}\) inches

Yes – Pass
No – Fail

REMARKS:

Signature: _________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
LAP BELT LOCKABILITY

Passenger cars, trucks, buses, and multipurpose passenger vehicles with a GVWR of 10,000 pounds or less. (S7.1.1.5)

Complete one of these forms for each designated seating position that can be adjusted to forward-facing or that is a forward-facing seat, other than the driver’s seat (S7.1.1.5(a), and that has seat belt retractors that are not solely automatic locking retractors. (S7.1.1.5(c))

DESIGNATED SEATING POSITION: Right Rear Passenger

- N/A – No retractor is at this position
- N/A – The retractor is an automatic locking retractor ONLY
- X 1. Record test fore-aft seat position: FIXED
 (S7.1.1.5(c)(1)) (Any position is acceptable)
- X 2. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT have to be attached by the vehicle user to the seat belt webbing, retractor, or any other part of the vehicle. (S7.1.1.5 (a))
 - X Yes – Pass
 - No – Fail
- X 3. Does the lap belt portion of the seat belt in the forward-facing seat or seat that can be adjusted to forward-facing consist of a locking device that does NOT require inverting, twisting or deforming of the belt webbing. (S7.1.1.5 (a))
 - X Yes – Pass
 - No – Fail
- X 4. Place any adjustable seat belt anchorage in the lowest adjustment position.
- X N/A The anchorage is not adjustable.
- X 5. Buckle the seat belt. (S7.1.1.5(c)(1))
- X 6. Locate a reference point A on the seat belt buckle. (S7.1.1.5(c)(2))
- X 7. Locate a reference point B on the attachment hardware or retractor assembly at the other end of the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
- X 8. Does the vehicle user need to take some action to activate the locking feature on the lap belt portion of the seat belt in any forward-facing seat or seat that can be adjusted to forward-facing?
 - X Yes (go to 8.1)
 - No (go to 9)
- X 8.1 Does the vehicle owner’s manual include a description in words and/or diagrams describing how to activate the locking feature so that the seat belt assembly can tightly secure a child restraint system and how to deactivate the locking feature to remove the child restraint system. (S7.1.1.5(b))
 - X Yes – Pass
 - No – Fail
- X 9. Adjust the lap belt or lap belt portion of the seat belt assembly according to any procedures recommended in the vehicle owner’s manual to activate any locking feature so that the webbing between points A and B is at the maximum length allowed by the belt system. (S7.1.1.5(c)(2) & S7.1.1.5(c)(1))
- X 10. Measure and record the distance between points A and B along the longitudinal centerline of the webbing for the lap belt or lap belt portion of the seat belt assembly. (S7.1.1.5(c)(2))
- X Measured distance between A and B (inches): 83

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul
NHTSA No.: C90200
Test Date: 12/30/08
11. Readjust the belt system so that the webbing between points A and B is at ½ the maximum length of the webbing. (S7.1.1.5(c)(3))

12. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle: __10__________ (spec. 5 - 15 degrees)

13. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B: __41 ½_________ inches

14. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: _20_________lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

Measured distance between A and B: __41 ¾_________ inches (S7.1.1.5(c)(6))

15. Let the seat belt webbing retract to its minimum length with the seat belt still buckled.

16. To the lap belt or lap belt portion of the seat belt assembly, apply a preload of 10 pounds using the webbing tension pull device in Figure 5. Apply the load in a vertical plane parallel to the longitudinal axis of the vehicle and passing through the seating reference point of the designated seating position. Apply the preload in a horizontal direction toward the front of the vehicle with a force application angle of not less than 5 degrees nor more than 15 degrees above the horizontal. (S7.1.1.5(c)(4))

Measured force application angle: __10__________ (spec. 5 - 15 degrees)

17. Measure the length between points A and B along the longitudinal centerline of the webbing while the preload is being applied. (S7.1.1.5(c)(4))

Measured distance between A and B: __24__________ inches

18. Increase the load to 50 pounds at a rate of no more than 50 pounds per second. Attain the load in not more than 5 seconds. (If webbing sensitive emergency locking retractors are installed as part of the lap belt or lap belt portion of the seat belt assembly, apply the load at a rate less than the threshold value for lock-up specified by the manufacturer.) Maintain the load for at least 5 seconds. Measure and record the distance between points A and B along the longitudinal centerline of the webbing. (S7.1.1.5(c)(5))

Record onset rate: _20_________lb/sec (spec. 10 to 50 lb/sec) (S7.1.1.5(c)(5))

Measured distance between A and B: __24 ¼_________ inches (S7.1.1.5(c)(6))

19. Subtract the measurement in 13 from the measurement in 14 and the measurement in 17 from the measurement in 18. Is the difference 2 inches or less for both? (S7.1.1.5(c)(7))

14 – 13 = __41 ¾ = 41 ½ = ¼ inches;
18 – 17 = __24 ¼ - 24 = ¼ inches

Yes – Pass
No – Fail
20. Subtract the measurement in 14 from the measurement in 10 and the measurement in 18 from the measurement in 10. Is the difference 3 inches or more for both? (S7.1.1.5(c)(8))

10-14 = 83 – 41 7/8 = 41 ¼ inches;
10-18 = 83 – 24 3/8 = 58 7/8 inches

Yes – Pass
No – Fail

REMARKS:
Signature: __________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 9
FMVSS 208 SEAT BELT WARNING SYSTEM CHECK (S7.3)

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul

1. The occupant is in the driver’s seat.
2. The seat belt is in the stowed position.
3. The key is in the “on” or “start” position.
4. The time duration of the audible signal beginning with key “on” or “start” is 6 seconds.
5. The occupant is in the driver’s seat.
6. The seat belt is in the stowed position.
7. The key is in the “on” or “start” position.
8. The time duration of the warning light beginning with key “on” or “start” is 60 seconds.
9. The occupant is in the driver’s seat.
10. The seat belt is in the latched position and with at least 4 inches of belt webbing extended.
11. The key is in the “on” or “start” position.
12. The time duration of the warning light beginning with key “on” or “start” is 0 seconds.
13. Complete the following table with the data from 4, 8, and 12 to determine which option is used.

<table>
<thead>
<tr>
<th>Warning light specification</th>
<th>Audible signal specification*</th>
</tr>
</thead>
</table>
| S7.3 (a)(1)
Belt stowed & key on or start | Item 8 60 60 seconds minimum | Item 4 6 4 to 8 seconds |
| S7.3 (a)(2)
Belt latched & key on or start | Item 12 0 4 to 8 seconds | |
| Belt stowed & key on or start | Item 8 60 4 to 8 seconds | Item 4 6 4 to 8 seconds |

* 49 USCS @ 30124 does NOT allow an audible signal to operate for more than 8 seconds.
A voluntary audible signal after the 4 to 8 second required signal may be provided. It must be differentiated from the required signal (5/25/2001 legal interpretation to Longacre and Associates).

14. The seat belt warning system meets the requirements of (manufacturers may comply with either section)
 X S7.3 (a)(1)
 X S7.3 (a)(2)
 FAIL – Does NOT meet the requirements of either option

15. Note wording of visual warning: (S7.3(a)(1) and S7.3(a)(2))
 X Fasten Seat Belts
 X Fasten Belts
 Symbol 101 -
 FAIL – Does not use any of the above wording or symbol

I certify that I have read and performed each instruction.

Signature: _______________________________ Date: 12/30/08
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

<table>
<thead>
<tr>
<th>DESIGNATED SEATING POSITION:</th>
<th>Left Front Driver</th>
</tr>
</thead>
</table>
| 1. Does the vehicle incorporate a webbing tension-relieving device? | Yes (this form is complete)
X No (continue with this check sheet) |
| 2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3) | N/A – No lumbar adjustment |
| 3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2) | N/A – No additional support adjustment |
| 4. Is the fore-aft position of the seat adjustable? | No – go to 5
X Yes – go to 4.1 |
| 4.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson) | |
| 4.2 Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson) | |
| 4.3 **Mark** each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, **mark** each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson) | |
| 4.4 Move the seat to the mid position. | |
| 4.5 While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position. | |
| 5. Is the seat back angle adjustable? | No- go to 6
X Yes- go to 5.1 |
| 5.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer. | N/A – No seat back angle adjustment
X Manufacturer’s design seat back angle: 17.5°
X Tested seat back angle: 17.5° |
6. Is the seat a bucket seat?
 X Yes, go to 6.1 and skip 6.2
 ☐ No, go to 6.2 and skip 6.1

6.1 Bucket seats:
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion
 upper surface determines the longitudinal centerline of a bucket seat cushion.
 (S10.4.1.2 and S16.3.1.10)

6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):
 6.2.1 Driver Seat
 Locate and mark the longitudinal line on the seat cushion that marks the intersection
 of the vertical longitudinal plane through the centerline of the steering wheel and the
 seat cushion upper surface. (S10.4.1.1)

 6.2.2 Front Outboard Passenger Seat
 Locate and mark the longitudinal centerline of the passenger seat cushion. The
 longitudinal centerline is the same distance from the longitudinal centerline of the vehicle
 as the center of the steering wheel. (S10.4.1.1)
 ☐ Record the distance from the longitudinal centerline of the vehicle to the center of the
 steering wheel. ________
 ☐ Record the distance from the longitudinal centerline of the vehicle to the longitudinal
 centerline of the seat cushion. ________

 6.2.3 Rear designated seating positions
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion upper
 surface determines the longitudinal centerline.

7. Position the test dummies according to dummy position placement instructions in
 Appendix F. Complete the Appendix F check sheets, but include them in the test
 report ONLY if there is a test failure.

8. Fasten the seat belt latch.

9. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing,
 whichever is less, from the retractor and then release it, allowing the belt webbing to
 return to the dummy's chest.

10. Locate the point where the centerline of the upper torso belt webbing crosses the
 midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches
 from the dummy's chest and release until it is within one inch from the dummy's chest.
 (S10.8) Using a force measuring gage with a full scale range of no more than 1.5
 pounds, measure the contact force perpendicular to the dummy's chest exerted by the
 belt webbing.

 Contact Force (lb): 0.5
 ☐ 0.0 to 0.7 pounds – Pass
 ☐ Greater than 0.7 pounds - FAIL

REMARKS:

I certify that I have read and performed each instruction.

Signature: ________________________________ Date: 12/30/08
DATA SHEET 10

BELT CONTACT FORCE (S7.4.3)

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Front Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 - [X] No (continue with this check sheet)
 - [X] Yes (this form is complete)

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - [X] N/A – No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - [X] N/A – No additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - [X] No – go to 5
 - [X] Yes – go to 4.1
 - 4.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)
 - 4.2 Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)
 - 4.3 **Mark** each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, **mark** each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson)
 - 4.4 Move the seat to the mid position.
 - 4.5 While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.

5. Is the seat back angle adjustable?
 - [X] No- go to 6
 - [X] Yes- go to 5.1
 - 5.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 - [X] Manufacturer’s design seat back angle: 17.5°
 - [X] Tested seat back angle: 17.5°
6. Is the seat a bucket seat?
 - Yes, go to 6.1 and skip 6.2
 - No, go to 6.2 and skip 6.1

6.1 Bucket seats:
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion
 upper surface determines the longitudinal centerline of a bucket seat cushion.
 (S10.4.1.2 and S16.3.1.10)

6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):
6.2.1 Driver Seat
 Locate and mark the longitudinal line on the seat cushion that marks the intersection
 of the vertical longitudinal plane through the centerline of the steering wheel and the
 seat cushion upper surface. (S10.4.1.1)

6.2.2 Front Outboard Passenger Seat
 Locate and mark the longitudinal centerline of the passenger seat cushion. The
 longitudinal centerline is the same distance from the longitudinal centerline of the vehicle
 as the center of the steering wheel. (S10.4.1.1)

 Record the distance from the longitudinal centerline of the vehicle to the center of the
 steering wheel. _________
 Record the distance from the longitudinal centerline of the vehicle to the longitudinal
 centerline of the seat cushion. ________

6.2.3 Rear designated seating positions
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion upper
 surface determines the longitudinal centerline.

7. Position the test dummies according to dummy position placement instructions in
 Appendix F. Complete the Appendix F check sheets, but include them in the test
 report ONLY if there is a test failure.

8. Fasten the seat belt latch.

9. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing,
 whichever is less, from the retractor and then release it, allowing the belt webbing to
 return to the dummy's chest.

10. Locate the point where the centerline of the upper torso belt webbing crosses the
 midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches
 from the dummy's chest and release until it is within one inch from the dummy's chest.
 (S10.8) Using a force measuring gage with a full scale range of no more than 1.5
 pounds, measure the contact force perpendicular to the dummy's chest exerted by the
 belt webbing.

 Contact Force (lb): 0.3
 0.0 to 0.7 pounds – Pass
 Greater than 0.7 pounds - FAIL

REMARKS:
I certify that I have read and performed each instruction.

Signature: ________________________________ Date: 12/30/08
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 □ Yes (this form is complete)
 X No (continue with this check sheet)

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 X N/A – No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 X N/A – No additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 X No – go to 5
 □ Yes – go to 4.1

 4.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)

 4.2 Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)

 4.3 **Mark** each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, **mark** each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson)

 4.4 Move the seat to the mid position.

 4.5 While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.

5. Is the seat back angle adjustable?
 □ No- go to 6
 X Yes- go to 5.1

 5.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 □ N/A – No seat back angle adjustment
 □ Manufacturer’s design seat back angle: _____
 □ Tested seat back angle: _____

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul

Test Date: 12/30/08
6. Is the seat a bucket seat?
 □ Yes, go to 6.1 and skip 6.2
 □ No, go to 6.2 and skip 6.1

6.1 Bucket seats:
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion
 upper surface determines the longitudinal centerline of a bucket seat cushion.
 (S10.4.1.2 and S16.3.1.10)

6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):
 6.2.1 Driver Seat
 Locate and mark the longitudinal line on the seat cushion that marks the intersection
 of the vertical longitudinal plane through the centerline of the steering wheel and the
 seat cushion upper surface. (S10.4.1.1)

 6.2.2 Front Outboard Passenger Seat
 Locate and mark the longitudinal centerline of the passenger seat cushion. The
 longitudinal centerline is the same distance from the longitudinal centerline of the vehicle
 as the center of the steering wheel. (S10.4.1.1)
 □ Record the distance from the longitudinal centerline of the vehicle to the center of the
 steering wheel. _________
 □ Record the distance from the longitudinal centerline of the vehicle to the longitudinal
 centerline of the seat cushion. ________

6.2.3 Rear designated seating positions
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion upper
 surface determines the longitudinal centerline.

7. Position the test dummies according to dummy position placement instructions in
 Appendix F. Complete the Appendix F check sheets, but include them in the test
 report ONLY if there is a test failure.

8. Fasten the seat belt latch.

9. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing,
 whichever is less, from the retractor and then release it, allowing the belt webbing to
 return to the dummy's chest.

10. Locate the point where the centerline of the upper torso belt webbing crosses the
 midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches
 from the dummy's chest and release until it is within one inch from the dummy's chest.
 (S10.8) Using a force measuring gage with a full scale range of no more than 1.5
 pounds, measure the contact force perpendicular to the dummy's chest exerted by the
 belt webbing.
 □ Contact Force (lb): 0.3
 □ 0.0 to 0.7 pounds – Pass
 □ Greater than 0.7 pounds - FAIL

REMARKS:
I certify that I have read and performed each instruction.

Signature: ________________________________ Date: 12/30/08
BELT CONTACT FORCE (S7.4.3)

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 - Yes (this form is complete)
 - No (continue with this check sheet)

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A – No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A – No additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No – go to 5
 - Yes – go to 4.1

 4.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)

 4.2 Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)

 4.3 **Mark** each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, **mark** each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson)

 4.4 Move the seat to the mid position.

 4.5 While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer's recommended seat cushion angle for determining the lowest height position.

 5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes- go to 5.1

 5.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 - N/A – No seat back angle adjustment
 - Manufacturer's design seat back angle: ______
 - Tested seat back angle: ______
6. Is the seat a bucket seat?
 Yes, go to 6.1 and skip 6.2
 No, go to 6.2 and skip 6.1

6.1 Bucket seats:
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)

6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):

6.2.1 Driver Seat
 Locate and mark the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)

6.2.2 Front Outboard Passenger Seat
 Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)
 Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. _________
 Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. ________

6.2.3 Rear designated seating positions
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline.

7. Position the test dummies according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

8. Fasten the seat belt latch.

9. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing, whichever is less, from the retractor and then release it, allowing the belt webbing to return to the dummy's chest.

10. Locate the point where the centerline of the upper torso belt webbing crosses the midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches from the dummy's chest and release until it is within one inch from the dummy's chest. (S10.8) Using a force measuring gage with a full scale range of no more than 1.5 pounds, measure the contact force perpendicular to the dummy's chest exerted by the belt webbing.
 Contact Force (lb): 0.4
 0.0 to 0.7 pounds – Pass
 Greater than 0.7 pounds - FAIL

REMARKS:

I certify that I have read and performed each instruction.

Signature: _________________________________ Date: 12/30/08
DATA SHEET 10
BELT CONTACT FORCE (S7.4.3)

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul
NHTSA No.: C90200
Test Date: 12/30/08

Test all Type 2 seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Rear Passenger

1. Does the vehicle incorporate a webbing tension-relieving device?
 - Yes (this form is complete)
 - No (continue with this check sheet)

2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A – No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A – No additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No – go to 5
 - Yes – go to 4.1

 4.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)
 -

 4.2 Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)
 -

 4.3 **Mark** each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, **mark** each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson)
 -

 4.4 Move the seat to the mid position.
 -

 4.5 While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer's recommended seat cushion angle for determining the lowest height position.
 -

5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes- go to 5.1

 5.1 Set and mark seat back angle, if adjustable, at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 - N/A – No seat back angle adjustment
 - Manufacturer's design seat back angle: _____
 - Tested seat back angle: _____
6. Is the seat a bucket seat?
 X Yes, go to 6.1 and skip 6.2
 X No, go to 6.2 and skip 6.1

6.1 Bucket seats:
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of
 the vertical longitudinal plane that passes through the SgRP and the seat cushion
 upper surface determines the longitudinal centerline of a bucket seat cushion.
 (S10.4.1.2 and S16.3.1.10)

6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):

6.2.1 Driver Seat
 Locate and mark the longitudinal line on the seat cushion that marks the intersection
 of the vertical longitudinal plane through the centerline of the steering wheel and the
 seat cushion upper surface. (S10.4.1.1)

6.2.2 Front Outboard Passenger Seat
 Locate and mark the longitudinal centerline of the passenger seat cushion. The
 longitudinal centerline is the same distance from the longitudinal centerline of the vehicle
 as the center of the steering wheel. (S10.4.1.1)
 □ Record the distance from the longitudinal centerline of the vehicle to the center of the
 steering wheel. ________
 □ Record the distance from the longitudinal centerline of the vehicle to the longitudinal
 centerline of the seat cushion. ________

6.2.3 Rear designated seating positions
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of the
 vertical longitudinal plane that passes through the SgRP and the seat cushion upper
 surface determines the longitudinal centerline.

7. Position the test dummies according to dummy position placement instructions in
 Appendix F. Complete the Appendix F check sheets, but include them in the test
 report ONLY if there is a test failure.

8. Fasten the seat belt latch.

9. Pull either 12 inches of belt webbing or the maximum available amount of belt webbing,
 whichever is less, from the retractor and then release it, allowing the belt webbing to
 return to the dummy's chest.

10. Locate the point where the centerline of the upper torso belt webbing crosses the
 midsagittal line on the dummy's chest. At that point pull the belt webbing out 3 inches
 from the dummy's chest and release until it is within one inch from the dummy's chest.
 (S10.8) Using a force measuring gage with a full scale range of no more than 1.5
 pounds, measure the contact force perpendicular to the dummy's chest exerted by the
 belt webbing.
 □ Contact Force (lb): 0.5
 □ 0.0 to 0.7 pounds – Pass
 ✗ Greater than 0.7 pounds - FAIL

REMARKS:

I certify that I have read and performed each instruction.

Signature: ________________________________ Date: 12/30/08
DATA SHEET 11
LATCH PLATE ACCESS (S7.4.4)

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 12/30/08
Test Technician: Alyssa Paul

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Front Driver

1. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A – No lumbar adjustment

2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A – No additional support adjustment

3. Is the fore-aft position of the seat adjustable?
 - No – go to 4
 - Yes – go to 3.1

3.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

3.2 While maintaining the forward most position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.

4. Is the seat back angle adjustable?
 - No- go to 5
 - Yes- go to 4.1

4.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 - N/A – No seat back angle adjustment
 - Manufacturer’s design seat back angle: 17.5°
 - Tested seat back angle: 17.5°

5. Is the seat a bucket seat?
 - Yes, go to 5.1 and skip 5.2
 - No, go to 5.2 and skip 5.1

5.1 Bucket seats:
 - Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)

5.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):
 - 5.2.1 Driver Seat
 - Locate and mark the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)
5.2.2 Front Outboard Passenger Seat

Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)

- Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. ________
- Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. ________

6. Position the test dummy using the procedures in Appendix F. (Some modifications to the positioning procedure may need to be made because the seat is in the forward most position. Note on the Appendix F positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy). Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

7. Position the adjustable seat belt anchorage in the manufacturer’s nominal design position for a 50th percentile adult male occupant.

8. Attach the inboard reach string to the base of the head following the instructions on Figure 3.

9. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.

10. Place the latch plate in the stowed position.

11. Extend the inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate arcs of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 - Yes – Pass
 - No

12. Extend the outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate arcs of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?
 - Yes – Pass
 - No

13. Is the latch plate within the inboard (item 11) or outboard (item 12) reach envelope?
 - Yes – Pass
 - No – Fail

14. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?
 - Yes – Pass
 - No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: ______________________________ Date: 12/30/08
Figure 3. Location of Anchoring Points for Latchplate Reach Limiting Chains or Strings to Test for Latchplate Accessibility Using Subpart B Test Device

Figure 4—USE OF CLEARANCE TEST BLOCK TO DETERMINE HAND/ARM ACCESS
DATA SHEET 11

LATCH PLATE ACCESS (S7.4.4)

Test Vehicle: 2009 Ford Escape Hybrid
NHTSA No.: C90200
Test Program: FMVSS 208 Compliance
Test Date: 12/30/08
Test Technician: Alyssa Paul

Test all front outboard seat belts other than those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Front Passenger

1. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - X N/A – No lumbar adjustment

2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - X N/A – No additional support adjustment

3. Is the fore-aft position of the seat adjustable?
 - X No – go to 4
 - X Yes – go to 3.1

3.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

3.2 While maintaining the forward most position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.

4. Is the seat back angle adjustable?
 - X No- go to 5
 - X Yes- go to 4.1

4.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 - X N/A – No seat back angle adjustment
 - X Manufacturer’s design seat back angle: 17.5°
 - X Tested seat back angle: 17.5°

5. Is the seat a bucket seat?
 - X Yes, go to 5.1 and skip 5.2
 - X No, go to 5.2 and skip 5.1

5.1 Bucket seats:
 Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)

5.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):

5.2.1 Driver Seat
 Locate and mark the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)
5.2.2 Front Outboard Passenger Seat

Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. ________

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. ________

6. Position the test dummy using the procedures in Appendix F. (Some modifications to the positioning procedure may need to be made because the seat is in the forward most position. Note on the Appendix F positioning check sheet any deviations necessary to position the Part 572, Subpart E dummy). Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

7. Position the adjustable seat belt anchorage in the manufacturer’s nominal design position for a 50th percentile adult male occupant.

8. Attach the inboard reach string to the base of the head following the instructions on Figure 3.

9. Attach the outboard reach string to the torso sheath following the instructions on Figure 3.

10. Place the latch plate in the stowed position.

11. Extend the inboard reach string in front of the dummy and then backward and outboard to the latch plate to generate arcs of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

 X Yes – Pass
 No

12. Extend the outboard reach string in front of the dummy and then backward and outboard to the latch plate to generate arcs of the reach envelope of the test dummy's arms. Is the latch plate within the reach envelope?

 X Yes – Pass
 No

13. Is the latch plate within the inboard (item 11) or outboard (item 12) reach envelope?

 X Yes – Pass
 No – Fail

14. Using the clearance test block, specified in Figure 4, is there sufficient clearance between the vehicle seat and the side of vehicle interior to allow the test block to move unhindered to the latch plate or buckle?

 X Yes – Pass
 No – Fail

REMARKS:

I certify that I have read and performed each instruction.

Signature: ______________________________ Date: 12/30/08
DATA SHEET 12
SEAT BELT RETRACTION (S7.4.5)

Test Vehicle: 2009 Ford Escape Hybrid
NHTSA No.: C90200
Test Program: FMVSS 208 Compliance
Test Date: 12/30/08
Test Technician: Alyssa Paul

Test all front outboard seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Front Driver

1. Is the vehicle a passenger car or walk-in van-type vehicle?
 - Yes, this form is complete
 - No

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A – No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A – No additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No – go to 5
 - Yes – go to 4.1

4.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

4.2 Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

4.3 Mark each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, mark each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson)

4.4 Move the seat to the mid position.

4.5 While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.

5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes- go to 5.1

5.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 - N/A – No seat back angle adjustment
 - Manufacturer’s design seat back angle: 17.5°
 - Tested seat back angle: 17.5°

6. Is the seat a bucket seat?
 - Yes, go to 6.1 and skip 6.2
 - No, go to 6.2 and skip 6.1
6.1 Bucket Seats:
Locate and mark the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)

6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):
6.2.1 Driver Seat
Locate and mark the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)

6.2.2 Front Outboard Passenger Seat
Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. ________
Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. ________

7. Position the Part 572 Subpart E test dummy according to dummy position placement instructions in Appendix F. Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.

8. Fasten the seat belt around the dummy.

9. Remove all slack from the lap belt portion. (S10.9)

N/A, the seat does not have a fore-aft adjustment

10. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

11. Apply a 2 to 4 pound tension load to the lap belt. (S10.9)

Pound load applied: 3

12. Is the belt system equipped with a tension relieving device?

Yes, continue

No, go to 14

13. Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual. (S10.9).

14. Check the statement that applies to this test vehicle:

14.1 The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

Yes – Pass go to 15

No – go to 14.2

14.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.

Yes – Pass go to 15

No – go to 14.3

14.3 Neither 14.1 nor 14.2 apply.

Fail

15. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?

Yes – Pass

No – Fail
16. If this test vehicle has an open body (without doors) and has a belt system with a tension relieving device, does the belt system fully retract when the tension-relieving device is deactivated?

- X N/A – Not an open body vehicle
- Yes – Pass
- No – Fail

REMARKS:

Signature: _____________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
Test all front outboard seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Front Passenger

1. Is the vehicle a passenger car or walk-in van-type vehicle?
 - Yes, this form is complete
 - No

2. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - N/A – No lumbar adjustment

3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - N/A – No additional support adjustment

4. Is the fore-aft position of the seat adjustable?
 - No – go to 5
 - Yes – go to 4.1
 - 4.1 Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)
 - 4.2 Use all the seat controls that have any affects on the fore-aft movement of the seat to move the seat cushion to the foremost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)
 - 4.3 **Mark** each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, **mark** each detent. For power seats, mark only the rearmost, middle and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 4.1 and 4.2. (8/31/95 legal interp to Hogan and Hartson)
 - 4.4 Move the seat to the mid position.
 - 4.5 While maintaining the mid position, move the seat to its lowest position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.

5. Is the seat back angle adjustable?
 - No- go to 6
 - Yes- go to 5.1
 - 5.1 Set and mark seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
 - N/A – No seat back angle adjustment
 - Manufacturer’s design seat back angle: 17.5°
 - Tested seat back angle: 17.5°

6. Is the seat a bucket seat?
 - Yes, go to 6.1 and skip 6.2
 - No, go to 6.2 and skip 6.1
 - 6.1 Bucket Seats:
 Locate and **mark** the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)
6.2 Bench seats (complete ONLY the one that is applicable to the seat being tested):

6.2.1 Driver Seat
Locate and mark the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)

6.2.2 Front Outboard Passenger Seat
Locate and mark the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. __________

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. __________

7. Position the Part 572 Subpart E test dummy according to dummy position placement instructions in Appendix F. **Complete the Appendix F check sheets, but include them in the test report ONLY if there is a test failure.**

8. Fasten the seat belt around the dummy.

9. Remove all slack from the lap belt portion. (S10.9)

10. Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)

11. Apply a 2 to 4 pound tension load to the lap belt. (S10.9)

12. Is the belt system equipped with a tension relieving device?

 [] Yes, continue
 [X] No, go to 14

13. Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner's manual. (S10.9).

14. Check the statement that applies to this test vehicle:

 [X] 14.1 The torso and lap belt webbing of the seat belt system automatically retracts to a stowed position when the adjacent vehicle door is in an open position and the seat belt latch plate is released.

 [X] Yes – Pass go to 15
 [] No – go to 14.2

 [X] 14.2 The torso and lap belt webbing of the seat belt system automatically retracts when the seat belt latch plate is released.

 [] Yes – Pass go to 15
 [X] No – go to 14.3

 [X] 14.3 Neither 14.1 nor 14.2 apply.

 [X] Fail

15. With the webbing and hardware in the stowed position are the webbing and hardware prevented from being pinched when the door is closed?

 [X] Yes – Pass
 [X] No – Fail

16. If this test vehicle has an open body (without doors) and has a belt system with a tension relieving device, does the belt system fully retract when the tension-relieving device is deactivated?

 [X] N/A – Not an open body vehicle
 [] Yes – Pass
 [X] No – Fail

REMARKS:

Signature: ___________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 13

SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2009 Ford Escape Hybrid

NHTSA No.: C90200

Test Program: FMVSS 208 Compliance

Test Date: 12/30/08

Test Technician: Alyssa Paul

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Front Driver

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

Signature: _______________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 12/30/08
Test Technician: Alyssa Paul

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Front Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - [X] Yes, this form is complete
 - [X] No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - [X] Yes, this form is complete
 - [X] No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - [X] Yes, this form is complete
 - [X] No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - [X] Yes, go to 5
 - [X] No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - [X] Yes – Pass
 - [X] No – Fail
 - Identify the part(s) on top or above the seat.
 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - [X] Yes – Pass
 - [X] No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - [X] Yes – Pass
 - [X] No – Fail

8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - [X] Yes – Pass
 - [X] No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - [X] Yes – Pass
 - [X] No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - [X] Yes – Pass
 - [X] No – Fail
 - N/A – Rear seat

REMARKS:

Signature: _______________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul
NHTSA No.: C90200
Test Date: 12/30/08

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Left Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes – Pass
 - No – Fail

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

Signature: _______________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Alyssa Paul
NHTSA No.: C90200
Test Date: 12/30/08

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Center Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes – Pass
 - No – Fail
 - Identify the part(s) on top or above the seat.
 - Seat belt latch plate
 - Buckle
 - Seat belt webbing

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

Signature: _______________________________ Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 13
SEAT BELT GUIDES AND HARDWARE (S7.4.6)

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 12/30/08
Test Technician: Wayne Dahlke

Test seat belts except those in walk-in van-type vehicles and those at front outboard designated seating positions in passenger cars. Complete a form for each applicable seat belt.

DESIGNATED SEATING POSITION: Right Rear Passenger

1. Is the seat cushion movable so that the seat back serves a function other than seating? (S7.4.6.1 (b))
 - Yes, this form is complete
 - No, go to 2

2. Is the seat removable? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 3

3. Is the seat movable so that the space formerly occupied by the seat can be used for a secondary function? (S7.4.6.1(b))
 - Yes, this form is complete
 - No, go to 4

4. Is the webbing designed to pass through the seat cushion or between the seat cushion and seat back? (S7.4.6.1(a))
 - Yes, go to 5
 - No, this form is complete

5. Does one of the following three parts, the seat belt latch plate, the buckle, or the seat belt webbing, stay on top of or above the seat cushion under normal conditions (i.e., conditions other than when belt hardware is intentionally pushed behind the seat by a vehicle occupant)? (S7.4.6.1(a))
 - Yes – Pass
 - No – Fail

6. Are the remaining two seat belt parts accessible under normal conditions?
 - Yes – Pass
 - No – Fail

7. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the belt is completely retracted or, if the belt is nonretractable, the belt is unlatched. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

8. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat is moved to any position to which it is designed to be adjusted. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

9. The buckle and latch plate do not pass through the guides or conduits provided and fall behind the seat when the seat back, if foldable, is folded forward as far as possible and then moved backward into position. (S7.4.6.2)
 - Yes – Pass
 - No – Fail

10. Is the inboard receptacle end of the seat belt assembly, installed in the front outboard designated seating position, accessible with the center armrest in any position to which it can be adjusted (without moving the armrest)? (S7.4.6.2)
 - Yes – Pass
 - No – Fail
 - N/A – Rear seat

REMARKS:

Signature: Wayne Dahlke Date: 12/30/08

I certify that I have read and performed each instruction.
DATA SHEET 15
H-POINT DETERMINATION FOR 50TH PERCENTILE MALE DUMMY

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 2/2/09
Test Technician: Jordan Haynes

X Driver Designated Seating Position ___ Passenger Designated Seating Position

X 1. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)

X N/A – No lumbar adjustment

X 2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)

X N/A – No additional support adjustment

X 3. Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

X 4. Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the foremost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

X 5. Mark each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 3 and 4. (8/31/95 legal interp to Hogan and Hartson)

X 6. Move the seat to the mid position.

X 7. While maintaining the mid position, move the seat to its lowest position. Mark the height position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.

X 8. Visually mark the seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.

___ N/A – No seat back angle adjustment

Manufacturer’s design seat back angle 17.5°

X 9. Is the seat a bucket seat?

X Yes, go to 10 and skip 11

___ No, go to 11 and skip 10

X 10. Bucket seats:
Locate and mark for future reference the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)

___ 11. Bench seats (complete ONLY the one that is applicable to the seat being marked):

11.1 Driver Seat
Locate and mark for future reference the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)
11.2 Passenger Seat
Locate and mark for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)
Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. _______
Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. _______
X 12. Place a 910 mm² piece of muslin cotton cloth over the seat area. (The muslin cloth shall be comparable to 48 threads/in² and density of 2.85 lb/yd.) Tuck the muslin cloth in a sufficient amount to prevent hammocking of the material.
X 13. Place the seat and back assembly of the H-Point machine at the centerline of the seat as determined in item 10 or 11.
X 14. Install the lower leg, and foot segments.
X 15. Set the length of the lower leg segment at 16.3 inches and the length of the thigh bar at 15.8 inches.
X 16. Leg and foot placement
X 16.1 Driver Designated Seating Position
X 16.1.1 Insert the pin so that the foot angle is never less than 87 degrees.
X 16.1.2 Place the right foot on the undepressed accelerator pedal with the sole of the foot on the pedal and the heel as far forward as allowable. Do not place the heel on the toe board.
X 16.1.3 Adjust the left leg to be the same distance from H-point machine centerline as the right leg.
X 16.1.4 With the T-bar level, place the left foot on the toe board with the rearmost point of the heel resting on the floor pan as close as possible to the point of intersection of the planes described by the toe board and the floor pan and not on the wheel well projection. If the foot cannot be positioned on the toe board, set it on the floor pan.
X Foot on toe board
__Foot on floor pan
__Foot on floor pan.
X 16.2 Passenger Designated Seating Position
__16.2.1 Insert the pin so that the foot angle is never less than 87 degrees.
__16.2.2 Space the lower legs 10.6 inches apart, equally spaced about the centerline of the H-point machine.
__16.2.3 With the T-bar level, place the left foot on the toe board with the rearmost point of the heel resting on the floor pan as close as possible to the point of intersection of the planes described by the toe board and the floor pan and not on the wheel well projection. If the foot cannot be positioned on the toe board, set it on the floor pan.
__Foot on toe board
__Foot on floor pan.
__16.2.4 With the T-bar level, place the right foot on the toe board with the rearmost point of the heel resting on the floor pan as close as possible to the point of intersection of the planes described by the toe board and the floor pan and not on the wheel well projection. If the foot cannot be positioned on the toe board, set it on the floor pan.
__Foot on toe board
__Foot on floor pan
X 17. Apply the lower leg weights.
X 18. Apply the thigh weights.
X 19. Tilt the back pan forward against the forward stop and draw the H-point machine away from the seatback using the T-bar.
X 20. Repositioning the back pan
X 20.1 Allow the H-point machine to slide rearward until a forward horizontal restraining load on the T-bar is no longer required due to the seat pan contacting the seat back.
X The seat pan does not slide rearward. Go to 20.2
X 20.2 Slide the H-point machine rearward by a horizontal rearward load applied at the T-bar until the seat pan contacts the seat back.
21. Apply a 10 kg load at the intersection of the hip angle quadrant and the T-bar housing along a line from the above intersection to a point just above the thigh bar housing.

22. Again apply a 10 kg load at the intersection of the hip angle quadrant and the T-bar housing along a line from the above intersection to a point just above the thigh bar housing.

23. Carefully return the back pan to the seat back.

24. Install the right and left buttock weights.

25. Install the eight torso weights alternately the installation between right and left.

26. Tilt the back pan forward until the stop is contacted.

27. Rock the H-point from side to side over a 10 degree arc (5 degrees to each side of the vertical centerline) for three complete cycles. Restrain the T-bar during rocking so that the seat pan does not change position. Minimize any inadvertent exterior loads applied in a vertical or fore-aft direction. The feet are free to move during this rocking motion.

28. Without applying a forward or lateral load lift the right foot off the floor the minimum amount necessary until no additional forward foot movement is obtained.

29. Lower the right foot until the heel is in contact with the floor pan and the ball of the foot is in contact with the floor, toe board, or undepressed accelerator pedal.

30. Without applying a forward or lateral load lift the left foot off the floor the minimum amount necessary until no additional forward foot movement is obtained.

31. Lower the left foot until the heel is in contact with the floor pan and the ball of the foot is in contact with the floor or toe board.

32. Is the seatpan level?
 Yes. Go to 34
 No. Go to 33

33. Apply a sufficient lateral load to the top of the seatback pan to level the H-point machine seat pan on the seat.

34. Holding the T-bar to prevent the H-point from sliding forward on the seat cushion, return the seatback pan to the seatback.

35. Holding the T-bar to prevent the H-point from sliding forward on the seat cushion, apply sufficient rearward force perpendicular to the back angle bar just above the torso weights to increase the hip angle 3 degrees. Minimize the exterior downward or side forces applied to the H-point machine. Release the force. Repeat this step until the hip angle readout is identical. Complete as many force applications as necessary and record the results in the following table:

<table>
<thead>
<tr>
<th>Force Application</th>
<th>Hip Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
</tr>
<tr>
<td>2</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>99</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

36. Is the H-point machine level?
 Yes, go to 37.
 No, relevel. Go back to item 26 and repeat using a new data sheet.
X 37. Record the H-point location.
Describe and mark the measuring reference point.

<table>
<thead>
<tr>
<th>Driver H-Point</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HP to Floor Z</td>
<td>254</td>
</tr>
<tr>
<td>HP to Hinge X</td>
<td>749</td>
</tr>
<tr>
<td>HP to Sill Y</td>
<td>195</td>
</tr>
<tr>
<td>HP to Striker X</td>
<td>205</td>
</tr>
<tr>
<td>HP to Dash X</td>
<td>519</td>
</tr>
<tr>
<td>HP to Header Z</td>
<td>797</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H-Point Machine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Knee</td>
<td>125</td>
</tr>
<tr>
<td>Right Knee</td>
<td>128</td>
</tr>
<tr>
<td>Left Foot Angle</td>
<td>86°</td>
</tr>
<tr>
<td>Right Foot Angle</td>
<td>129°</td>
</tr>
<tr>
<td>Left Leg</td>
<td>125</td>
</tr>
<tr>
<td>Right Leg</td>
<td>135</td>
</tr>
<tr>
<td>Hip Angle</td>
<td>99°</td>
</tr>
<tr>
<td>Back Angle</td>
<td>23°</td>
</tr>
</tbody>
</table>

I certify that I have read and performed each instruction. Date

2/2/09 Jordan Wayne
DATA SHEET 15

H-POINT DETERMINATION FOR 50TH PERCENTILE MALE DUMMY

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 2/2/09
Test Technician: Jordan Haynes

__Driver Designated Seating Position X Passenger Designated Seating Position

X 1. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
X N/A – No lumbar adjustment
X 2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
X N/A – No additional support adjustment
X 3. Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)
X 4. Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the foremost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)
X 5. Mark each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 3 and 4. (8/31/95 legal interp to Hogan and Hartson)
X 6. Move the seat to the mid position.
X 7. While maintaining the mid position, move the seat to its lowest position. Mark the height position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.
X 8. Visually mark the seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
__ N/A – No seat back angle adjustment
Manufacturer’s design seat back angle 17.5°
X 9. Is the seat a bucket seat?
X Yes, go to 10 and skip 11
__ No, go to 11 and skip 10
X 10. Bucket seats:
Locate and mark for future reference the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SqRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)
__ 11. Bench seats (complete ONLY the one that is applicable to the seat being marked):
11.1 Driver Seat
Locate and mark for future reference the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)
11.2 Passenger Seat
Locate and mark for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)

Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. _______

Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. _______

X 12. Place a 910 mm² piece of muslin cotton cloth over the seat area. (The muslin cloth shall be comparable to 48 threads/in² and density of 2.85 lb/yd.) Tuck the muslin cloth in a sufficient amount to prevent hammocking of the material.

X 13. Place the seat and back assembly of the H-Point machine at the centerline of the seat as determined in item 10 or 11.

X 14. Install the lower leg, and foot segments.

X 15. Set the length of the lower leg segment at 16.3 inches and the length of the thigh bar at 15.8 inches.

X 16. Leg and foot placement
 - 16.1 Driver Designated Seating Position
 - 16.1.1 Insert the pin so that the foot angle is never less than 87 degrees.
 - 16.1.2 Place the right foot on the undepressed accelerator pedal with the sole of the foot on the pedal and the heel as far forward as allowable. Do not place the heel on the toe board.
 - 16.1.3 Adjust the left leg to be the same distance from H-point machine centerline as the right leg.
 - 16.1.4 With the T-bar level, place the left foot on the toe board with the rearmost point of the heel resting on the floor pan as close as possible to the point of intersection of the planes described by the toe board and the floor pan and not on the wheel well projection. If the foot cannot be positioned on the toe board, set it on the floor pan.

 - Foot on toe board
 - Foot on floor pan

X 16.2 Passenger Designated Seating Position
 - 16.2.1 Insert the pin so that the foot angle is never less than 87 degrees.
 - 16.2.2 Space the lower legs 10.6 inches apart, equally spaced about the centerline of the H-point machine.
 - 16.2.3 With the T-bar level, place the left foot on the toe board with the rearmost point of the heel resting on the floor pan as close as possible to the point of intersection of the planes described by the toe board and the floor pan and not on the wheel well projection. If the foot cannot be positioned on the toe board, set it on the floor pan.

 - Foot on toe board
 - Foot on floor pan

X 17. Apply the lower leg weights.
X 18. Apply the thigh weights.
X 19. Tilt the back pan forward against the forward stop and draw the H-point machine away from the seatback using the T-bar.
X 20. Repositioning the back pan
 - 20.1 Allow the H-point machine to slide rearward until a forward horizontal restraining load on the T-bar is no longer required due to the seat pan contacting the seat back.
 - The seat pan does not slide rearward. Go to 20.2
 - 20.2 Slide the H-point machine rearward by a horizontal rearward load applied at the T-bar until the seat pan contacts the seat back.
21. Apply a 10 kg load at the intersection of the hip angle quadrant and the T-bar housing along a line from the above intersection to a point just above the thigh bar housing.

22. Again apply a 10 kg load at the intersection of the hip angle quadrant and the T-bar housing along a line from the above intersection to a point just above the thigh bar housing.

23. Carefully return the back pan to the seat back.

24. Install the right and left buttock weights.

25. Install the eight torso weights alternately the installation between right and left.

26. Tilt the back pan forward until the stop is contacted.

27. Rock the H-point from side to side over a 10 degree arc (5 degrees to each side of the vertical centerline) for three complete cycles. Restrain the T-bar during rocking so that the seat pan does not change position. Minimize any inadvertent exterior loads applied in a vertical or fore-aft direction. The feet are free to move during this rocking motion.

28. Without applying a forward or lateral load lift the right foot off the floor the minimum amount necessary until no additional forward foot movement is obtained.

29. Lower the right foot until the heel is in contact with the floor pan and the ball of the foot is in contact with the floor, toe board, or undepressed accelerator pedal.

30. Without applying a forward or lateral load lift the left foot off the floor the minimum amount necessary until no additional forward foot movement is obtained.

31. Lower the left foot until the heel is in contact with the floor pan and the ball of the foot is in contact with the floor or toe board.

32. Is the seat pan level?

 Yes. Go to 34

 No. Go to 33

33. Apply a sufficient lateral load to the top of the seatback pan to level the H-point machine seat pan on the seat.

34. Holding the T-bar to prevent the H-point from sliding forward on the seat cushion, return the seatback pan to the seatback.

35. Holding the T-bar to prevent the H-point from sliding forward on the seat cushion, apply sufficient rearward force perpendicular to the back angle bar just above the torso weights to increase the hip angle 3 degrees. Minimize the exterior downward or side forces applied to the H-point machine. Release the force. Repeat this step until the hip angle readout is identical. Complete as many force applications as necessary and record the results in the following table:

<table>
<thead>
<tr>
<th>Force Application</th>
<th>Hip Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
</tr>
<tr>
<td>3</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

36. Is the H-point machine level?

 Yes, go to 37.

 No, relevel. Go back to item 26 and repeat using a new data sheet.
X.37. Record the H-point location.
 Describe and mark the measuring reference point.

<table>
<thead>
<tr>
<th>Passenger H-Point</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HP to Floor Z</td>
<td>253</td>
</tr>
<tr>
<td>HP to Hinge X</td>
<td>745</td>
</tr>
<tr>
<td>HP to Sill Y</td>
<td>196</td>
</tr>
<tr>
<td>HP to Striker X</td>
<td>207</td>
</tr>
<tr>
<td>HP to Dash X</td>
<td>512</td>
</tr>
<tr>
<td>HP to Header Z</td>
<td>796</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H-Point Machine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Knee</td>
<td>122</td>
</tr>
<tr>
<td>Right Knee</td>
<td>123</td>
</tr>
<tr>
<td>Left Foot Angle</td>
<td>130°</td>
</tr>
<tr>
<td>Right Foot Angle</td>
<td>125°</td>
</tr>
<tr>
<td>Left Leg</td>
<td>135</td>
</tr>
<tr>
<td>Right Leg</td>
<td>120</td>
</tr>
<tr>
<td>Hip Angle</td>
<td>98°</td>
</tr>
<tr>
<td>Back Angle</td>
<td>24°</td>
</tr>
</tbody>
</table>

_________________________ ________________________
I certify that I have read and performed each instruction. Date

2/2/09
DATA SHEET 16
AIR BAG SUPPRESSION TELLTALE (S19.2.2)

Test Vehicle: 2009 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 208 Compliance Test Date: 12/31/08
Test Technician: Alyssa Paul

X 1. Is the vehicle certified to any suppression performance standards of FMVSS 208?
 X Yes - go to 2
 _No - this form is complete
X 2. Does telltale emit yellow light when the air bag is suppressed? (S19.2.2(a))
 X Yes - Pass ____ NO - FAIL
X 3. Are the words “PASSENGER AIR BAG OFF” or “PASS AIR BAG OFF” (S19.2.2(b))
 X 3.1 on the telltale? (S19.2.2(b))
 X Yes - Pass, go to 4
 _No - go to 3.2
 3.2 Within 25 mm of the telltale? (S19.2.2(b)) 3 mm from the edge of the telltale light
 _Yes - Pass ____ NO - FAIL
X 4. Is the telltale separate from the air bag readiness indicator? (S19.2.2(c))
 X Yes - Pass ____ NO - FAIL
X 5. Is the telltale within the interior of the vehicle? (S19.2.2(d))
 X Yes - Pass ____ NO - FAIL
X 6. Is the telltale forward of and above the design H-point of both the driver’s and the front
 outboard passenger’s seat when the seats are in their forwardmost seating positions?
 (S19.2.2(d))
 X Yes - Pass ____ NO - FAIL
X 7. Is the telltale away from surfaces that can be used for temporary or permanent storage
 of objects that could obscure the telltale from either the driver’s or front outboard
 passenger’s view? (S19.2.2(d))
 X Yes - Pass ____ NO - FAIL
X 8. Is the telltale located so that it is not obscured from the driver or front outboard
 passenger by a rear-facing child restraint in Appendix A installed in the front outboard
 passenger seat? (S19.2.2(d))
 X Yes - Pass ____ NO - FAIL
X 9. Is the telltale visible or recognizable during the night? (S19.2.2(e))
 X Yes - Pass ____ NO - FAIL
X 10. Is the telltale visible or recognizable during the day? (S19.2.2(e))
 X Yes - Pass ____ NO - FAIL
X 11. If there is a visibility adjustment, do all the adjustment levels make the telltale visible and
 recognizable? (S19.2.2(g))
 ____ N/A-No visibility adjustment
 X Yes - Pass ____ NO - FAIL
X 12. Does the telltale remain illuminated while the air bag is suppressed? (S19.2.2(h)) (Leave
 the air bag suppressed for 5 minutes.)
 X Yes - Pass ____ NO – FAIL
X 13. Is the telltale off while the air bag is activated? (S19.2.2(h)) (Leave the air bag activated
 for 5 minutes.)
 X Yes - Pass ____ NO - FAIL

___ 12/31/08
I certify that I have read and performed each instruction. Date
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>C90200</th>
<th>TEST DATE</th>
<th>12/31/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY</td>
<td>MGA</td>
<td>TECHNICIANS</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME</th>
<th>Britax</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL</td>
<td>Handle With Care 191</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE</td>
<td>5-26-2000</td>
</tr>
</tbody>
</table>

Base: ___On ___Off _X_ N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 4 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN507)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>TEST DATE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C90200</td>
<td>1/07/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LABORATORY:</th>
<th>TECHNICIANS:</th>
<th>DUMMY TYPE:</th>
<th>DUMMY SERIAL NO.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA</td>
<td>AP</td>
<td>12 Month Old</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>CHILD RESTRAINT MODEL:</th>
<th>DATE OF MANUFACTURE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evenflo</td>
<td>First Choice 204</td>
<td>6-20-2000</td>
</tr>
</tbody>
</table>

Base: ___On ___Off ___X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 7 *</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 10 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 6 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/05/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RERAINT NAME:</th>
<th>Graco</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Infant 8457</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-31-2000</td>
</tr>
</tbody>
</table>

Base: _X_ On ___ Off ___N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 10 *</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Won’t Fit</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward 10 *</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section B Rear Facing CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/05/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
<tr>
<td>CHILD RESTRAINT NAME:</td>
<td>Graco</td>
<td>CHILD RESTRAINT MODEL:</td>
<td>Infant 8457</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-31-2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base: ___On X_Off ___N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>10 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facing</td>
<td>Middle</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Won't Fit</td>
</tr>
<tr>
<td>Rear</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facing</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>11 *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facing</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN507)
DATA SHEET 17 SUMMARY

Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)

Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/06/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

Test Summary

- **Base:** __On__ __Off__ _X_ N/A - Restraint does not have a removable base

 - **Manufacturer’s design seat back angle:** 17.5°
 - **Tested seat back angle:** 17.5°
 - **Manufacturer’s specified anchorage position:** 3 (4 total detents, upper-most as 0)
 - **Tested anchorage position:** 3 (4 total detents, upper-most as 0)

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>Forward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td>Forward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rear</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN507)
DATA SHEET 17 SUMMARY
Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/06/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Encore 4612</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-16-2000</td>
</tr>
</tbody>
</table>

Base: _On _Off _X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>132</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Rear</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)
DATA SHEET 17 SUMMARY

Suppression Test Using 12-month-old CRABI Dummy (Part 572, Subpart R)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/07/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL / AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>12 Month Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>062</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Evenflo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Medallion 254</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-1-2000</td>
</tr>
</tbody>
</table>

Base: __On __Off __X N/A-Restraint does not have a removable base

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

A blanket was not used in the suppression testing because it did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Forward</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted</td>
<td>Forward</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>130</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Unbelted</td>
<td>Forward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Rear</td>
<td>Middle</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Facing</td>
<td>Rearward</td>
<td>N/A</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN507)
DATA SHEET 18 SUMMARY
Suppression Test Using Newborn Infant Dummy (Part 572, Subpart K)
Section A Car Bed

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>12/31/08</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>Newborn Infant</td>
<td>DUMMY SERIAL NO.:</td>
<td>003</td>
</tr>
<tr>
<td>CAR BED NAME:</td>
<td>Cosco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAR BED MODEL:</td>
<td>Dream Ride 02-719</td>
<td>DATE OF MANUFACTURE:</td>
<td>6-16-2000</td>
</tr>
</tbody>
</table>

Base: ___On ___Off ___X N/A-Restraint does not have a removable base
(A car bed with a removable base shall be treated as two separate models, i.e. this form and test procedure will be completed with the base on and then repeated on a new form with the base off.

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

A blanket and visor were not used in the suppression testing because they did not affect the weight sensing system used on the vehicle.

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forward</td>
<td>Suppressed</td>
<td></td>
</tr>
<tr>
<td>Middle</td>
<td>Suppressed</td>
<td></td>
</tr>
<tr>
<td>Rearward</td>
<td>Suppressed</td>
<td></td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN507)
DATA SHEET 19 SUMMARY
Suppression Test Using 3 Year Old Dummy And Booster Seats (Part 572, Subpart P)
Section D Forward Facing Belt Positioning Booster

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/06/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP / JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOOSTER SEAT NAME:</th>
<th>Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOSTER SEAT MODEL:</td>
<td>Next Step 4920</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-16-2000</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted Forward Facing Without Harness</td>
<td>Forward</td>
<td>10</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>16</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>11</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted Forward Facing Cinched With Harness</td>
<td>Forward</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN507)
DATA SHEET 19 SUMMARY
Suppression Test Using 3 Year Old Dummy And Booster Seats (Part 572, Subpart P)
Section D Forward Facing Toddler Belt Positioning Booster Seat

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/08/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOOSTER SEAT NAME:</th>
<th>Cosco</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOSTER SEAT MODEL:</td>
<td>High Back Booster 02-442</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>4-28-2000</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer’s specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

Test Summary

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted Forward Facing Without Harness</td>
<td>Forward</td>
<td>11</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>17</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>13</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Belted Forward Facing Cinched With Harness</td>
<td>Forward</td>
<td>131</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>129</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>128</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)
DATA SHEET 20 SUMMARY

Suppression Test Using 3 Year Old Dummy And Convertible Restraints (Part 572, Subpart P)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/06/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Britax</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Roundabout 161</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>7-21-2000</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer’s specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Cinch Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 9 *</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>127</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>133</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)
DATA SHEET 20 SUMMARY

Suppression Test Using 3 Year Old Dummy And Convertible Restraints (Part 572, Subpart P)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/06/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP / JL</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Encore 4612</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-16-2000</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer’s specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

<table>
<thead>
<tr>
<th>Test Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Belt</td>
</tr>
<tr>
<td>Belted</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)
DATA SHEET 20 SUMMARY

Suppression Test Using 3 Year Old Dummy And Convertible Restraints (Part 572, Subpart P)
Section C Forward Facing Convertible CRS

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/07/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>JL / AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>3 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>032</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHILD RESTRAINT NAME:</th>
<th>Evenflo</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHILD RESTRAINT MODEL:</td>
<td>Medallion 254</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>6-1-2000</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer’s specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

<table>
<thead>
<tr>
<th>Test Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Belt</td>
</tr>
<tr>
<td>Belted</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Rearward position. (SN507)
<table>
<thead>
<tr>
<th>Position</th>
<th>Seat Slide</th>
<th>Seat Back Angle</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position 1</td>
<td>Forward 4 *</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Sitting on seat with back against seat back</td>
<td>Middle</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 2</td>
<td>Forward 3 *</td>
<td>42.2°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Sitting on seat with back against reclined seat back</td>
<td>Middle</td>
<td>42.2°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>42.2°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 3</td>
<td>Forward 4 *</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Sitting on seat with back not against seat back</td>
<td>Middle</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 4</td>
<td>Forward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands at dummy's sides</td>
<td>Middle</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 5</td>
<td>Forward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Standing on seat, facing forward</td>
<td>Middle</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 6</td>
<td>Forward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Kneeling on seat, facing forward</td>
<td>Middle</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 7</td>
<td>Forward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Kneeling on seat, facing rearward</td>
<td>Middle</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 8</td>
<td>Forward</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Lying on seat. (Three designated seating positions only)</td>
<td>Middle</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

* The ATD would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)
DATA SHEET 22 SUMMARY
Suppression Test Using 6 Year Old Dummy And Booster Seats (Part 572, Subpart N)
Section D Forward Facing Toddler Belt Positioning Booster Seat

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/06/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>6 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOOSTER SEAT NAME:</th>
<th>Century</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOSTER SEAT MODEL:</td>
<td>Next Step 4920</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>8-16-2000</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer’s specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

<table>
<thead>
<tr>
<th>Test Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Belt</td>
</tr>
<tr>
<td>Belted</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN507)
 DATA SHEET 22 SUMMARY
 Suppression Test Using 6 Year Old Dummy And Booster Seats (Part 572, Subpart N)
 Section D Forward Facing Toddler Belt Positioning Booster Seat

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/07/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>6 Year Old</td>
<td>DUMMY SERIAL NO.:</td>
<td>153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOOSTER SEAT NAME:</th>
<th>Cosco</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOSTER SEAT MODEL:</td>
<td>High Back Booster 02-442</td>
</tr>
<tr>
<td>DATE OF MANUFACTURE:</td>
<td>4-28-2000</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer’s specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

<table>
<thead>
<tr>
<th>Test Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seat Belt</td>
</tr>
<tr>
<td>Belted</td>
</tr>
<tr>
<td>Forward</td>
</tr>
<tr>
<td>Middle</td>
</tr>
<tr>
<td>Rearward</td>
</tr>
</tbody>
</table>

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Middle position. (SN507)
DATA SHEET 22 SUMMARY

Suppression Test Using 6-Year-Old Dummy And Booster Seats (Part 572, Subpart N)
Section D Forward Facing Toddler Belt Positioning Booster Seat

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>TEST DATE</th>
<th>LABORATORY</th>
<th>TECHNICIANS</th>
<th>DUMMY TYPE</th>
<th>DUMMY SERIAL NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C90200</td>
<td>1/07/09</td>
<td>MGA</td>
<td>AP</td>
<td>6 Year Old</td>
<td>153</td>
</tr>
</tbody>
</table>

BOOSTER SEAT NAME: Evenflo
BOOSTER SEAT MODEL: Right Fit 245
DATE OF MANUFACTURE: 6-26-2000

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Manufacturer's specified anchorage position: 3 (4 total detents, upper-most as 0)
Tested anchorage position: 3 (4 total detents, upper-most as 0)

<table>
<thead>
<tr>
<th>Seat Belt</th>
<th>Seat Slide</th>
<th>Belt Load (N)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belted</td>
<td>Forward 6 *</td>
<td>13</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>16</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>18</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The CRS would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN507)
Test Summary

<table>
<thead>
<tr>
<th>Position</th>
<th>Seat Slide</th>
<th>Seat Back Angle</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position 1</td>
<td>Forward</td>
<td>17.5°</td>
<td>Won't Fit</td>
</tr>
<tr>
<td>Sitting on seat with back against seat back</td>
<td>Middle</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 2</td>
<td>Forward</td>
<td>42.2°</td>
<td>Won't Fit</td>
</tr>
<tr>
<td>Sitting on seat with back against reclined seat back</td>
<td>Middle 16 *</td>
<td>42.2°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>42.2°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 3</td>
<td>Forward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Sitting on seat edge, spine vertical, hands at dummy's sides</td>
<td>Middle</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td>Position 4</td>
<td>Forward</td>
<td>17.5°</td>
<td>Won't Fit</td>
</tr>
<tr>
<td>Sitting on seat with back against seat back then leaning on the door</td>
<td>Middle 16 *</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
<tr>
<td></td>
<td>Rearward</td>
<td>17.5°</td>
<td>Suppressed</td>
</tr>
</tbody>
</table>

* The ATD would not fit in this Forward Seat Slide position. If there is a number in the Seat Slide column, it indicates the fore-aft detent position with respect to the foremost position. (1 = Full Forward; 25 = Full Rearward; 25 total Seat Slide detents)

Successful Unbelted 5th percentile Female Dummy Reactivation was performed with the seat in the Forward position. (SN507)
DATA SHEET 29 SUMMARY
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy (Part 572, Subpart O) (S26) Position 1 - Chin On Module (S26.2)

<table>
<thead>
<tr>
<th>NHTSA NO.:</th>
<th>C90200</th>
<th>TEST DATE:</th>
<th>1/15/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY:</td>
<td>MGA</td>
<td>TECHNICIANS:</td>
<td>WD/AP</td>
</tr>
<tr>
<td>DUMMY TYPE:</td>
<td>5th Percentile Female</td>
<td>DUMMY SERIAL NO.:</td>
<td>126</td>
</tr>
</tbody>
</table>

Manufacturer's design seat back angle: 17.5°
Tested seat back angle: 17.5°
Tested seat position: Full Aft

Tested steering wheel angle: 23.8°
Thorax cavity angle: 29.7°
Bottom of chin height: 15 mm - Above Plane F Module Height

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No.</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>150.0</td>
<td>150.3</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 126 Position 1 (Chin On Module) 1/15/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>3</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>41.9</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>7.9</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>273.3</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>10.1</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>684</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>61</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>6</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>3</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>43</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>43</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 125 ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 150 ms; Injuries calculated on 0 ms to 275 ms

The original equipment parts were used for this deployment.
Low Risk Deployment Tests Using an Unbelted 5th Percentile Female Dummy (Part 572, Subpart O) (S26) Position 2 - Chin On Rim (S26.3)

<table>
<thead>
<tr>
<th>NHTSA NO.</th>
<th>C90200</th>
<th>TEST DATE</th>
<th>1/15/09</th>
</tr>
</thead>
<tbody>
<tr>
<td>LABORATORY</td>
<td>MGA</td>
<td>TECHNICIANS</td>
<td>WD/AP</td>
</tr>
<tr>
<td>DUMMY TYPE</td>
<td>5th Percentile Female</td>
<td>DUMMY SERIAL NO.</td>
<td>126</td>
</tr>
</tbody>
</table>

Manufacturer’s design seat back angle: 17.5°
Tested seat back angle: 17.5°
Tested seat position: Full Aft

Tested steering wheel angle: 24.6°
Thorax cavity angle: 29.9°
Chin Point height: 17 mm - Above Steering Wheel Target
Note: The chin on rim steering wheel target is 10 mm below the highest point on the steering wheel.

Air Bag Deployment Timing

<table>
<thead>
<tr>
<th>Stage No</th>
<th>Firing time (ms)</th>
<th>Recorded firing time (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>150.0</td>
<td>150.3</td>
</tr>
</tbody>
</table>

5th Percentile Female SN 126 Position 2 (Chin On Rim) 1/15/09

<table>
<thead>
<tr>
<th>Injury Criteria</th>
<th>Max. Allowable Injury Assessment Values</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIC15</td>
<td>700</td>
<td>5</td>
</tr>
<tr>
<td>Peak Nij (Nte)</td>
<td>1.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>40.3</td>
</tr>
<tr>
<td>Peak Nij (Ntf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>76.1</td>
</tr>
<tr>
<td>Peak Nij (Nce)</td>
<td>1.0</td>
<td>0.3</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>16.9</td>
</tr>
<tr>
<td>Peak Nij (Ncf)</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Time (ms)</td>
<td>NA</td>
<td>76.8</td>
</tr>
<tr>
<td>Neck Tension</td>
<td>2070 N</td>
<td>588</td>
</tr>
<tr>
<td>Neck Compression</td>
<td>2520 N</td>
<td>120</td>
</tr>
<tr>
<td>Chest g</td>
<td>60 g</td>
<td>14</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>52 mm</td>
<td>9</td>
</tr>
<tr>
<td>Left Femur</td>
<td>6805 N</td>
<td>40</td>
</tr>
<tr>
<td>Right Femur</td>
<td>6805 N</td>
<td>14</td>
</tr>
</tbody>
</table>

Calculated on data recorded for 125ms after the initiation of the final stage of air bag deployment designed to deploy in any full frontal rigid barrier crash up to 26 km/h. (S4.11(d))
Second stage fire time of 150 ms; Injuries calculated on 0 ms to 275 ms

A new air bag and original steering column and steering wheel were used for this deployment.
Data Sheet 32

Vehicle Weight, Fuel Tank, and Attitude Data

Test Vehicle: 2009 Ford Escape Hybrid
NHTSA No.: C90200
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
Test Date: 2/02/09

Impact Angle:
- **Zero Degrees**

Belted Dummies (Yes/No):
- **No**

Test Speed:
- **X** 32 to 40 kmph
- **0** to 48 kmph
- **0** to 56 kmph

Driver Dummy:
- **X** 50th male

Passenger Dummy:
- **X** 50th male

Steps:

1. Fill the transmission with transmission fluid to the satisfactory range.
2. Drain fuel from vehicle.
3. Run the engine until fuel remaining in the fuel delivery system is used and the engine stops.
4. Record the usable fuel tank capacity supplied by the COTR.
 - Useable Fuel Tank Capacity supplied by COTR: 56.8 liters (15.0 gallons)
5. Record the fuel tank capacity supplied in the owner's manual.
 - Useable Fuel Tank Capacity in owner's manual: 56.8 liters (15.0 gallons)
6. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” or gasoline, fill the fuel tank.
 - Amount Added: 56.8 liters (15.0 gallons)
7. Fill the coolant system to capacity.
8. Fill the engine with motor oil to the Max. mark on the dip stick.
9. Fill the brake reservoir with brake fluid to its normal level.
10. Fill the windshield washer reservoir to capacity.
11. Inflate the tires to the tire pressure on the tire placard. If no tire placard is available, inflate the tires to the recommended pressure in the owner's manual.
 - Tire placard pressure: RF: 35 psi, LF: 35 psi, RR: 35 psi, LR: 35 psi
 - Owner's manual pressure: RF: 35 psi, LF: 35 psi, RR: 35 psi, LR: 35 psi
 - Actual inflated pressure: RF: 35 psi, LF: 35 psi, RR: 35 psi, LR: 35 psi
12. Record the vehicle weight at each wheel to determine the unloaded vehicle weight (UVW), i.e. "as delivered" weight.
 - Right Front (kg): 459.5
 - Right Rear (kg): 361.5
 - Left Front (kg): 493.1
 - Left Rear (kg): 369.7
 - Total Front (kg): 952.6
 - Total Rear (kg): 731.2
 - % Total Weight: 56.6
 - % Total Weight: 43.4
 - UVW = TOTAL FRONT PLUS TOTAL REAR (KG): 1683.8
13. UVW Test Vehicle Attitude: (All dimensions in millimeters)
 - **X** Mark a point on the vehicle above the center of each wheel.
 - **X** Place the vehicle on a level surface.
 - **X** Measure perpendicular to the level surface to the 4 points marked on the body and record the measurements.
 - RF: 821
 - LF: 810
 - RR: 850
 - LR: 841
14. Calculate the Rated Cargo and Luggage Weight (RCLW): 98 kg

14.1 Does the vehicle have the vehicle capacity weight (VCW) on the certification label or tire placard?

X Yes, go to 14.3
X No, go to 14.2

14.2 VCW = Gross Vehicle Weight - UVW

VCW = __________ - __________ = __________

14.3 VCW = 438 kg (967 lbs)

14.4 Does the certification or tire placard contain the Designated Seating Capacity (DSC)?

X Yes, go to 14.6
X No, go to 14.5 and skip 14.6

14.5 DSC = Total number of seat belt assemblies = __________

14.6 DSC = 5

14.7 RCLW = VCW - (68 kg x DSC) = 438 kg - (68 kg x 5) = 98 kg

14.8 Is the vehicle certified as a truck, MPV or bus (see the certification label on the door jamb)?

X Yes, if the calculated RCLW is greater than 136 kg, use 136 kg as the RCLW. (S8.1.1)
X No, use the RCLW calculated in 14.7

15. Fully Loaded Weight (100% fuel fill): 1938.3 kg

15.1 Place the appropriate test dummy in both front outboard seating positions.

Driver: 5th female X 50th male
Passenger: 5th female X 50th male

15.2 Load the vehicle with the RCLW from 14.7 or 14.8 whichever is applicable.

15.3 Place the RCLW in the cargo area. Center the load over the longitudinal centerline of the vehicle. (S8.1.1 (d))

15.4 Record the vehicle weight at each wheel to determine the Fully Loaded Weight.

<table>
<thead>
<tr>
<th>Right Front (kg):</th>
<th>498.1</th>
<th>Right Rear (kg):</th>
<th>452.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Front (kg):</td>
<td>527.1</td>
<td>Left Rear (kg):</td>
<td>460.4</td>
</tr>
<tr>
<td>Total Front (kg):</td>
<td>1025.2</td>
<td>Total Rear (kg):</td>
<td>913.1</td>
</tr>
<tr>
<td>% Total Weight:</td>
<td>52.9</td>
<td>% Total Weight:</td>
<td>47.1</td>
</tr>
<tr>
<td>% GVW</td>
<td>51.7</td>
<td>% GVW</td>
<td>50.8</td>
</tr>
</tbody>
</table>

(\% \text{GVW} = \text{Axle GVW} \text{divided by Vehicle GVW})

Fully Loaded Weight = Total Front Plus Total Rear (kg): 1938.3

16. Fully Loaded Test Vehicle Attitude: (All dimensions in millimeters)

16.1 Place the vehicle on a level surface.

16.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13.1 above) and record the measurements

| RF: 807 | LF: 800 | RR: 824 | LR: 812 |

17. Drain the fuel system

18. Using purple dyed Stoddard solvent having the physical and chemical properties of Type 1 solvent or cleaning fluid, Table 1, ASTM Standard D484-71, “Standard Specifications for Hydrocarbon Dry-cleaning Solvents,” fill the fuel tank to 92 - 94 percent of useable capacity.

Fuel tank capacity x .94 = 56.8 liters (15.0 gallons) x .94 = 53.4 liters (14.1 gallons)

Amount added 52.6 liters (13.9 gallons) 92.7%
19. Crank the engine to fill the fuel delivery system with Stoddard solvent.

20. Calculate the test weight range.

20.1 Calculated Weight = UVW (see 12 above) + RCLW (see 14 above) + 2x(dummy weight)

\[1937.8 \text{ kg} = 1683.8 \text{ kg} + 98.0 \text{ kg} + 156.0 \text{ kg} \]

20.2 Test Weight Range = Calculated Weight (- 4.5 kg, - 9 kg.)
 Max. Test Weight = Calculated Test Weight - 4.5 kg = 1933.3 kg
 Min. Test Weight = Calculated Test Weight - 9 kg = 1928.8 kg

21. Remove the RCLW from the cargo area.

22. Drain transmission fluid, engine coolant, motor oil, and windshield washer fluid from the test vehicle so that Stoddard solvent leakage from the fuel system will be evident.

23. Vehicle Components Removed For Weight Reduction:
 Right rear tail light, rear floor mats and trunk side panels

24. Secure the equipment and ballast in the load carrying area and distribute it, as nearly as possible, to obtain the proportion of axle weight indicated by the gross axle weight ratings and center it over the longitudinal centerline of the vehicle.

25. If necessary, add ballast to achieve the actual test weight.

 N/A
 Weight of Ballast: 64.9 kg

26. Ballast, including test equipment, must be contained so that it will not shift during the impact event or interfere with data collection or interfere with high-speed film recordings or affect the structural integrity of the vehicle or do anything else to affect test results. Care must be taken to assure that any attachment hardware added to the vehicle is not in the vicinity of the fuel tank or lines.

27. Record the vehicle weight at each wheel to determine the actual test weight.

Right Front (kg): 490.8	Right Rear (kg): 453.1
Left Front (kg): 527.5	Left Rear (kg): 459.5
Total Front (kg): 1018.3	Total Rear (kg): 912.6
% Total Weight: 52.7	% Total Weight: 47.3
% GVW: 51.7	% GVW: 50.8

 (\% GVW = Axle GVW divided by Vehicle GVW)
 TOTAL FRONT PLUS TOTAL REAR (kg): 1930.9

28. Is the test weight between the Max. Weight and the Min. Weight (See 20.2)?

 Yes

 No, explain why not.

29. Test Weight Vehicle Attitude: (all dimensions in millimeters)

 29.1 Place the vehicle on a level surface

 29.2 Measure perpendicular to the level surface to the 4 points marked on the body (see 13 above) and record the measurements

 | RF: 810 | LF: 802 | RR: 826 | LR: 813 |

30. Summary of test attitude
30.1 AS DELIVERED:
RF: 821 | LF: 810 | RR: 850 | LR: 841

AS TESTED:
RF: 810 | LF: 802 | RR: 826 | LR: 813

FULLY LOADED:
RF: 807 | LF: 800 | RR: 824 | LR: 812

X 30.2 Is the “as tested” test attitude equal to or between the “fully loaded” and “as delivered” attitude?
X Yes

No, explain why not.

REMARKS:
Signature: ________________________________ Date: 2/02/09

I certify that I have read and performed each instruction.
DATA SHEET 33

VEHICLE ACCELEROMETER LOCATION AND MEASUREMENT

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>___ 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>___ 5th female</td>
</tr>
</tbody>
</table>

1. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the left front outboard seating position intersects the left rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

2. Find the location where the vertical plane parallel to the longitudinal centerline of the vehicle and through the center of the right front outboard seating position intersects the right rear seat cross member. Install an accelerometer at this intersection on the rear seat cross member to record x-direction accelerations. Record the location on the following chart.

3. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect at the top of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

4. Find the location where a vertical plane through the longitudinal centerline of the vehicle and a vertical transverse plane through the center of the two wheels on opposite sides of the engine intersect the bottom of the engine. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

5. Install an accelerometer on the right front brake caliper to record x-direction accelerations. Record the location on the following chart.

6. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the top of the instrument panel. Install an accelerometer at this intersection to record x-direction accelerations. Record the location on the following chart.

7. Install an accelerometer on the left front brake caliper to record x-direction accelerations. Record the location on the following chart.

8. Find the location where a vertical plane through the longitudinal centerline of the vehicle intersects the floor of the trunk. Install an accelerometer on the trunk floor at this intersection to record z-direction accelerations. Record the location on the following chart.

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 2/02/09

Test Vehicle: 2009 Ford Escape Hybrid

NHTSA No.: C90200

Test Program: FMVSS 208 Compliance

Test Date: 2/02/09

Test Technician: Jaime Aide

Test Vehicle: 2009 Ford Escape Hybrid

NHTSA No.: C90200

Test Program: FMVSS 208 Compliance

Test Technician: Jaime Aide

Test Date: 2/02/09
VEHICLE ACCELEROMETER LOCATION AND DATA SUMMARY

Dimensions Corresponding To The Letters “A” Through “K” (Excluding “I”) Are Recorded In The Table On The Following Page. Accelerometers Corresponding To The Numbers 1 Through 8 Are Specified On The Preceding Page.
DATA SHEET 33

VEHICLE ACCELEROMETER LOCATION AND MEASUREMENTS

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>LENGTH (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRETEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>362</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>365</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3701</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3721</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td>Right Side: 3601</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>711</td>
</tr>
<tr>
<td>G (IP)</td>
<td>2850</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1667</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>711</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>250</td>
</tr>
<tr>
<td>POST TEST VALUES</td>
<td></td>
</tr>
<tr>
<td>A (LH Rear Seat Xmbr)</td>
<td>362</td>
</tr>
<tr>
<td>B (RH Rear Seat Xmbr)</td>
<td>365</td>
</tr>
<tr>
<td>C (Engine Top)</td>
<td>3546</td>
</tr>
<tr>
<td>D (Engine Bottom)</td>
<td>3648</td>
</tr>
<tr>
<td>E (Caliper)</td>
<td>Right Side: 3604</td>
</tr>
<tr>
<td>F (Left Caliper)</td>
<td>676</td>
</tr>
<tr>
<td>G (IP)</td>
<td>2837</td>
</tr>
<tr>
<td>H (Seat)</td>
<td>1667</td>
</tr>
<tr>
<td>J (Right Caliper)</td>
<td>682</td>
</tr>
<tr>
<td>K (Trunk)</td>
<td>250</td>
</tr>
</tbody>
</table>
DATA SHEET 34
PHOTOGRAPHIC TARGETS

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Jamie Aide
NHTSA No.: C90200
Test Date: 2/02/09

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>_ 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>_ 5th female</td>
</tr>
</tbody>
</table>

X 1. FMVSS 208 vehicle targeting requirements (See Figures 28A and 28B)
X 1.1 Targets A1 and A2 are on flat rectangular panels.
X 1.2 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the front on the outboard sides of A1 and A2. The center of each circular target is 100 mm from the one next to it.
Distance between targets (mm): 100 mm
X 1.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted at the back on the outboard sides of on A1 and A2. The center of each circular target is 100 mm from the one next to it.
Distance between targets (mm): 100 mm
X 1.4 The distance between the first circular target at the front of A1 and A2 and the last circular target at the back of A1 and A2 is at least 915 mm.
Distance between the first and last circular targets (mm): 917 mm
X 1.5 Firmly fix target A1 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy.
X 1.6 Firmly fix target A2 on the vehicle roof in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy.
X 1.7 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the driver door. The centers of each circular target are at least 610 mm apart.
Distance between targets (mm): 610 mm
X 1.8 Two circular targets (C1 and C2) at least 90 mm in diameter and with black and yellow quadrants are mounted on the outside of the passenger door. The centers of each circular target are at least 610 mm apart.
Distance between targets (mm): 610 mm
X 1.9 Place tape with squares having alternating colors on the top portion of the steering wheel.
X 1.10 Chalk the bottom portion of the steering wheel
X 1.11 Is this an offset test?
X Yes, continue with this section
X No, go to 2.
X 1.12 Measure the width of the vehicle.
Vehicle width (mm):
X 1.13 Find the centerline of the vehicle. (½ of the vehicle width)
X 1.14 Find the line parallel to the centerline of the vehicle and 0.1 x vehicle width from the centerline of the vehicle.
1.15 Apply 25 mm wide tape with alternating black and yellow squares parallel to and on each side of the line found in 1.14. The edge of each tape shall be 50 mm from the line found in 1.14. The tape shall extend from the bottom of the bumper to the front edge of the windshield. (Figure 28D)

2. **Barrier Targeting**

2.1 Fix two stationary targets D1 and D2 to the barrier as shown in the Figure 28A. One target is in the vertical longitudinal plane that is coincident with the midsagittal plane of the driver dummy. The other is in the vertical longitudinal plane that is coincident with the midsagittal plane of the passenger dummy

2.2 Targets D1 and D2 are on a rectangular panel.

2.3 Three circular targets at least 90 mm in diameter and with black and yellow quadrants are mounted on the sides of the rectangular panel away from the longitudinal centerline of the vehicle. The center of each circular target is 100 mm from the one next to it.

Distance between circular targets on D1 (mm): **100 mm**
Distance between circular targets on D2 (mm): **100 mm**

3. **FMVSS 208 Dummy Targeting Requirements**

3.1 Place a circular target with black and yellow quadrants on both sides of the driver dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.2 Place a circular target with black and yellow quadrants on both sides of the passenger dummy head as close as possible to the center of gravity of the head in the x and z direction (relative to the measuring directions of the accelerometers).

3.3 Place a circular target with black and yellow quadrants on the outboard shoulder of the driver dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

3.4 Place a circular target with black and yellow quadrants on the outboard shoulder of the passenger dummy. Place the target as high up on the arm as possible at the intersection of the arm and shoulder. The sleeve of the shirt on the dummy may be cut to make the target visible, but do not remove any material.

4. **FMVSS 204 Targeting Requirements**

4.1 Is an FMVSS 204 indicant test ordered on the “COTR Vehicle Work Order?”

☐ Yes, continue with this form.
☒ No, this form is complete.

4.2 Resection panel (Figure 28C)

4.2.1 The panel deviates no more than 6 mm from perfect flatness when suspended vertically.

4.2.2 The 8 targets on the panel are circular targets at least 90 mm in diameter and with black and yellow quadrants.

4.2.3 The center of each of the 4 outer targets are placed within 1 mm of the corners of a square measuring 914 mm on each side.

4.2.4 Locate another square with 228 mm sides and with the center of this square coincident with the center of the 914 mm square.

4.2.5 The center of the 4 inner targets are placed at the midpoints of each of the 228 mm sides.

4.3 Place a circular target at least 90 mm in diameter and with black and yellow quadrants on a material (cardboard, metal, etc.) that can be taped to the top of the steering column.

4.4 Tape the target from 4.3 to the top of the steering column in a manner that does not interfere with the movement of the steering column in a crash

REMARKS:

Signature: __________________________ Date: 2/02/09

I certify that I have read and performed each instruction.
REFERENCE PHOTO TARGETS

CONCRETE BARRIER

A1

B

C1

C2

915 mm

100 mm

100 mm

610 mm

MONORAIL

COVERED PHOTO PIT

LEFT SIDE VIEW
RESECTION PANEL TARGETING ALIGNMENT

RESECTION CONTROL POINTS PANEL

A1 A2

CAR TOP TARGETS A1 & A2

STEERING WHEEL

STEERING COLUMN TARGET B

REAR VIEW

TEST RUN STEERING COLUMN CAMERA VIEW OF TYPICAL TIME ZERO VEHICLE POSITION

LEFT SIDE VIEW
PRE-RUN STEERING COLUMN HIGH SPEED CAMERA VIEW

LEFT SIDE VIEW

914 mm
Data Sheet 35

Camera Locations

<table>
<thead>
<tr>
<th>Camera No.</th>
<th>View</th>
<th>Camera Positions (mm) *</th>
<th>Lens (mm)</th>
<th>Speed (fps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Real Time Left Side View</td>
<td>X: 13 Y: 24 Z: 1140</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>2</td>
<td>Left Side View (Barrier face to front seat backs)</td>
<td>X: 1055 Y: -5365 Z: 1140</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>Left Side View (Driver)</td>
<td>X: 1365 Y: -5960 Z: 1265</td>
<td>35</td>
<td>1000</td>
</tr>
<tr>
<td>4</td>
<td>Left Side View (B-post aimed toward center of steering wheel)</td>
<td>X: 6360 Y: -4965 Z: 2050</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>5</td>
<td>Left Side View (Steering Column)</td>
<td>X: 775 Y: -5245 Z: 1270</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>6</td>
<td>Left Side View (Steering Column)</td>
<td>X: 775 Y: -5245 Z: 870</td>
<td>25</td>
<td>1000</td>
</tr>
<tr>
<td>7</td>
<td>Right Side View (Overall)</td>
<td>X: 2040 Y: 5970 Z: 1235</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>8</td>
<td>Right Side View (Passenger)</td>
<td>X: 1525 Y: 5565 Z: 1240</td>
<td>35</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>Right Side View (Angle)</td>
<td>X: 6540 Y: 4835 Z: 2050</td>
<td>50</td>
<td>1000</td>
</tr>
<tr>
<td>10</td>
<td>Right Side View (Front door)</td>
<td>X: 1325 Y: 5250 Z: 1155</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>11</td>
<td>Front View Windshield</td>
<td>X: -285 Y: 0 Z: 2860</td>
<td>12.5</td>
<td>1000</td>
</tr>
<tr>
<td>12</td>
<td>Front View Driver</td>
<td>X: -135 Y: -470 Z: 2180</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>13</td>
<td>Front View Passenger</td>
<td>X: -110 Y: 420 Z: 2180</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>14</td>
<td>Overhead Barrier Impact View</td>
<td>X: 1620 Y: 0 Z: 5050</td>
<td>14</td>
<td>1000</td>
</tr>
<tr>
<td>15</td>
<td>Pit Camera Engine View</td>
<td>X: 1125 Y: 0 Z: -3150</td>
<td>24</td>
<td>1000</td>
</tr>
<tr>
<td>16</td>
<td>Pit Camera Fuel Tank View</td>
<td>X: 3150 Y: 0 Z: -3150</td>
<td>24</td>
<td>1000</td>
</tr>
</tbody>
</table>

*Coordinates:
- X - forward of impact plane
- Y - right of monorail centerline
- Z - above ground level

Test Vehicle: 2009 Ford Escape Hybrid

Test Program: FMVSS 208 Compliance

NHTSA No.: C90200

Test Date: 2/02/09

Time: 10:20 am
DUMMY POSITIONING PROCEDURES FOR DRIVER TEST DUMMY CONFORMING TO SUBPART E OF PART 572

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2009 Ford Escape Hybrid</th>
<th>Test Technician:</th>
<th>Joe Fleck</th>
<th>NHTSA No.:</th>
<th>C90200</th>
<th>Test Date:</th>
<th>2/02/09</th>
</tr>
</thead>
</table>

DATA SHEET 36

APPENDIX F

IMPACT ANGLE: Zero Degrees
BELTED DUMMIES (YES/NO): No
TEST SPEED:
| X | 32 to 40 kmph | 0 to 48 kmph | 0 to 56 kmph |

DRIVER DUMMY:
| X | 5th female | 50th male |

PASSENGER DUMMY:
| X | 5th female | 50th male |

1. Position the seat’s adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
 - _X_ N/A – No lumbar adjustment

2. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
 - _X_ N/A – No additional support adjustment

3. Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)

4. Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the foremost position. **Mark** this position. (8/31/95 legal interp to Hogan and Hartson)

5. **Mark** each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, **mark** each detent. For power seats, **mark** only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the mid-point), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 3 and 4. (8/31/95 legal interp to Hogan and Hartson)

6. Move the seat to the mid position.

7. While maintaining the mid position, move the seat to its lowest position. **Mark** the height position. For seats with adjustable seat cushions, use the manufacturer’s recommended seat cushion angle for determining the lowest height position.
 - _X_ N/A- No cushion angle adjustment
 - Manufacturers seat cushion angle 0.0°
 - Tested seat cushion angle 0.0°

8. Visually **mark** the seat back angle, if adjustable, at the manufacturer’s nominal design riding position for a **50th percentile adult male** in the manner specified by the manufacturer.
 - _X_ N/A – No seat back angle adjustment
 - Manufacturer’s design seat back angle 17.5°
 - Tested seat back angle 17.2°

9. Is the seat a bucket seat?
 - _X_ Yes, go to 10 and skip 11
 - _X_ No, go to 11 and skip 10

10. Bucket seats:
 Locate and **mark** the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)

11. Bench seats:
 Locate and **mark** the longitudinal line on the seat cushion that marks the intersection of the vertical longitudinal plane through the centerline of the steering wheel and the seat cushion upper surface. (S10.4.1.1)
12. If adjustable, set the head restraint at the full up position. (S8.1.3) If there are adjustments other than vertical, adjust them as recommended by the manufacturer.
 _N/A – No head restraint adjustment

13. Place any adjustable seat belt anchorages at the vehicle manufacturer's nominal design position for a 50th percentile adult male occupant (S8.1.3)
 _N/A – No adjustable upper seat belt anchorage
 Manufacturer's specified anchorage position. 3 Full Down (4 total positions, top as 0)
 Tested anchorage position: 3 Full Down (4 total positions, top as 0)

14. Place adjustable pedals in the full forward position.
 _N/A – the pedals are not adjustable.

15. Is the steering wheel adjustable up and down and/or in and out?
 _Yes – go to 16
 _No – go to 19

16. Find and mark each up and down position. Label three of the positions with the following: H for highest, M for mid-position (if there is no mid-position, label the next lowest adjustment position), and L for lowest.
 _N/A – steering wheel is not adjustable up and down

17. Find and mark each in and out position. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the next rearmost adjustment position), and R for rearmost.
 _N/A – steering wheel is not adjustable in and out.

18. Set the steering wheel hub at the geometric center of the full range of driving positions including any telescoping positions.

19. Place the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion markings as determined in item 10 or 11 and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

20. Rest the thighs on the seat cushion. (S10.5)

21. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined in Data Sheet 15. (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications.
 (S10.4.2.1 and S10.4.2.2)
 _0.078" rear horizontal inches from the point 0.25 below the determined H-point (0.5" max.)
 (S10.4.2.1)
 _0.026" down vertical inches from the point 0.25 below the determined H-point (0.5" max.)
 (S10.4.2.1)
 _24.5° pelvic angle (20° to 25°)

22. Is the head level within ± 0.5°? (S10.1)
 _Yes, go to 23
 _No, go to 22.1

22.1 Adjust the position of the H-point. (S10.1)

22.2 Is the head level within ± 0.5°? (S10.1)
 _Yes, record the following, then go to 23. _No, go to 22.3
 _horizontal inches from the point 0.25 below the determined H-point (0.5" max.)
 (S10.4.2.1)
 _vertical inches from the point 0.25 below the determined H-point (0.5" max.)
 (S10.4.2.1)
 _pelvic angle (20° to 25°) (S10.4.2.2)

22.3 Adjust the pelvic angle. (S10.1)

22.4 Is the head level within ± 0.5°? (S10.1)
 _Yes, record the following, then go to 23. _No, go to 22.5
 _horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.)
 (S10.4.2.1)
 _vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)
 (S10.4.2.1)
 _pelvic angle (20° to 25°) (S10.4.2.2)
22.5 Adjust the neck bracket of the dummy the minimum amount necessary from the nonadjusted “0” setting until the head is level within ± 0.5°. (S10.1) Record the following, then go to 23

_horizontal inches from the point 0.25 below the determined H-point (0.5 inch max.)
(S10.4.2.1)
_vertical inches from the point 0.25 below the determined H-point (0.5 inch max.)
(S10.4.2.1)
_pelvic angle (20° to 25°) (S10.4.2.2)

23. Set the distance between the outboard knee clevis flange surfaces at 10.6 inches.

10.6 " measured distance (10.6 inches) (S10.5)

24. Can the right foot be placed on the accelerator?

X Yes, go to 24.1 and skip 24.2
X No, go to 24.2

24.1. To the extent practicable keep the right thigh and the leg in a vertical plane (S10.5) while resting the foot on the undepressed accelerator pedal with the rearmost point of the heel on the floor pan in the plane of the pedal. (S10.6.1.1)

24.2. Initially set the foot perpendicular to the leg and then place it as far forward as possible in the direction of the pedal centerline with the rearmost point of the heel resting on the floor pan. (S10.6.1.1)

24.2.1 Move the adjustable pedal to its most rearward position or until the right foot is flat on the pedal, whichever occurs first. (S10.6.1.1)

N/A – the accelerator pedal is not adjustable

25. Does the vehicle have a foot rest?

X Yes, go to 25.1
X No, go to 25.2

25.1 With the left thigh and leg in a vertical plane, place the left foot on the foot rest with the heel resting on the floor pan. (S10.6.1.2)

25.1.1 Is the left foot elevated above the right foot?

X Yes, go to 25.2 and position the foot off the foot rest
X No, go to 26

25.2 Check the ONLY one of the following that applies

The left foot reaches the toeboard without adjusting the foot or leg. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5) and place the foot on the toeboard, skip 25.3 (S10.6.1.2)

The left foot reaches the toeboard but contacts the brake or clutch pedal and must be rotated to avoid pedal contact. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5) and place the foot on the toeboard. The foot was rotated about the leg to avoid pedal contact, skip 25.3 (S10.6.1.2)

The left foot reaches the toeboard but contacts the brake or clutch pedal and the foot and leg must be rotated to avoid pedal contact. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5) and place the foot on the toeboard. The foot was rotated about the leg and the leg was rotated outboard about the hip the minimum distance necessary to avoid pedal contact, skip 12.3 (S10.6.1.2)

N/A – the foot does not reach the toeboard, go to 25.3

25.3 Check the ONLY one of the following that applies

The left foot did not contact the brake or clutch pedal. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5). Set the foot perpendicular to the leg and place it as far forward as possible with the heel resting on the floor pan. (S10.6.1.2)

The left foot did contact the brake or clutch pedal and the foot was rotated to avoid contact. To the extent practicable keep the left thigh and the leg in a vertical longitudinal plane (S10.5). Set the foot perpendicular to the leg and place it as far forward as possible with the heel resting on the floor pan and rotate the foot the minimum amount to avoid pedal contact. (S10.6.1.2)

The left foot did contact the brake or clutch pedal and the foot was rotated about the foot and the leg was rotated outboard about the hip the minimum distance necessary to avoid pedal contact. Set the foot perpendicular to the leg and place it as far forward as possible with the heel resting on the floor pan and rotate the foot about the leg and the thigh and leg outboard about the hip the minimum distance necessary to avoid pedal contact. (S10.6.1.2)

26. Place the right upper arm adjacent to the torso with the centerline as close to a vertical plane as possible. (S10.2.1)

27. Is the driver seat belt used for this test?

X Yes, continue
X No, go to 28
27.1 Fasten the seat belt around the dummy.
27.2 Remove all slack from the lap belt portion. (S10.9)
27.3 Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)
27.4 Apply a 2 to 4 pound tension load to the lap belt. (S10.9)
27.5 Is the belt system equipped with a tension-relieving device?
 Yes, continue
 No, go to 28
27.6 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner’s manual. (S10.9).
28. Place the left upper arm adjacent to the torso with the centerline as close to a vertical plane as possible. (S10.2.1)
29. Place the right hand with the palm in contact with the steering wheel at the rim’s horizontal centerline and with the thumb over the steering wheel. (S10.3.1)
30. Place the left hand with the palm in contact with the steering wheel at the rim’s horizontal centerline and with the thumb over the steering wheel. (S10.3.1)
31. Tape the thumb of each hand to the steering wheel by using masking tape with a width of 0.25 inch. The length of the tape shall only be enough to go around the thumb and steering wheel one time.

I certify that I have read and performed each instruction. 2/02/09

[Signature]

Date
APPENDIX F
DUMMY POSITIONING PROCEDURES FOR PASSENGER TEST DUMMY
CONFORMING TO SUBPART E OF PART 572

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Joe Fleck

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>___ 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>___ 5th female</td>
</tr>
</tbody>
</table>

_1. The seat is a bench seat for which the adjustments have already been made for the driver and there are no independent adjustments that can be made for the passenger. Go to 12.
_ X N/A- the passenger seat adjusts independently of the driver seat.

_2. Position the seat's adjustable lumbar supports so that the lumbar support is in its lowest, retracted or deflated adjustment position. (S8.1.3)
_ X N/A – No lumbar adjustment

_3. Position any adjustable parts of the seat that provide additional support so that they are in the lowest or most open adjustment position. (S16.2.10.2)
_ X N/A – No additional support adjustment

_4. Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the rearmost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

_5. Use all the seat controls that have any affect on the fore-aft movement of the seat to move the seat cushion to the foremost position. Mark this position. (8/31/95 legal interp to Hogan and Hartson)

_6. Mark each fore-aft position so that there is a visual indication when the seat is at a particular position. For manual seats, mark each detent. For power seats, mark only the rearmost, middle, and foremost positions. Label three of the positions with the following: F for foremost, M for mid-position (if there is no mid-position, label the closest adjustment position to the rear of the midpoint), and R for rearmost. Determine the mid fore-aft seat position based on the foremost and rearmost positions determined in items 3 and 4. (8/31/95 legal interp to Hogan and Hartson)

_7. Move the seat to the mid position.

_8. While maintaining the mid position, move the seat to its lowest position. Mark the height position. For seats with adjustable seat cushions, use the manufacturer's recommended seat cushion angle for determining the lowest height position.
_ X N/A- No cushion angle adjustment

Manufacturers seat cushion angle ______________
Tested seat cushion angle ______________

_9. Visually mark the seat back angle, if adjustable, at the manufacturer's nominal design riding position for a 50th percentile adult male in the manner specified by the manufacturer.
_ X N/A – No seat back angle adjustment

Manufacturer's design seat back angle 17.5°

_10. Is the seat a bucket seat?
_ X Yes, go to 11 and skip 12
_ _ No, go to 12 and skip 11

_11. Bucket seats:
Locate and mark for future reference the longitudinal centerline of the seat cushion. The intersection of the vertical longitudinal plane that passes through the SgRP and the seat cushion upper surface determines the longitudinal centerline of a bucket seat cushion. (S10.4.1.2 and S16.3.1.10)
12. Bench seats:
 Locate and mark for future reference the longitudinal centerline of the passenger seat cushion. The longitudinal centerline is the same distance from the longitudinal centerline of the vehicle as the center of the steering wheel. (S10.4.1.1)
 Record the distance from the longitudinal centerline of the vehicle to the center of the steering wheel. _______
 Record the distance from the longitudinal centerline of the vehicle to the longitudinal centerline of the seat cushion. _______

13. If adjustable, set the head restraint at the full up position. (S8.1.3) If there are adjustments other than vertical, adjust them as recommended by the manufacturer.
 N/A—No head restraint adjustment

14. Place any adjustable seat belt anchorages at the vehicle manufacturer's nominal design position for a 50th percentile adult male occupant (S8.1.3)
 N/A—No adjustable upper seat belt anchorage
 Manufacturer's specified anchorage position
 Tested anchorage position

15. Place the dummy in the seat such that the midsagittal plane is coincident with the longitudinal seat cushion markings as determined in item 11 or 12 and the upper torso rests against the seat back. (S10.4.1.1 & S10.4.1.2)

16. Rest the thighs on the seat cushion. (S10.5)

17. Position the H-point of the dummy within 0.5 inch of the vertical dimension and 0.5 inch of the horizontal dimension of a point 0.25 inch below the H-point determined by using the equipment and procedures specified in SAE J826 (APR 1980). (S10.4.2.1) Then measure the pelvic angle with respect to the horizontal using the pelvic angle gage. Adjust the dummy position until these three measurements are within the specifications. (S10.4.2.1 and S10.4.2.2)
 0.157”_rear_ horizontal inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 0.093”_up_ vertical inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 23.4°_pelvic angle (20° to 25°)

18. Is the head level within ± 0.5°? (S10.1)
 X Yes, go to 19
 No, go to 18.1
 18.1 Adjust the position of the H-point. (S10.1 and S10.4.2.1)
 Yes, record the following, then go to 19. _No_, go to 18.3
 _horizontal inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _vertical inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _pelvic angle (20° to 25°) (S10.4.2.2)

18.2 Is the head level within ± 0.5°? (S10.1)
 Yes, record the following, then go to 19. _No_, go to 18.3
 _horizontal inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _vertical inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _pelvic angle (20° to 25°) (S10.4.2.2)

18.3 Adjust the pelvic angle. (S10.1)
 Yes, record the following, then go to 19. _No_, go to 18.5
 _horizontal inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _vertical inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _pelvic angle (20° to 25°) (S10.4.2.2)

18.4 Is the head level within ± 0.5°? (S10.1)
 Yes, record the following, then go to 19. _No_, go to 18.5
 _horizontal inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _vertical inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _pelvic angle (20° to 25°) (S10.4.2.2)

18.5 Adjust the neck bracket of the dummy the minimum amount necessary from the nonadjusted "0" setting until the head is level within ± 0.5°. (S10.1) Record the following, then go to 19
 _horizontal inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _vertical inches from the point 0.25 below the determined H-point (0.5” max.)
 (S10.4.2.1)
 _pelvic angle (20° to 25°) (S10.4.2.2)

19. Set the distance between the outboard knee clevis flange surfaces at 10.6 inches.
 10.6” measured distance (10.6 inches) (S10.5)
X. 20. Check the only one of the following that applies:
 X To the extent practicable keep the left thigh and leg in a vertical plane and the right thigh and leg in a vertical plane, place the feet on the toeboard with the heels resting on the floor pan as close as possible to the intersection of the floor pan and toeboard.
 ____ The feet cannot be placed flat on the toeboard. To the extent practicable keep the left thigh and leg in a vertical plane and the right thigh and leg in a vertical plane, set the feet perpendicular to the legs and place them as far forward as possible with the heels resting on the floor pan.
 ____ The vehicle has a wheelhouse projection. To the extent practicable keep the left thigh and leg in a vertical plane and the right thigh and leg in a vertical plane, set the feet perpendicular to the legs and place them as far forward as possible with the heels resting on the floor pan. Do not set the feet on the wheelhouse projection.
 ____ The vehicle has a wheelhouse projection and the feet cannot be placed on the toeboard. To the extent practicable keep the left thigh and leg in a vertical plane and the right thigh and leg in a vertical plane, set the feet perpendicular to the legs and place them as far forward as possible with the heel resting on the floor pan. Do not set the feet on the wheelhouse projection.

X. 21. Place the left upper arm in contact with the seat back and side of the torso. (S10.2.2)

X. 22. Is the passenger seat belt used for this test?
 ____ Yes, continue
 __ X No, go to 23

 22.1 Fasten the seat belt around the dummy.
 22.2 Remove all slack from the lap belt portion. (S10.9)
 22.3 Pull the upper torso webbing out of the retractor and allow it to retract; repeat this four times. (S10.9)
 22.4 Apply a 2 to 4 pound tension load to the lap belt. (S10.9)
 ___pound load applied
 22.5 Is the belt system equipped with a tension relieving device?
 ____ Yes, continue
 ___ X No, go to 23

 22.6 Introduce the maximum amount of slack into the upper torso belt that is recommended by the vehicle manufacturer in the vehicle owner’s manual. (S10.9). Go to 23.

X. 23. Place the right upper arm in contact with the seat back and side of the torso. (S10.2.2)

X. 24. Place the left hand palm in contact with the outside of the left thigh and the little finger in contact with the seat cushion. (S10.3.2)

X. 25. Place the right hand palm in contact with the outside of the right thigh and the little finger in contact with the seat cushion. (S10.3.2)

I certify that I have read and performed each instruction.

2/02/09
Date
DATA SHEET 37
DUMMY MEASUREMENTS

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Joe Fleck

NHTSA No.: C90200
Test Date: 2/02/09

DUMMY MEASUREMENTS FOR FRONT SEAT OCCUPANTS

- CD: Chest to Dash
- CS: Chest to Steering Wheel Hub
- HH: Head to Header
- HW: Head to Windshield
- HZ: Head to Roof
- KDA: Knee to Dash Angle
- KDL: Left Knee to Dash
- KDR: Right Knee to Dash
- NA: Nose to Rim Angle
- NR: Nose to Rim
- PA: Pelvic Angle
- RA: Rim to Abdomen
- SA: Seat Back Angle
- SCA: Steering Column Angle
- SH: Striker to H-Point
- SK: Striker to Knee
- ST: Striker to Head
- SWA: Steering Wheel Angle
- TA: Tibial Angle
- WA: Windshield Angle

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Joe Fleck

NHTSA No.: C90200
Test Date: 2/02/09
DATA SHEET 37
DUMMY MEASUREMENTS

Test Vehicle: 2009 Ford Escape Hybrid
Test Program: FMVSS 208 Compliance
Test Technician: Joe Fleck
NHTSA No.: C90200
Test Date: 2/02/09

<table>
<thead>
<tr>
<th>Code</th>
<th>Measurement Description</th>
<th>Driver SN 401</th>
<th>Passenger SN 403</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length (mm)</td>
<td>Angle (°)</td>
</tr>
<tr>
<td>WA</td>
<td>Windshield Angle</td>
<td>35.1</td>
<td></td>
</tr>
<tr>
<td>SWA</td>
<td>Steering Wheel Angle</td>
<td>66.1</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>Steering Column Angle</td>
<td>23.9</td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>Seat Back Angle (On Head Rest Post)</td>
<td>17.8</td>
<td>17.7</td>
</tr>
<tr>
<td>HZ</td>
<td>Head to Roof (Z)</td>
<td>210</td>
<td>210</td>
</tr>
<tr>
<td>HH</td>
<td>Head to Header</td>
<td>385 24.1</td>
<td>401 24.7</td>
</tr>
<tr>
<td>HW</td>
<td>Head to Windshield</td>
<td>598 0.0</td>
<td>547 0.0</td>
</tr>
<tr>
<td>HR</td>
<td>Head to Side Header (Y)</td>
<td>222</td>
<td>215</td>
</tr>
<tr>
<td>NR</td>
<td>Nose to Rim</td>
<td>400 12.7</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>Chest to Dash</td>
<td>522</td>
<td>561</td>
</tr>
<tr>
<td>CS</td>
<td>Chest to Steering Hub</td>
<td>333 8.3</td>
<td></td>
</tr>
<tr>
<td>RA</td>
<td>Rim to Abdomen</td>
<td>190 0.0</td>
<td></td>
</tr>
<tr>
<td>KDL</td>
<td>Left Knee to Dash</td>
<td>136 13.6</td>
<td>126</td>
</tr>
<tr>
<td>KDR</td>
<td>Right Knee to Dash</td>
<td>110</td>
<td>129 12.5</td>
</tr>
<tr>
<td>PA</td>
<td>Pelvic Angle</td>
<td>24.5</td>
<td>23.4</td>
</tr>
<tr>
<td>TA</td>
<td>Tibia Angle</td>
<td>49.3</td>
<td>46.1</td>
</tr>
<tr>
<td>KK</td>
<td>Knee to Knee (Y)</td>
<td>325</td>
<td>272</td>
</tr>
<tr>
<td>SK</td>
<td>Striker to Knee</td>
<td>593 93.1</td>
<td>584 93.0</td>
</tr>
<tr>
<td>ST</td>
<td>Striker to Head</td>
<td>534 8.4</td>
<td>541 6.8</td>
</tr>
<tr>
<td>SH</td>
<td>Striker to H-Point</td>
<td>229 116.3</td>
<td>239 120.3</td>
</tr>
<tr>
<td>SHY</td>
<td>Striker to H-Point (Y)</td>
<td>237</td>
<td>226</td>
</tr>
<tr>
<td>HS</td>
<td>Head to Side Window</td>
<td>326</td>
<td>321</td>
</tr>
<tr>
<td>HD</td>
<td>H-Point to Door (Y)</td>
<td>138</td>
<td>134</td>
</tr>
<tr>
<td>AD</td>
<td>Arm to Door (Y)</td>
<td>125</td>
<td>118</td>
</tr>
<tr>
<td>AA</td>
<td>Ankle to Ankle</td>
<td>335</td>
<td>221</td>
</tr>
</tbody>
</table>
SEAT BELT POSITIONING DATA

DUMMY'S CENTERLINE

SHOULDER BELT PORTION

TBI

'D' RING

'1/8" THICK ALUMINUM PLATE

EMERGENCY LOCKING RETRACTOR

OUTBOARD ANCHORAGE

INBOARD ANCHORAGE

FLOORPAN

FRONT VIEW OF DUMMY

SEAT BELT POSITIONING MEASUREMENTS

<table>
<thead>
<tr>
<th>Measurement Description</th>
<th>Units</th>
<th>Driver</th>
<th>Passenger</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBU - Top surface of reference to belt upper edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>PBL - Top surface of reference to belt lower edge</td>
<td>mm</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
DATA SHEET 38

CRASH TEST

- **Test Vehicle:** 2009 Ford Escape Hybrid
- **Test Program:** FMVSS 208 Compliance
- **Test Technician:** Joe Fleck
- **NHTSA No.:** C90200
- **Test Date:** 2/02/09

Impact Angle:
- Zero Degrees

Belted Dummies (Yes/No):
- No

Test Speed:

<table>
<thead>
<tr>
<th>Speed</th>
<th>32 to 40 kmph</th>
<th>0 to 48 kmph</th>
<th>0 to 56 kmph</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Driver Dummy:
- 5th female
- 50th male

Passenger Dummy:
- 5th female
- 50th male

1. Vehicle underbody painted
2. The speed measuring devices are in place and functioning.
3. The speed measuring devices are 1.0 m from the barrier (spec. 1.5m) and 30 cm from the barrier (spec. is 30 cm)
4. Convertible top is in the closed position.
5. Instrumentation and wires are placed so motion of dummies during impact is not affected.
6. Tires inflated to pressure on tire placard or if it does not have a tire placard because it is not a passenger car, then inflated to the tire pressure specified in the owner information.
 - 240 kpa front left tire
 - 240 kpa front right tire
 - 240 kpa rear left tire
 - 240 kpa rear right tire
7. Time zero contacts on barrier in place.
8. Pre test zero and shunt calibration adjustments performed and recorded
9. Dummy temperature meets requirements of section 12.2 of the test procedure.
10. Vehicle hood closed and latched
11. Transmission placed in neutral
12. Parking brake off
13. Are the heads still level?
 - Yes, go to 14
 - No, Adjust dummy so that head is at the angle recorded in the Appendix F or G data sheets and then continue
14. Ignition in the ON position
15. Doors closed and latched but not locked
16. Posttest zero and shunt calibration checks performed and recorded
17. Actual test speed 39.9 kmph
18. Vehicle rebound from the barrier 118 cm
19. Describe whether the doors open after the test and what method is used to open the doors.
 - Left Front Door: Door remained closed and latched; Door opened without tools
 - Right Front Door: Door remained closed and latched; Door opened without tools
 - Left Rear Door: Door remained closed and latched; Door opened without tools
 - Right Rear Door: Door remained closed and latched; Door opened without tools
20. Describe the contact points of the dummy with the interior of the vehicle.
 - Driver Dummy: Face to Air Bag and Back of Head to Visor; Chest to Air Bag; Knees to Knee Bolster
 - Passenger Dummy: Face to Air Bag, Back and Top of Head to Visor and Back of Head to Headrest; Chest to Air Bag; Knees to Glove Box

Remarks:

Signature:
Date: 2/02/09

I certify that I have read and performed each instruction.
DATA SHEET NO. 40

ACCIDENT INVESTIGATION MEASUREMENTS

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2009 Ford Escape Hybrid</th>
<th>NHTSA No.:</th>
<th>C90200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 208 Compliance</td>
<td>Test Date:</td>
<td>2/02/09</td>
</tr>
<tr>
<td>Test Technician:</td>
<td>Jamie Aide</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>5th female</td>
</tr>
</tbody>
</table>

Vehicle Year/Make/Model/Body Style:	2009 Ford Escape Hybrid MPV
VIN:	1FMCU49399KA95726
Wheelbase:	2621 mm
Build Date:	11/08
Vehicle Size Category:	3
Test Weight:	1930.9 kg
Front Overhang:	853 mm
Overall Width:	1754 mm
Overall Length Center:	4407 mm

<table>
<thead>
<tr>
<th>Accelerometer Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location:</td>
</tr>
<tr>
<td>Linearity:</td>
</tr>
</tbody>
</table>

Integration Algorithm:	Trapezoidal
Vehicle Impact Speed:	39.9 kmph
Time of Separation:	87.7 ms
Velocity Change:	44.1 kmph
CRUSH PROFILE

Collision Deformation Classification: 12FDEW6
Midpoint of Damage: Vehicle Longitudinal Centerline
Damage Region Length (mm): 1166
Impact Mode: Frontal Barrier

<table>
<thead>
<tr>
<th>No.</th>
<th>Measurement Description</th>
<th>Units</th>
<th>Pre-Test</th>
<th>Post-Test</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>Crush zone 1 at left side</td>
<td>mm</td>
<td>4342</td>
<td>4017</td>
<td>325</td>
</tr>
<tr>
<td>C2</td>
<td>Crush zone 2 at left side</td>
<td>mm</td>
<td>4384</td>
<td>4029</td>
<td>355</td>
</tr>
<tr>
<td>C3</td>
<td>Crush zone 3 at left side</td>
<td>mm</td>
<td>4406</td>
<td>4017</td>
<td>389</td>
</tr>
<tr>
<td>C4</td>
<td>Crush zone 4 at right side</td>
<td>mm</td>
<td>4406</td>
<td>4028</td>
<td>378</td>
</tr>
<tr>
<td>C5</td>
<td>Crush zone 5 at right side</td>
<td>mm</td>
<td>4384</td>
<td>4018</td>
<td>366</td>
</tr>
<tr>
<td>C6</td>
<td>Crush zone 6 at right side</td>
<td>mm</td>
<td>4342</td>
<td>4008</td>
<td>334</td>
</tr>
</tbody>
</table>

REMARKS:

Signature: [Signature] Date: 2/02/09

I certify that I have read and performed each instruction.
DATA SHEET 41
WINDSHIELD MOUNTING (FMVSS 212)

Test Vehicle: 2009 Ford Escape Hybrid
NHTSA No.: C90200
Test Program: FMVSS 208 Compliance
Test Date: 2/02/09
Test Technician: Jamie Aide

<table>
<thead>
<tr>
<th>IMPACT ANGLE:</th>
<th>Zero Degrees</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELTED DUMMIES (YES/NO):</td>
<td>No</td>
</tr>
<tr>
<td>TEST SPEED:</td>
<td>X 32 to 40 kmph</td>
</tr>
<tr>
<td>DRIVER DUMMY:</td>
<td>_ 5th female</td>
</tr>
<tr>
<td>PASSENGER DUMMY:</td>
<td>_ 5th female</td>
</tr>
</tbody>
</table>

1. Pre-Crash

1.1 Describe from visual inspection how the windshield is mounted and describe any trim material.
 Retained with glue
 Rubber and plastic trim

1.2 Mark the longitudinal centerline of the windshield

1.3 Measure pre-crash A, B, and C for the left side and record in the chart below.

1.4 Measure pre-crash C, D, and E for the right side and record in the chart below.

1.5 Measure from the edge of the retainer or molding to the edge of the windshield.
 Dimension G (mm): 16 mm

2. Post Crash

2.1 Can a single thickness of copier type paper (as small a piece as necessary) slide between the windshield and the vehicle body?
 X No - Pass. Skip to the table of measurements, complete it by repeating the pre-crash measurements in the post crash column, and calculate the retention percentage, which will be 100%.

2.2 Visibly mark the beginning and end of the portions of the periphery where the paper slides between the windshield and the vehicle body.

2.3 Measure and record post-crash A, B, C, D, E, and F such that the measurements do not include any of the parts of the windshield where the paper slides between the windshield and the vehicle body.

2.4 Calculate and record the percent retention for the right and left side of the windshield.

2.5 Is total right side percent retention less than 75%?
 Yes, Fail
 No, Pass

2.6 Is total left side percent retention less than 75%?
 Yes, Fail
 No, Pass
WINDSHIELD RETENTION MEASUREMENTS

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Pre-Crash (mm)</th>
<th>Post-Crash (mm)</th>
<th>Percent Retention (Post-Test ÷ Pre-Crash)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>580</td>
<td>580</td>
<td>100%</td>
</tr>
<tr>
<td>B</td>
<td>687</td>
<td>687</td>
<td>100%</td>
</tr>
<tr>
<td>C</td>
<td>749</td>
<td>749</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2016</td>
<td>2016</td>
<td>100%</td>
</tr>
<tr>
<td>Right Side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>580</td>
<td>580</td>
<td>100%</td>
</tr>
<tr>
<td>E</td>
<td>687</td>
<td>687</td>
<td>100%</td>
</tr>
<tr>
<td>F</td>
<td>749</td>
<td>749</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>2016</td>
<td>2016</td>
<td>100%</td>
</tr>
</tbody>
</table>

Indicate area of mounting failure. NONE

FRONT VIEW OF WINDSHIELD

INDICATE WIDTH OF MOLDING

- A
- D
- B
- E
- C
- F
- G

ZERO POINT (0,0)

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]

Date: 2/02/09
This standard specifies limits for the displacement of vehicle components into the windshield area during a frontal barrier impact test at any speed up to and including 48 kmph.

1. Place a 165 mm diameter rigid sphere, with a mass of 6.8 kg on the instrument panel so that it is simultaneously touching the instrument panel and the windshield. (571.219 S6.1(a))

2. Roll the sphere from one side of the windshield to the other while marking on the windshield where the sphere contacts the windshield. (571.219 S6.1(b))

3. From the outermost contactable points on the windshield draw a horizontal line to the edges of the windshield. (571.219 S6.1(b))

4. Draw a line on the inner surface of the windshield that is 13 mm below the line determined in items 2 and 3

5. After the crash test, record any points where a part of the exterior of the vehicle has marked, penetrated, or broken the windshield.

Provide all dimensions necessary to reproduce the protected area.
WINDSHIELD DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>mm</td>
<td>1160</td>
</tr>
<tr>
<td>B</td>
<td>mm</td>
<td>483</td>
</tr>
<tr>
<td>C</td>
<td>mm</td>
<td>1498</td>
</tr>
<tr>
<td>D</td>
<td>mm</td>
<td>687</td>
</tr>
<tr>
<td>E</td>
<td>mm</td>
<td>495</td>
</tr>
<tr>
<td>F</td>
<td>mm</td>
<td>485</td>
</tr>
</tbody>
</table>

AREA OF PROTECTED ZONE FAILURES:

B. Provide coordinates of the area that the protected zone was penetrated more than 0.25 inches by a vehicle component other than one which is normally in contact with the windshield.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

C. Provide coordinates of the area beneath the protected zone template that the inner surface of the windshield was penetrated by a vehicle component.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>

REMARKS:

I certify that I have read and performed each instruction.

Signature: [Signature]
Date: 2/02/09
DATA SHEET 43
FUEL SYSTEM INTEGRITY (FMVSS 301)

TYPE OF IMPACT: 25 mph Unbelted Flat Frontal

Stoddard Solvent Spillage Measurements

A. From impact until vehicle motion ceases: 0.0 grams (Maximum Allowable = 28 grams)
B. For the 5 minute period after motion ceases: 0.0 grams (Maximum Allowable = 142 grams)
C. For the following 25 minutes: 0.0 grams (Maximum Allowable = 28 grams/minute)
D. Spillage: NONE

REMARKS: NO SPILLAGE
1. The specified fixture rollover rate for each 90° of rotation is 60 to 180 seconds.
2. The position hold time at each position is 300 seconds (minimum).
3. Details of Stoddard Solvent spillage locations: None

<table>
<thead>
<tr>
<th>Test Phase</th>
<th>Rotation Time (sec.)</th>
<th>Hold Time (sec.)</th>
<th>Spillage (grams)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° to 90°</td>
<td>124</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>90° to 180°</td>
<td>117</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>180° to 270°</td>
<td>112</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>270° to 360°</td>
<td>115</td>
<td>300</td>
<td>0</td>
</tr>
</tbody>
</table>
This hybrid vehicle, a 2009 Ford Escape Hybrid (NHTSA No. C90200), in conjunction with the FMVSS 208, was tested to FMVSS 305.

The test was performed in accordance with the specifications of the Office of Vehicle Safety Compliance (OVSC) Test Procedures TP-305-01 to determine compliance to the requirements of Federal Motor Vehicle Safety Standards (FMVSS) 305, “Electric Powered Vehicles: Electrolyte Spillage and Electrical Shock Protection”.

Based on the test results, the 2009 Ford Escape Hybrid appears to meet the requirements of FMVSS 305 testing.

If a measured voltage was zero and resulted in a division by zero “Zero Volts” was reported. This condition is considered being compliant as stated in TP-305-01 12.4 F.

This program is sponsored by the National Highway Traffic Safety Administration (NHTSA), under Contract No. DTNH22-06-C-00030.

The following data sheets document the results of the FMVSS 305 test.
DATA SHEET 1
ELECTRIC VEHICLE PROPULSION SYSTEM

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2008 Ford Escape Hybrid</th>
<th>NHTSA No.:</th>
<th>C90200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 305 Electric Vehicles</td>
<td>Test Date:</td>
<td>2/02/09</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Electric Vehicle (Electric/ Hybrid):</th>
<th>Gas-Electric Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propulsion Battery Type:</td>
<td>NiMH (Nickel Metal Hydride)</td>
</tr>
<tr>
<td>Nominal Voltage (V):</td>
<td>330 V</td>
</tr>
<tr>
<td>Physical Location of Automatic Propulsion Battery Disconnect:</td>
<td>The connectors (+, -, and pre charge) are located inside of the battery system.</td>
</tr>
<tr>
<td>Auxiliary Battery Type:</td>
<td>Lead Acid</td>
</tr>
</tbody>
</table>
DATA SHEET 2
PRE-TEST DATA

<table>
<thead>
<tr>
<th>Test Vehicle:</th>
<th>2008 Ford Escape Hybrid</th>
<th>NHTSA No.:</th>
<th>C90200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Program:</td>
<td>FMVSS 305 Electric Vehicles</td>
<td>Test Date:</td>
<td>2/02/09</td>
</tr>
</tbody>
</table>

PROPULSION BATTERY SYSTEM DATA (COTR SUPPLIED DATA)

<table>
<thead>
<tr>
<th>Electrolyte Fluid Type:</th>
<th>Alkaline Liquid Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrolyte Fluid Specific Gravity:</td>
<td>1.29 g/m³</td>
</tr>
<tr>
<td>Electrolyte Kinematic Viscosity:</td>
<td>2.4 mPas</td>
</tr>
<tr>
<td>Electrolyte Fluid Color:</td>
<td>Clear</td>
</tr>
<tr>
<td>Propulsion Battery Coolant Type, Color, Specific Gravity (if applicable):</td>
<td>Forced Air</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location of Battery Modules:</th>
<th>X Inside Passenger Compartment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Outside Passenger Compartment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Propulsion Battery State of Charge:</th>
<th>Maximum State of Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X Range of Normal Operating Voltage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maximum State of Charge:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Voltage No less than 95% of maximum state of charge:</td>
<td></td>
</tr>
<tr>
<td>Range of Normal Operating Voltage:</td>
<td>216 to 397 V</td>
</tr>
<tr>
<td>Test Voltage Within normal operative voltage range:</td>
<td>318.7 V</td>
</tr>
</tbody>
</table>

VEHICLE CHASSIS GROUND POINT(S) LOCATION(S)

| Details of Vehicle Chassis Ground Point(s) & Location(s) [Supply photographs as appropriate]: | M6 bolt added to RR above wheelwell area. Ground wire was attached using a 18AWG sodderless terminal |

PROPULSION BATTERY SYSTEM

| Details of Propulsion Battery Components [Supply photographs as appropriate]: | See Photographs in Appendix C |
VOLTMETER INFORMATION

The voltmeter used in this test shall measure DC values and have an internal impedance of at least 10MΩ.

NOTE: An oscilloscope meeting the above requirements may need to be used to adequately measure voltage in some vehicles.

<table>
<thead>
<tr>
<th>Make:</th>
<th>Fluke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>Fluke 11</td>
</tr>
<tr>
<td>Serial Number:</td>
<td>68541895</td>
</tr>
<tr>
<td>Internal Impedance Value (MΩ):</td>
<td>10 MΩ < 100 pF</td>
</tr>
<tr>
<td>Resolution (V):</td>
<td>0.001</td>
</tr>
<tr>
<td>Last Calibration Date:</td>
<td>9/10/08</td>
</tr>
</tbody>
</table>

PROPULSION BATTERY VOLTAGE

Measurement shall be made with propulsion battery connected to the vehicle propulsion system, and the vehicle in the “ready-to-drive” (propulsion motor(s) activated) position.

If voltage measurement is not at the voltage or within the normal operating voltage range specified by the manufacturer, the battery must be charged.

| Vb (V): | 318.7 |

PROPULSION BATTERY TO VEHICLE CHASSIS

Vehicle chassis point(s) determined and supplied to contractor by COTR.

| V1 (V): | 183.1 |
| V2 (V): | 167.0 |
Pre-Impact Electrical Isolation Measurement & Calculations

Test Vehicle: 2008 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 305 Electric Vehicles Test Date: 2/02/09

Propulsion Battery to Vehicle Chassis Across Resistor

The known resistance R_o (in ohms) should be approximately 500 times the nominal operating voltage of the vehicle (in volts) per SAE J1766.

$R_o \, (\Omega): \quad 158 \, K \Omega$

Electrical Isolation Measurement

<table>
<thead>
<tr>
<th>V_1' (V):</th>
<th>56.1 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R_{i1} = R_o ,(1 + \frac{V_2}{V_1}) \frac{(V_1-V_1')}{V_1'}$</td>
<td></td>
</tr>
<tr>
<td>R_{i1} (Ω):</td>
<td>683914 Ω</td>
</tr>
<tr>
<td>V_2' (V):</td>
<td>57.0 V</td>
</tr>
<tr>
<td>$R_{i2} = R_o ,(1 + \frac{V_1}{V_2}) \frac{(V_2-V_2')}{V_2'}$</td>
<td></td>
</tr>
<tr>
<td>R_{i2} (Ω):</td>
<td>639220 Ω</td>
</tr>
<tr>
<td>$R_i = \text{The lesser of } R_{i1} \text{ and } R_{i2}$</td>
<td></td>
</tr>
<tr>
<td>R_i Pre-Test (Ω):</td>
<td>639220 Ω</td>
</tr>
<tr>
<td>$R_i/V_b , (\Omega/V)$:</td>
<td>2006 Ω/V (Electrical Isolation Value)</td>
</tr>
<tr>
<td>Minimum Electrical Isolation Value is 500 Ω/V</td>
<td></td>
</tr>
</tbody>
</table>

Note: If measured voltage is zero and results in a division by zero, record “Zero Volts.” This “zero voltage” condition is considered as being compliant.

Note: Measured 6 minutes 24 seconds before impact.

<table>
<thead>
<tr>
<th>Is the measured Electrical Isolation Value \geq 500 Ω/V?</th>
<th>Yes (Pass)</th>
<th>No (Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Vehicle:

2008 Ford Escape Hybrid

NHTSA No.: C90200

Test Program:

FMVSS 305 Electric Vehicles

Test Date: 2/02/09
DATA SHEET 4
POST-TEST DATA

Test Vehicle: 2008 Ford Escape Hybrid
Test Program: FMVSS 305 Electric Vehicles
NHTSA No.: C90200
Test Date: 2/02/09

ELECTRICAL ISOLATION MEASUREMENTS & CALCULATIONS

VOLTMETER INFORMATION

The voltmeter used in this test shall measure DC values and have an internal impedance of at least 10MΩ.

NOTE: An oscilloscope meeting the above requirements may need to be used to adequately measure voltage in some vehicles.

Make: Fluke
Model: Fluke 11
Serial Number: 68541895
Internal Impedance Value (MΩ): 10 MΩ < 100 pF
Nominal Propulsion Battery Voltage (Vb) (V): 1.3 V

Record V1, V2, V1’, V2’ voltage measurements immediately after the impacted vehicle comes to rest.

PROPULSION BATTERY VOLTAGE

<table>
<thead>
<tr>
<th>V1</th>
<th>0.06</th>
<th>V Impact</th>
<th>Time: 2 Minutes 23 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2</td>
<td>1.10</td>
<td>V Impact</td>
<td>Time: 2 Minutes 10 s</td>
</tr>
<tr>
<td>V1’</td>
<td>0.03</td>
<td>V Impact</td>
<td>Time: 2 Minutes 32 s</td>
</tr>
<tr>
<td>V2’</td>
<td>0.01</td>
<td>V Impact</td>
<td>Time: 2 Minutes 15 s</td>
</tr>
</tbody>
</table>

Attach complete data acquisition to final test report

ELECTRICAL ISOLATION MEASUREMENT

\[R_{i1} = \frac{R_o}{(1 + \frac{V_2}{V_1}) \left(\frac{(V_1-V_1')}{V_1'}\right)} \]
\[R_{i2} = \frac{R_o}{(1 + \frac{V_1}{V_2}) \left(\frac{(V_2-V_2')}{V_2'}\right)} \]
\[R_i = \text{The lesser of } R_{i1} \text{ and } R_{i2} \]

\[R_i/V_b = \text{Electrical Isolation Value/Nominal Battery Voltage} \]

Minimum Electrical Isolation Value is 500 Ω/V

<table>
<thead>
<tr>
<th>Ri1</th>
<th>3.05 E6</th>
<th>Ω Impact</th>
<th>Time: 2 Minutes 23 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ri2</td>
<td>1.82 E7</td>
<td>Ω Impact</td>
<td>Time: 2 Minutes 10 s</td>
</tr>
<tr>
<td>Ri</td>
<td>3.05 E6</td>
<td>Ω Impact</td>
<td>Time: 2 Minutes 15 s</td>
</tr>
</tbody>
</table>

Note: If measured voltage is zero and results in a division by zero, record “Zero Volts.” This “zero voltage” condition is considered as being compliant.
DATA SHEET 4 (Continued)

POST-TEST DATA

Test Vehicle: 2008 Ford Escape Hybrid
Test Program: FMVSS 305 Electric Vehicles
NHTSA No.: C90200
Test Date: 2/02/09

<table>
<thead>
<tr>
<th>Is the measured Electrical Isolation Value > 500 Ω/V?</th>
<th>Yes (Pass)</th>
<th>No (Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROPULSION BATTERY SYSTEM COMPONENTS

Describe Propulsion Battery Module movement within the passenger compartment [Supply photographs as appropriate]:

There was no apparent movement of the Propulsion Battery Module within the passenger compartment.

<table>
<thead>
<tr>
<th>Has the Propulsion Battery Module moved within the passenger compartment?</th>
<th>Yes (Fail)</th>
<th>No (Pass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Describe intrusion of an outside Propulsion Battery Component into the passenger compartment [Supply photographs as appropriate]:

Not Applicable

<table>
<thead>
<tr>
<th>Has an outside Propulsion Battery Component intruded into the passenger compartment?</th>
<th>Yes (Fail)</th>
<th>No (Pass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Is propulsion battery electrolyte spillage visible in the passenger compartment?</th>
<th>Yes (Fail)</th>
<th>No (Pass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA SHEET 5
FUEL SYSTEM DATA

Test Vehicle: 2008 Ford Escape Hybrid NHTSA No.: C90200
Test Program: FMVSS 305 Electric Vehicles Test Date: 2/02/09

STODDARD SOLVENT SPILLAGE MEASUREMENT

A. From impact until vehicle motion ceases: 0 oz.
B. For the 5 minute period after motion ceases: 0 oz.
C. For the following 25 minutes: 0 oz.
D. Spillage: None

STATIC ROLLOVER TEST DATA

DETERMINATION OF PROPULSION BATTERY ELECTROLYTE COLLECTION TIME PERIOD

<table>
<thead>
<tr>
<th>Rollover Stage</th>
<th>Rotation Time (sec)</th>
<th>Hold Time (sec)</th>
<th>Total Time (sec)</th>
<th>Next Whole Minute Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° to 90°</td>
<td>124</td>
<td>300</td>
<td>424</td>
<td>8</td>
</tr>
<tr>
<td>90° to 180°</td>
<td>117</td>
<td>300</td>
<td>417</td>
<td>7</td>
</tr>
<tr>
<td>180° to 270°</td>
<td>112</td>
<td>300</td>
<td>412</td>
<td>7</td>
</tr>
<tr>
<td>270° to 360°</td>
<td>115</td>
<td>300</td>
<td>415</td>
<td>7</td>
</tr>
</tbody>
</table>
DATA SHEET 5 (Continued)

FUEL SYSTEM DATA

Test Vehicle: 2008 Ford Escape Hybrid
Test Program: FMVSS 305 Electric Vehicles
NHTSA No.: C90200
Test Date: 2/02/09

ACTUAL TEST VEHICLE PROPULSION BATTERY ELECTROLYTE SPILLAGE

<table>
<thead>
<tr>
<th>Rollover Stage</th>
<th>Propulsion Battery Electrolyte Spillage (L)</th>
<th>Spillage Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>0° to 90°</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>90° to 180°</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>180° to 270°</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>270° to 360°</td>
<td>0</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

TOTAL SPILLAGE (L): 0

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes (Fail)</th>
<th>No (Pass)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the total spillage of propulsion battery electrolyte greater than 5.0 L?</td>
<td>![X]</td>
<td></td>
</tr>
<tr>
<td>Is propulsion battery electrolyte spillage visible in the passenger compartment?</td>
<td>![X]</td>
<td></td>
</tr>
</tbody>
</table>

VOLTMETER INFORMATION

The voltmeter used in this test shall measure DC values and have an internal impedance of at least 10MΩ.

NOTE: An oscilloscope meeting the above requirements may need to be used to adequately measure voltage in some vehicles.

Make: Fluke
Model: Fluke 11
Serial Number: 68541895
Internal Impedance Value (MΩ): 710 MΩ < 100 pF
Nominal Propulsion Battery Voltage (Vb) (V): 318.7

Record V1, V2, V1', V2' voltage measurements at the start of each successive increment of 90°, 180°, 270°, and 360° of the static rollover test. The increment of rotation for each turn shall be completed within a maximum of 3 minutes.
DATA SHEET 5 (Continued)

FUEL SYSTEM DATA

Test Vehicle: 2008 Ford Escape Hybrid
NHTSA No.: C90200
Test Program: FMVSS 305 Electric Vehicles
Test Date: 2/02/09

ELECTRICAL ISOLATION MEASUREMENT

<table>
<thead>
<tr>
<th>V1</th>
<th>0.004 V 90°</th>
<th>Time: 0 Minutes 26 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>0.004 V 180°</td>
<td>Time: 0 Minutes 50 s</td>
</tr>
<tr>
<td>V1</td>
<td>0.003 V 270°</td>
<td>Time: 0 Minutes 38 s</td>
</tr>
<tr>
<td>V1</td>
<td>0.004 V 360°</td>
<td>Time: 0 Minutes 32 s</td>
</tr>
<tr>
<td>V2</td>
<td>0.09 V 90°</td>
<td>Time: 0 Minutes 34 s</td>
</tr>
<tr>
<td>V2</td>
<td>0.140 V 180°</td>
<td>Time: 0 Minutes 31 s</td>
</tr>
<tr>
<td>V2</td>
<td>0.126 V 270°</td>
<td>Time: 0 Minutes 15 s</td>
</tr>
<tr>
<td>V2</td>
<td>0.115 V 360°</td>
<td>Time: 0 Minutes 21 s</td>
</tr>
<tr>
<td>V1'</td>
<td>0.000 V 90°</td>
<td>Time: 0 Minutes 59 s</td>
</tr>
<tr>
<td>V1'</td>
<td>0.000 V 180°</td>
<td>Time: 0 Minutes 56 s</td>
</tr>
<tr>
<td>V1'</td>
<td>0.000 V 270°</td>
<td>Time: 0 Minutes 44 s</td>
</tr>
<tr>
<td>V1'</td>
<td>0.000 V 360°</td>
<td>Time: 0 Minutes 35 s</td>
</tr>
<tr>
<td>V2'</td>
<td>0.000 V 90°</td>
<td>Time: 0 Minutes 48 s</td>
</tr>
<tr>
<td>V2'</td>
<td>0.048 V 180°</td>
<td>Time: 0 Minutes 37 s</td>
</tr>
<tr>
<td>V2'</td>
<td>0.000 V 270°</td>
<td>Time: 0 Minutes 31 s</td>
</tr>
<tr>
<td>V2''</td>
<td>0.000 V 360°</td>
<td>Time: 0 Minutes 25 s</td>
</tr>
</tbody>
</table>

Attach complete data acquisition to final test report of governing barrier test.
ELECTRICAL ISOLATION CALCULATION

<table>
<thead>
<tr>
<th>Ri1</th>
<th>Value</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Volts</td>
<td>Ω 90°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω 180°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω 270°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω 360°</td>
<td>Minutes</td>
<td>s</td>
</tr>
</tbody>
</table>

\[
R_{i1} = R_0 \left(1 + \frac{V_1}{V_2}\right) \frac{(V_1-V_1')}{V_1'}
\]

<table>
<thead>
<tr>
<th>Ri2</th>
<th>Value</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Volts</td>
<td>Ω 90°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>311486</td>
<td>Ω 180°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω 270°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω 360°</td>
<td>Minutes</td>
<td>s</td>
</tr>
</tbody>
</table>

\[
R_{i2} = R_0 \left(1 + \frac{V_1}{V_2}\right) \frac{(V_2-V_2')}{V_2'}
\]

\[
R_i = \text{The lesser of } R_{i1} \text{ and } R_{i2}
\]

<table>
<thead>
<tr>
<th>Ri</th>
<th>Value</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Volts</td>
<td>Ω 90°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω 180°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω 270°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω 360°</td>
<td>Minutes</td>
<td>s</td>
</tr>
</tbody>
</table>

\[
R_{i/V_b} = \frac{R_i}{V_b} = \text{Electrical Isolation Value/Nominal Battery Voltage}
\]

Minimum Electrical Isolation Value is 500 Ω/V

<table>
<thead>
<tr>
<th>Ri/Vb</th>
<th>Value</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Volts</td>
<td>M Ω/V 90°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω/V 180°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω/V 270°</td>
<td>Minutes</td>
<td>s</td>
</tr>
<tr>
<td>Zero Volts</td>
<td>Ω/V 360°</td>
<td>Minutes</td>
<td>s</td>
</tr>
</tbody>
</table>

Attach complete data acquisition to final test report of governing barrier test.

Note: If measured voltage is zero and results in a division by zero, record “Zero Volts.” This “zero voltage” condition is considered as being compliant.

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes (Pass)</th>
<th>No (Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the measured Electrical Isolation Value ≥ 500 Ω/V?</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Figure No.</td>
<td>Description</td>
<td>Page No.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>1.</td>
<td>Driver Head X Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>2.</td>
<td>Driver Head Y Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>3.</td>
<td>Driver Head Z Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>4.</td>
<td>Driver Head Resultant Acceleration vs. Time</td>
<td>A-1</td>
</tr>
<tr>
<td>5.</td>
<td>Driver Head X Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>6.</td>
<td>Driver Head Y Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>7.</td>
<td>Driver Head Z Velocity vs. Time</td>
<td>A-2</td>
</tr>
<tr>
<td>8.</td>
<td>Driver Neck Force X vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>11.</td>
<td>Driver Neck Force Resultant vs. Time</td>
<td>A-3</td>
</tr>
<tr>
<td>12.</td>
<td>Driver Neck Moment X vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>13.</td>
<td>Driver Neck Moment Y vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>14.</td>
<td>Driver Neck Moment Z vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>15.</td>
<td>Driver Neck Moment Resultant vs. Time</td>
<td>A-4</td>
</tr>
<tr>
<td>20.</td>
<td>Driver Chest X Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>21.</td>
<td>Driver Chest Y Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>22.</td>
<td>Driver Chest Z Velocity vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>23.</td>
<td>Driver Chest Displacement vs. Time</td>
<td>A-6</td>
</tr>
<tr>
<td>24.</td>
<td>Driver Left Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>25.</td>
<td>Driver Right Femur Force vs. Time</td>
<td>A-7</td>
</tr>
<tr>
<td>26.</td>
<td>Passenger Head X Acceleration vs. Time</td>
<td>A-8</td>
</tr>
<tr>
<td>27.</td>
<td>Passenger Head Y Acceleration vs. Time</td>
<td>A-8</td>
</tr>
</tbody>
</table>
Figure No. 28. Passenger Head Z Acceleration vs. Time A-8
Figure No. 29. Passenger Head Resultant Acceleration vs. Time A-8
Figure No. 30. Passenger Head X Velocity vs. Time A-9
Figure No. 31. Passenger Head Y Velocity vs. Time A-9
Figure No. 32. Passenger Head Z Velocity vs. Time A-9
Figure No. 33. Passenger Neck Force X vs. Time A-10
Figure No. 34. Passenger Neck Force Y vs. Time A-10
Figure No. 35. Passenger Neck Force Z vs. Time A-10
Figure No. 36. Passenger Neck Force Resultant vs. Time A-10
Figure No. 37. Passenger Neck Moment X vs. Time A-11
Figure No. 38. Passenger Neck Moment Y vs. Time A-11
Figure No. 39. Passenger Neck Moment Z vs. Time A-11
Figure No. 40. Passenger Neck Moment Resultant vs. Time A-11
Figure No. 41. Passenger Chest X Acceleration vs. Time A-12
Figure No. 42. Passenger Chest Y Acceleration vs. Time A-12
Figure No. 43. Passenger Chest Z Acceleration vs. Time A-12
Figure No. 44. Passenger Chest Resultant Acceleration vs. Time A-12
Figure No. 45. Passenger Chest X Velocity vs. Time A-13
Figure No. 46. Passenger Chest Y Velocity vs. Time A-13
Figure No. 47. Passenger Chest Z Velocity vs. Time A-13
Figure No. 48. Passenger Chest Displacement vs. Time A-13
Figure No. 49. Passenger Left Femur Force vs. Time A-14
Figure No. 50. Passenger Right Femur Force vs. Time A-14
Figure No. 51. Driver Nij (NTF) vs. Time A-15
Figure No. 52. Driver Nij (NTE) vs. Time A-15
Figure No. 53. Driver Nij (NCF) vs. Time A-15
Figure No. 54. Driver Nij (NCE) vs. Time A-15
Figure No. 55. Passenger Nij (NTF) vs. Time A-16
Figure No. 56. Passenger Nij (NTE) vs. Time A-16
Figure No. 57. Passenger Nij (NCF) vs. Time A-16
Figure No. 58. Passenger Nij (N_{CE}) vs. Time A-16
Figure No. 59. Driver Occipital Condyle Moment vs. Time A-17
Figure No. 60. Passenger Occipital Condyle Moment vs. Time A-17
Figure No. 61. Left Rear Seat Crossmember X Acceleration vs. Time A-18
Figure No. 62. Left Rear Seat Crossmember X Velocity vs. Time A-18
Figure No. 63. Right Rear Seat Crossmember X Acceleration vs. Time A-18
Figure No. 64. Right Rear Seat Crossmember X Velocity vs. Time A-18
Figure No. 65. Top of Engine X Acceleration vs. Time A-19
Figure No. 66. Top of Engine X Velocity vs. Time A-19
Figure No. 67. Bottom of Engine X Acceleration vs. Time A-19
Figure No. 68. Bottom of Engine X Velocity vs. Time A-19
Figure No. 69. Left Brake Caliper X Acceleration vs. Time A-20
Figure No. 70. Left Brake Caliper X Velocity vs. Time A-20
Figure No. 71. Right Brake Caliper X Acceleration vs. Time A-20
Figure No. 72. Right Brake Caliper X Velocity vs. Time A-20
Figure No. 73. Instrument Panel X Acceleration vs. Time A-21
Figure No. 74. Instrument Panel X Velocity vs. Time A-21
Figure No. 75. Trunk Z Acceleration vs. Time A-21
Figure No. 76. Trunk Z Velocity vs. Time A-21
Figure No. 77. EDR X Acceleration vs. Time A-22
Figure No. 78. EDR Y Acceleration vs. Time A-22
Figure No. 79. EDR Z Acceleration vs. Time A-22
Figure No. 80. Rear Tunnel X Acceleration vs. Time A-23
Figure No. 81. Rear Tunnel Y Acceleration vs. Time A-23
Figure No. 82. Rear Tunnel Z Acceleration vs. Time A-23
Figure No. 83. Driver Airbag Timing (Stage 1) vs. Time A-24
Figure No. 84. Driver Airbag Timing (Stage 2) vs. Time A-24
Figure No. 85. Driver Pretensioner Timing vs. Time A-24
Figure No. 86. Passenger Airbag Timing (Stage 1) vs. Time A-25
Figure No. 87. Passenger Airbag Timing (Stage 2) vs. Time A-25
<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>88</td>
<td>Passenger Pretensioner Timing vs. Time</td>
<td>A-25</td>
</tr>
<tr>
<td>89</td>
<td>Barrier Force – Upper Left vs. Time</td>
<td>A-26</td>
</tr>
<tr>
<td>90</td>
<td>Barrier Force – Upper Center vs. Time</td>
<td>A-26</td>
</tr>
<tr>
<td>91</td>
<td>Barrier Force – Upper Right vs. Time</td>
<td>A-26</td>
</tr>
<tr>
<td>92</td>
<td>Barrier Force – Lower Left vs. Time</td>
<td>A-27</td>
</tr>
<tr>
<td>93</td>
<td>Barrier Force – Lower Center vs. Time</td>
<td>A-27</td>
</tr>
<tr>
<td>94</td>
<td>Barrier Force – Lower Right vs. Time</td>
<td>A-27</td>
</tr>
<tr>
<td>95</td>
<td>Barrier Force – Sum Left vs. Time</td>
<td>A-28</td>
</tr>
<tr>
<td>96</td>
<td>Barrier Force – Sum Center vs. Time</td>
<td>A-28</td>
</tr>
<tr>
<td>97</td>
<td>Barrier Force – Sum Right vs. Time</td>
<td>A-28</td>
</tr>
<tr>
<td>98</td>
<td>Barrier Force – Sum All vs. Time</td>
<td>A-28</td>
</tr>
</tbody>
</table>
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200

Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

DRIVER HEAD X (G's) vs TIME (ms)
Max: 12.5 G's
Tmax: 257.2 ms
Min: -30.0 G's
Tmin: 80.9 ms
CFC 1000

DRIVER HEAD Y (G's) vs TIME (ms)
Max: 7.2 G's
Tmax: 108.7 ms
Min: -1.6 G's
Tmin: 34.1 ms
CFC 1000

DRIVER HEAD Z (G's) vs TIME (ms)
Max: 24.4 G's
Tmax: 78.6 ms
Min: -16.3 G's
Tmin: 104.1 ms
CFC 1000

DRIVER HEAD Resultant (G's) vs TIME (ms)
Max: 37.5 G's
Tmax: 78.7 ms
Min: 0.0 G's
Tmin: 0.0 ms
CFC 1000
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200

Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

DRIVER HEAD X Velocity (kph) vs TIME (ms)
Max: 40.6 kph
Tmax: 53.9 ms
Min: -12.6 kph
Tmin: 210.6 ms
CFC 180

DRIVER HEAD Y Velocity (kph) vs TIME (ms)
Max: 13.3 kph
Tmax: 185.6 ms
Min: -0.0 kph
Tmin: 0.0 ms
CFC 180

DRIVER HEAD Z Velocity (kph) vs TIME (ms)
Max: 17.9 kph
Tmax: 300.0 ms
Min: -0.9 kph
Tmin: 53.9 ms
CFC 180
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200
Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

DRIVER NECK FX (N) vs TIME (ms)
- Max: 306.8 N
- Tmax: 63.5 ms
- Min: -237.4 N
- Tmin: 77.6 ms

DRIVER NECK FY (N) vs TIME (ms)
- Max: 135.8 N
- Tmax: 148.2 ms
- Min: -128.7 N
- Tmin: 107.1 ms

DRIVER NECK FZ (N) vs TIME (ms)
- Max: 2241.8 N
- Tmax: 77.6 ms
- Min: -168.2 N
- Tmin: 51.7 ms

DRIVER NECK FResultant (N) vs TIME (ms)
- Max: 2255.8 N
- Tmax: 77.6 ms
- Min: 0.7 N
- Tmin: 0.0 ms

CFC 1000
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200
Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

Max: 156.3 N
Tmax: 188.4 ms
Min: -7246.4 N
Tmin: 52.6 ms
CFC 600

Max: 204.0 N
Tmax: 185.5 ms
Min: -6882.3 N
Tmin: 63.4 ms
CFC 600
25 MPH FRONTAL UNBELTED 50THS
Test Date: 02/02/2009
2009 FORD ESCAPE HYBRID C90200
Speed: 24.8 mph (39.9 km/h)

PASSENGER NECK MX (Nm) vs TIME (ms)
- Max: 14.8 Nm
- Tmax: 106.7 ms
- Min: -4.2 Nm
- Tmin: 136.1 ms

PASSENGER NECK MY (Nm) vs TIME (ms)
- Max: 90.4 Nm
- Tmax: 79.9 ms
- Min: -11.2 Nm
- Tmin: 189.2 ms

PASSENGER NECK MZ (Nm) vs TIME (ms)
- Max: 28.4 Nm
- Tmax: 111.6 ms
- Min: -12.7 Nm
- Tmin: 228.5 ms

PASSENGER NECK MResultant (Nm) vs TIME (ms)
- Max: 90.8 Nm
- Tmax: 79.9 ms
- Min: 0.0 Nm
- Tmin: 17.7 ms
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200

Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

PASSENGER LEFT FEMUR (N) vs TIME (ms)
Max: 131.2 N
Tmax: 180.7 ms
Min: -5247.3 N
Tmin: 64.1 ms
CFC 600

PASSENGER RIGHT FEMUR (N) vs TIME (ms)
Max: 139.0 N
Tmax: 209.4 ms
Min: -5987.2 N
Tmin: 76.1 ms
CFC 600
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200

Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

Max: 0.2
Tmax: 71.5 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Max: 0.5
Tmax: 79.1 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Max: 0.1
Tmax: 162.2 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Max: 0.1
Tmax: 51.7 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

A-15
Pass. nij (NTF) () vs TIME (ms)

Max: 0.2
Tmax: 78.2 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NTE) () vs TIME (ms)

Max: 0.1
Tmax: 188.5 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NCF) () vs TIME (ms)

Max: 0.3
Tmax: 74.4 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600

Pass. nij (NCE) () vs TIME (ms)

Max: 0.0
Tmax: 57.6 ms
Min: 0.0
Tmin: 0.0 ms
CFC 600
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200
Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 23.6 Nm
Tmax: 162.5 ms
Min: -33.0 Nm
Tmin: 89.9 ms
CFC 600

Pass. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 69.2 Nm
Tmax: 79.9 ms
Min: -10.6 Nm
Tmin: 189.3 ms
CFC 600
LEFT REAR SEAT CROSSMEMBER X (G's) vs TIME (ms)

Max: 2.3 G's
Tmax: 100.5 ms
Min: -28.5 G's
Tmin: 49.2 ms
CFC 60

LEFT REAR SEAT CROSSMEMBER X Velocity (kph) vs TIME (ms)

Max: 39.9 kph
Tmax: 0.0 ms
Min: -4.9 kph
Tmin: 87.7 ms
CFC 180

RIGHT REAR SEAT CROSSMEMBER X (G's) vs TIME (ms)

Max: 2.1 G's
Tmax: 101.5 ms
Min: -26.2 G's
Tmin: 57.1 ms
CFC 60

RIGHT REAR SEAT CROSSMEMBER X Velocity (kph) vs TIME (ms)

Max: 39.9 kph
Tmax: 0.0 ms
Min: -3.5 kph
Tmin: 300.0 ms
CFC 180
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200

Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

Max: 41.2 G's
Tmax: 20.0 ms
Min: -82.7 G's
Tmin: 40.2 ms
CFC 1000

Max: 63.1 G's
Tmax: 43.1 ms
Min: -49.2 G's
Tmin: 41.9 ms
CFC 1000

Max: 103.8 G's
Tmax: 14.8 ms
Min: -115.1 G's
Tmin: 16.7 ms
CFC 1000

EDR X (G's) vs TIME (ms)
EDR Y (G's) vs TIME (ms)
EDR Z (G's) vs TIME (ms)
25 MPH FRONTAL UNBELTED 50THS Test Date: 02/02/2009
2009 FORD ESCAPE HYBRID C90200 Speed: 24.8 mph (39.9 km/h)

REAR TUNNEL X (G's) vs TIME (ms)
Max: 19.1 G's
Tmax: 40.4 ms
Min: -85.9 G's
Tmin: 40.0 ms
CFC 1000

REAR TUNNEL Y (G's) vs TIME (ms)
Max: 40.8 G's
Tmax: 41.3 ms
Min: -35.0 G's
Tmin: 43.3 ms
CFC 1000

REAR TUNNEL Z (G's) vs TIME (ms)
Max: 103.0 G's
Tmax: 15.2 ms
Min: -60.2 G's
Tmin: 17.2 ms
CFC 1000
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200

Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

DRIVER AIRBAG TIMING (STAGE 1) (Amps) vs TIME (ms)
Max: 0.1 Amps
Tmax: 279.5 ms
Min: -0.0 Amps
Tmin: 147.1 ms
CFC 1000

DRIVER AIRBAG TIMING (STAGE 2) (Amps) vs TIME (ms)
Max: 0.0 Amps
Tmax: 26.9 ms
Min: -0.0 Amps
Tmin: 27.1 ms
CFC 1000

DRIVER PRETENSIONER TIMING (Amps) vs TIME (ms)
Max: 0.1 Amps
Tmax: 279.5 ms
Min: -0.0 Amps
Tmin: 75.4 ms
CFC 1000
PASS. AIRBAG TIMING (STAGE 1) (Amps) vs TIME (ms)

Max: 3.7 Amps
Tmax: 17.1 ms
Min: -2.6 Amps
Tmin: 16.7 ms
CFC 1000

PASS. AIRBAG TIMING (STAGE 2) (Amps) vs TIME (ms)

Max: 0.3 Amps
Tmax: 27.0 ms
Min: -0.3 Amps
Tmin: 26.7 ms
CFC 1000

PASS. PRETENSIONER TIMING (Amps) vs TIME (ms)

Max: 0.0 Amps
Tmax: 80.6 ms
Min: -0.0 Amps
Tmin: 79.7 ms
CFC 1000
25 MPH FRONTAL UNBELTED 50THS
2009 FORD ESCAPE HYBRID C90200
Test Date: 02/02/2009
Speed: 24.8 mph (39.9 km/h)

BARRIER FORCE - LOWER LEFT (KN) vs TIME (ms)
- Max: 0.2 KN
- Tmax: 149.3 ms
- Min: -65.5 KN
- Tmin: 15.6 ms
- CFC 60

BARRIER FORCE - LOWER CENTER (KN) vs TIME (ms)
- Max: 0.4 KN
- Tmax: 0.0 ms
- Min: -165.9 KN
- Tmin: 58.8 ms
- CFC 60

BARRIER FORCE - LOWER RIGHT (KN) vs TIME (ms)
- Max: 1.2 KN
- Tmax: 0.0 ms
- Min: -64.7 KN
- Tmin: 15.3 ms
- CFC 60
APPENDIX B

LOW RISK TEST DATA

TABLE OF DATA PLOTS

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5th Fem. P1 Driver Head X Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>2</td>
<td>5th Fem. P1 Driver Head Y Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>3</td>
<td>5th Fem. P1 Driver Head Z Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>4</td>
<td>5th Fem. P1 Driver Head Resultant Acceleration vs. Time</td>
<td>B-1</td>
</tr>
<tr>
<td>5</td>
<td>5th Fem. P1 Driver Head X Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>6</td>
<td>5th Fem. P1 Driver Head Y Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>7</td>
<td>5th Fem. P1 Driver Head Z Velocity vs. Time</td>
<td>B-2</td>
</tr>
<tr>
<td>8</td>
<td>5th Fem. P1 Driver Neck Force X vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>9</td>
<td>5th Fem. P1 Driver Neck Force Y vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>10</td>
<td>5th Fem. P1 Driver Neck Force Z vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>11</td>
<td>5th Fem. P1 Driver Neck Force Resultant vs. Time</td>
<td>B-3</td>
</tr>
<tr>
<td>12</td>
<td>5th Fem. P1 Driver Neck Moment X vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>13</td>
<td>5th Fem. P1 Driver Neck Moment Y vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>14</td>
<td>5th Fem. P1 Driver Neck Moment Z vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>15</td>
<td>5th Fem. P1 Driver Occipital Condyle Moment vs. Time</td>
<td>B-4</td>
</tr>
<tr>
<td>16</td>
<td>5th Fem. P1 Driver Chest X Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>17</td>
<td>5th Fem. P1 Driver Chest Y Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>18</td>
<td>5th Fem. P1 Driver Chest Z Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>19</td>
<td>5th Fem. P1 Driver Chest Resultant Acceleration vs. Time</td>
<td>B-5</td>
</tr>
<tr>
<td>20</td>
<td>5th Fem. P1 Driver Chest X Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>21</td>
<td>5th Fem. P1 Driver Chest Y Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>22</td>
<td>5th Fem. P1 Driver Chest Z Velocity vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>23</td>
<td>5th Fem. P1 Driver Chest Displacement vs. Time</td>
<td>B-6</td>
</tr>
<tr>
<td>24</td>
<td>5th Fem. P1 Driver Left Femur Force vs. Time</td>
<td>B-7</td>
</tr>
<tr>
<td>25</td>
<td>5th Fem. P1 Driver Right Femur Force vs. Time</td>
<td>B-7</td>
</tr>
<tr>
<td>26</td>
<td>Fire Voltage #1 vs. Time</td>
<td>B-8</td>
</tr>
<tr>
<td>27</td>
<td>Fire Current #1 vs. Time</td>
<td>B-8</td>
</tr>
</tbody>
</table>
Figure No. 28. Fire Voltage #2 vs. Time B-8
Figure No. 29. Fire Current #2 vs. Time B-8
Figure No. 30. 5th Fem. P1 Driver Nij (N_TF) vs. Time B-9
Figure No. 31. 5th Fem. P1 Driver Nij (N_TE) vs. Time B-9
Figure No. 32. 5th Fem. P1 Driver Nij (N_CF) vs. Time B-9
Figure No. 33. 5th Fem. P1 Driver Nij (N_CE) vs. Time B-9
Figure No. 34. 5th Fem. P2 Driver Head X Acceleration vs. Time B-10
Figure No. 35. 5th Fem. P2 Driver Head Y Acceleration vs. Time B-10
Figure No. 36. 5th Fem. P2 Driver Head Z Acceleration vs. Time B-10
Figure No. 37. 5th Fem. P2 Driver Head Resultant Acceleration vs. Time B-10
Figure No. 38. 5th Fem. P2 Driver Head X Velocity vs. Time B-11
Figure No. 39. 5th Fem. P2 Driver Head Y Velocity vs. Time B-11
Figure No. 40. 5th Fem. P2 Driver Head Z Velocity vs. Time B-11
Figure No. 41. 5th Fem. P2 Driver Neck Force X vs. Time B-12
Figure No. 42. 5th Fem. P2 Driver Neck Force Y vs. Time B-12
Figure No. 43. 5th Fem. P2 Driver Neck Force Z vs. Time B-12
Figure No. 44. 5th Fem. P2 Driver Neck Force Resultant vs. Time B-12
Figure No. 45. 5th Fem. P2 Driver Neck Moment X vs. Time B-13
Figure No. 46. 5th Fem. P2 Driver Neck Moment Y vs. Time B-13
Figure No. 47. 5th Fem. P2 Driver Neck Moment Z vs. Time B-13
Figure No. 48. 5th Fem. P2 Driver Occipital Condyle Moment vs. Time B-13
Figure No. 49. 5th Fem. P2 Driver Chest X Acceleration vs. Time B-14
Figure No. 50. 5th Fem. P2 Driver Chest Y Acceleration vs. Time B-14
Figure No. 51. 5th Fem. P2 Driver Chest Z Acceleration vs. Time B-14
Figure No. 52. 5th Fem. P2 Driver Chest Resultant Acceleration vs. Time B-14
Figure No. 53. 5th Fem. P2 Driver Chest X Velocity vs. Time B-15
Figure No. 54. 5th Fem. P2 Driver Chest Y Velocity vs. Time B-15
Figure No. 55. 5th Fem. P2 Driver Chest Z Velocity vs. Time B-15
Figure No. 56. 5th Fem. P2 Driver Chest Displacement vs. Time B-15
Figure No. 57. 5th Fem. P2 Driver Left Femur Force vs. Time B-16
Figure No. 58. 5th Fem. P2 Driver Right Femur Force vs. Time

Figure No. 59. Fire Voltage #1 vs. Time

Figure No. 60. Fire Current #1 vs. Time

Figure No. 61. Fire Voltage #2 vs. Time

Figure No. 62. Fire Current #2 vs. Time

Figure No. 63. 5th Fem. P2 Driver Nij (N_{TF}) vs. Time

Figure No. 64. 5th Fem. P2 Driver Nij (N_{TE}) vs. Time

Figure No. 65. 5th Fem. P2 Driver Nij (N_{CF}) vs. Time

Figure No. 66. 5th Fem. P2 Driver Nij (N_{CE}) vs. Time
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P1)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER HEAD X (G’s) vs TIME (ms)

- Max: 2.6 G’s
- Tmax: 80.7 ms
- Min: -16.6 G’s
- Tmin: 7.3 ms
- CFC 1000

5TH FEM. DRIVER HEAD Y (G’s) vs TIME (ms)

- Max: 2.0 G’s
- Tmax: 22.1 ms
- Min: -2.1 G’s
- Tmin: 7.8 ms
- CFC 1000

5TH FEM. DRIVER HEAD Z (G’s) vs TIME (ms)

- Max: 11.3 G’s
- Tmax: 11.1 ms
- Min: -10.0 G’s
- Tmin: 7.3 ms
- CFC 1000

5TH FEM. DRIVER HEAD Resultant (G’s) vs TIME (ms)

- Max: 19.4 G’s
- Tmax: 7.3 ms
- Min: 0.0 G’s
- Tmin: 2.5 ms
- CFC 1000
5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)

- Max: 0.7 kph
- Tmax: 275.0 ms
- Min: -9.0 kph
- Tmin: 61.1 ms
- CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)

- Max: -0.0 kph
- Tmax: 0.1 ms
- Min: -0.8 kph
- Tmin: 146.6 ms
- CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)

- Max: 5.1 kph
- Tmax: 242.2 ms
- Min: -0.2 kph
- Tmin: 7.8 ms
- CFC 180

Injury Values Calculated between 0ms and 275ms
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P1)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER NECK FX (N) vs TIME (ms)
Max: 114.5 N
Tmax: 7.4 ms
Min: -579.2 N
Tmin: 41.0 ms
CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)
Max: 42.4 N
Tmax: 12.6 ms
Min: -36.3 N
Tmin: 33.6 ms
CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)
Max: 684.4 N
Tmax: 32.5 ms
Min: -60.7 N
Tmin: 10.2 ms
CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)
Max: 861.9 N
Tmax: 39.4 ms
Min: 1.0 N
Tmin: 1.5 ms
CFC 1000
Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
Max: 4.1 Nm
Tmax: 33.2 ms
Min: -1.8 Nm
Tmin: 12.3 ms
CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
Max: 4.7 Nm
Tmax: 9.9 ms
Min: -37.5 Nm
Tmin: 43.8 ms
CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
Max: 2.8 Nm
Tmax: 26.0 ms
Min: -1.3 Nm
Tmin: 41.9 ms
CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
Max: 3.0 Nm
Tmax: 9.7 ms
Min: -27.7 Nm
Tmin: 44.2 ms
CFC 600
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P1)
Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
Max: 1.1 G's
Tmax: 59.3 ms
Min: -14.9 G's
Tmin: 10.3 ms
CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
Max: 0.7 G's
Tmax: 22.4 ms
Min: -1.1 G's
Tmin: 28.5 ms
CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
Max: 3.9 G's
Tmax: 28.6 ms
Min: -2.9 G's
Tmin: 8.0 ms
CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
Max: 15.2 G's
Tmax: 10.3 ms
Min: 0.0 G's
Tmin: 0.3 ms
CFC 180
Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER CHEST X Velocity (kph) vs TIME (ms)
- Max: 2.2 kph
- Tmax: 275.0 ms
- Min: -3.4 kph
- Tmin: 43.3 ms
- CFC 180

5TH FEM. DRIVER CHEST Y Velocity (kph) vs TIME (ms)
- Max: 0.0 kph
- Tmax: 25.9 ms
- Min: -0.4 kph
- Tmin: 83.4 ms
- CFC 180

5TH FEM. DRIVER CHEST Z Velocity (kph) vs TIME (ms)
- Max: 1.9 kph
- Tmax: 98.3 ms
- Min: -0.2 kph
- Tmin: 9.2 ms
- CFC 180

5TH FEM. DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
- Max: 0.2 mm
- Tmax: 19.3 ms
- Min: -2.9 mm
- Tmin: 43.8 ms
- CFC 600
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P1)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)

Max: 133.3 N
Tmax: 37.4 ms
Min: -43.2 N
Tmin: 13.6 ms
CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)

Max: 92.9 N
Tmax: 43.8 ms
Min: -43.3 N
Tmin: 76.5 ms
CFC 600
Injury Values Calculated between 0ms and 275ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 17.1 Volts
Tmax: 0.3 ms
Min: -1.0 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 2.3 Amps
Tmax: 0.1 ms
Min: -0.3 Amps
Tmin: 150.3 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 16.9 Volts
Tmax: 150.3 ms
Min: -1.2 Volts
Tmin: 160.3 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 2.8 Amps
Tmax: 150.2 ms
Min: -0.2 Amps
Tmin: 149.8 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P2)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER HEAD X (G's) vs TIME (ms)
Max: 3.8 G's
Tmax: 101.7 ms
Min: -11.0 G's
Tmin: 39.8 ms
CFC 1000

5TH FEM. DRIVER HEAD Y (G's) vs TIME (ms)
Max: 1.2 G's
Tmax: 15.0 ms
Min: -0.7 G's
Tmin: 9.8 ms
CFC 1000

5TH FEM. DRIVER HEAD Z (G's) vs TIME (ms)
Max: 15.0 G's
Tmax: 11.8 ms
Min: -5.1 G's
Tmin: 17.5 ms
CFC 1000

5TH FEM. DRIVER HEAD Resultant (G's) vs TIME (ms)
Max: 15.2 G's
Tmax: 11.8 ms
Min: 0.0 G's
Tmin: 2.4 ms
CFC 1000
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P2)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER HEAD X Velocity (kph) vs TIME (ms)
Max: 0.0 kph
Tmax: 10.4 ms
Min: -10.1 kph
Tmin: 70.6 ms
CFC 180

5TH FEM. DRIVER HEAD Y Velocity (kph) vs TIME (ms)
Max: 0.5 kph
Tmax: 95.9 ms
Min: -0.3 kph
Tmin: 275.0 ms
CFC 180

5TH FEM. DRIVER HEAD Z Velocity (kph) vs TIME (ms)
Max: 6.3 kph
Tmax: 129.0 ms
Min: -0.0 kph
Tmin: 8.9 ms
CFC 180
5TH FEM. DRIVER NECK FX (N) vs TIME (ms)

Max: 12.7 N
Tmax: 107.9 ms
Min: -672.8 N
Tmin: 40.6 ms
CFC 1000

5TH FEM. DRIVER NECK FY (N) vs TIME (ms)

Max: 41.2 N
Tmax: 35.5 ms
Min: -10.0 N
Tmin: 20.8 ms
CFC 1000

5TH FEM. DRIVER NECK FZ (N) vs TIME (ms)

Max: 587.8 N
Tmax: 11.8 ms
Min: -120.2 N
Tmin: 17.8 ms
CFC 1000

5TH FEM. DRIVER NECK FResultant (N) vs TIME (ms)

Max: 835.4 N
Tmax: 40.5 ms
Min: 0.9 N
Tmin: 1.6 ms
CFC 1000

Injury Values Calculated between 0ms and 275ms
Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER NECK MX (Nm) vs TIME (ms)
- Max: 1.4 Nm
- Tmax: 20.8 ms
- Min: -1.6 Nm
- Tmin: 15.1 ms
- CFC 600

5TH FEM. DRIVER NECK MY (Nm) vs TIME (ms)
- Max: 5.5 Nm
- Tmax: 76.2 ms
- Min: -40.4 Nm
- Tmin: 40.3 ms
- CFC 600

5TH FEM. DRIVER NECK MZ (Nm) vs TIME (ms)
- Max: 2.1 Nm
- Tmax: 26.2 ms
- Min: -0.6 Nm
- Tmin: 125.9 ms
- CFC 600

Drv. Occipital Condyle Moment (Nm) vs TIME (ms)
- Max: 6.0 Nm
- Tmax: 76.2 ms
- Min: -28.5 Nm
- Tmin: 40.2 ms
- CFC 600
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P2)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER CHEST X (G's) vs TIME (ms)
- Max: 12.0 G's
- Tmax: 17.0 ms
- Min: -24.7 G's
- Tmin: 10.4 ms
- CFC 180

5TH FEM. DRIVER CHEST Y (G's) vs TIME (ms)
- Max: 1.5 G's
- Tmax: 13.3 ms
- Min: -1.9 G's
- Tmin: 9.7 ms
- CFC 180

5TH FEM. DRIVER CHEST Z (G's) vs TIME (ms)
- Max: 4.9 G's
- Tmax: 30.5 ms
- Min: -3.2 G's
- Tmin: 19.7 ms
- CFC 180

5TH FEM. DRIVER CHEST Resultant (G's) vs TIME (ms)
- Max: 24.9 G's
- Tmax: 10.4 ms
- Min: 0.0 G's
- Tmin: 1.4 ms
- CFC 180
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P2)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER CHEST X Velocity (kph) vs TIME (ms)
Max: 0.5 kph
Tmax: 275.0 ms
Min: -6.0 kph
Tmin: 56.2 ms
CFC 180

5TH FEM. DRIVER CHEST Y Velocity (kph) vs TIME (ms)
Max: 0.1 kph
Tmax: 29.9 ms
Min: -0.1 kph
Tmin: 231.7 ms
CFC 180

5TH FEM. DRIVER CHEST Z Velocity (kph) vs TIME (ms)
Max: 3.9 kph
Tmax: 113.1 ms
Min: 0.0 kph
Tmin: 1.4 ms
CFC 180

5TH FEM. DRIVER CHEST DISPLACEMENT (mm) vs TIME (ms)
Max: 0.0 mm
Tmax: 5.0 ms
Min: -9.0 mm
Tmin: 12.4 ms
CFC 600
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P2)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

5TH FEM. DRIVER LEFT FEMUR (N) vs TIME (ms)

- Max: 190.3 N
- Tmax: 47.4 ms
- Min: -40.0 N
- Tmin: 246.1 ms
- CFC 600

5TH FEM. DRIVER RIGHT FEMUR (N) vs TIME (ms)

- Max: 214.1 N
- Tmax: 44.6 ms
- Min: -14.1 N
- Tmin: 9.6 ms
- CFC 600
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P2)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Injury Values Calculated between 0ms and 275ms

FIRE VOLTAGE #1 (Volts) vs TIME (ms)
Max: 17.2 Volts
Tmax: 0.3 ms
Min: -0.9 Volts
Tmin: 10.3 ms
CFC 1000

FIRE CURRENT #1 (Amps) vs TIME (ms)
Max: 2.7 Amps
Tmax: 1.3 ms
Min: -0.3 Amps
Tmin: 150.2 ms
CFC 1000

FIRE VOLTAGE #2 (Volts) vs TIME (ms)
Max: 17.1 Volts
Tmax: 150.3 ms
Min: -1.1 Volts
Tmin: 160.3 ms
CFC 1000

FIRE CURRENT #2 (Amps) vs TIME (ms)
Max: 2.3 Amps
Tmax: 150.1 ms
Min: -0.1 Amps
Tmin: 149.7 ms
CFC 1000

B-17
LOW RISK DEPLOYMENT
2009 Ford Escape Hybrid (C90200) (5th P2)

Test Date: 1/15/09
Speed: 0.0 mph (0.0 km/h)

Drv. nij (NTF) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 76.1 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Drv. nij (NTE) () vs TIME SPECIAL CHS (ms)
Max: 0.6
Tmax: 40.3 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600

Drv. nij (NCF) () vs TIME SPECIAL CHS (ms)
Max: 0.0
Tmax: 76.8 ms
Min: 0.0
Tmin: 0.4 ms
CFC 600

Drv. nij (NCE) () vs TIME SPECIAL CHS (ms)
Max: 0.3
Tmax: 16.9 ms
Min: 0.0
Tmin: 0.1 ms
CFC 600
APPENDIX C
CRASH TEST PHOTOGRAPHS
TABLE OF PHOTOGRAPHS

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vehicle Certification Label</td>
<td>C-1</td>
</tr>
<tr>
<td>2</td>
<td>Tire Placard</td>
<td>C-2</td>
</tr>
<tr>
<td>3</td>
<td>Pre-Test Front View of Test Vehicle</td>
<td>C-3</td>
</tr>
<tr>
<td>4</td>
<td>Post-Test Front View of Test Vehicle</td>
<td>C-4</td>
</tr>
<tr>
<td>5</td>
<td>Pre-Test Left Side View of Test Vehicle</td>
<td>C-5</td>
</tr>
<tr>
<td>6</td>
<td>Post-Test Left Side View of Test Vehicle</td>
<td>C-6</td>
</tr>
<tr>
<td>7</td>
<td>Pre-Test Right Side View of Test Vehicle</td>
<td>C-7</td>
</tr>
<tr>
<td>8</td>
<td>Post-Test Right Side View of Test Vehicle</td>
<td>C-8</td>
</tr>
<tr>
<td>9</td>
<td>Pre-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>C-9</td>
</tr>
<tr>
<td>10</td>
<td>Post-Test Right Front Three-Quarter View of Test Vehicle</td>
<td>C-10</td>
</tr>
<tr>
<td>11</td>
<td>Pre-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>C-11</td>
</tr>
<tr>
<td>12</td>
<td>Post-Test Left Front Three-Quarter View of Test Vehicle</td>
<td>C-12</td>
</tr>
<tr>
<td>13</td>
<td>Pre-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>C-13</td>
</tr>
<tr>
<td>14</td>
<td>Post-Test Right Rear Three-Quarter View of Test Vehicle</td>
<td>C-14</td>
</tr>
<tr>
<td>15</td>
<td>Pre-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>C-15</td>
</tr>
<tr>
<td>16</td>
<td>Post-Test Left Rear Three-Quarter View of Test Vehicle</td>
<td>C-16</td>
</tr>
<tr>
<td>17</td>
<td>Pre-Test Rear View of Test Vehicle</td>
<td>C-17</td>
</tr>
<tr>
<td>18</td>
<td>Post-Test Rear View of Test Vehicle</td>
<td>C-18</td>
</tr>
<tr>
<td>19</td>
<td>Pre-Test Windshield View</td>
<td>C-19</td>
</tr>
<tr>
<td>20</td>
<td>Post-Test Windshield View</td>
<td>C-20</td>
</tr>
<tr>
<td>21</td>
<td>Pre-Test Engine Compartment View</td>
<td>C-21</td>
</tr>
<tr>
<td>22</td>
<td>Post-Test Engine Compartment View</td>
<td>C-22</td>
</tr>
<tr>
<td>23</td>
<td>Pre-Test Fuel Filler Cap View</td>
<td>C-23</td>
</tr>
<tr>
<td>24</td>
<td>Post-Test Fuel Filler Cap View</td>
<td>C-24</td>
</tr>
</tbody>
</table>
Photo No. 25. Pre-Test Front Underbody View
Photo No. 26. Post-Test Front Underbody View
Photo No. 27. Pre-Test Mid Underbody View
Photo No. 28. Post-Test Mid Underbody View
Photo No. 29. Pre-Test Rear Underbody View
Photo No. 30. Post-Test Rear Underbody View
Photo No. 31. Pre-Test Driver Dummy Front View (head position)
Photo No. 32. Post-Test Driver Dummy Front View (head position)
Photo No. 33. Pre-Test Driver Dummy Position Left Side View
Photo No. 34. Post-Test Driver Dummy Position Left Side View
Photo No. 35. Pre-Test Driver Dummy Position Left Side View (door open)
Photo No. 36. Post-Test Driver Dummy Position Left Side View (door open)
Photo No. 37. Pre-Test Driver Dummy Seat Position
Photo No. 38. Post-Test Driver Dummy Seat Position
Photo No. 39. Pre-Test Driver Dummy Feet Position
Photo No. 40. Post-Test Driver Dummy Feet Position
Photo No. 41. Pre-Test Driver Side Knee Bolster View
Photo No. 42. Post-Test Driver Side Knee Bolster View
Photo No. 43. Post-Test Driver Dummy Airbag Contact
Photo No. 44. Post-Test Driver Dummy Head Contact (visor)
Photo No. 45. Post-Test Driver Dummy Knee Contact
Photo No. 46. Pre-Test Passenger Dummy Front View (head position)
Photo No. 47. Post-Test Passenger Dummy Front View (head position)
Photo No. 48. Pre-Test Passenger Dummy Position Right Side View
Photo No. 49. Post-Test Passenger Dummy Position Right Side View
Photo No. 50. Pre-Test Passenger Dummy Position Right Side View (door open)
Photo No. 51. Post-Test Passenger Dummy Position Right Side View (door open)
Photo No. 52. Pre-Test Passenger Dummy Seat Position
Photo No. 53. Post-Test Passenger Dummy Seat Position
Photo No. 54. Pre-Test Passenger Dummy Feet Position
Photo No. 55. Post-Test Passenger Dummy Feet Position
Photo No. 56. Pre-Test Passenger Side Knee Bolster View
Photo No. 57. Post-Test Passenger Side Knee Bolster View
Photo No. 58. Post-Test Passenger Dummy Airbag Contact
Photo No. 59. Post-Test Passenger Dummy Head Contact (headrest)
Photo No. 60. Post-Test Passenger Dummy Head Contact (visor)
Photo No. 61. Post-Test Passenger Dummy Knee Contact
Photo No. 62. Rollover 90 Degrees
Photo No. 63. Rollover 180 Degrees
Photo No. 64. Rollover 270 Degrees
Photo No. 65. Rollover 360 Degrees
Photo No. 66. Temperature Plot
Photo No. 67. Vehicle in Relation to The Load Cell Grid
Photo No. 68. Pre-Test Danger High Voltage Label
Photo No. 69. Pre-Test Propulsion Battery Module
Photo No. 70. Post-Test Propulsion Battery Module
Photo No. 71. Pre-Test High Voltage Interconnect
Photo No. 72. Pre-Test Electrical Propulsion Components
Photo No. 73. Pre-Test Inertia Cut Off Switch
Photo No. 74. Post-Test Inertia Cut Off Switch
Photo No. 75. Pre-Test Service Switch Disconnect
<table>
<thead>
<tr>
<th>Vehicle Certification Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE: 11/08</td>
</tr>
<tr>
<td>GVWR: 4720LB / 2141KG</td>
</tr>
<tr>
<td>FRONT GAWR: 2440LB</td>
</tr>
<tr>
<td>REAR GAWR: 2400LB</td>
</tr>
<tr>
<td>1107KG</td>
</tr>
<tr>
<td>WITH 1089KG</td>
</tr>
<tr>
<td>TIRES P235/70R16</td>
</tr>
<tr>
<td>RIMS 16x7.0J</td>
</tr>
<tr>
<td>AT 240 kPa / 35 PSI COLD</td>
</tr>
<tr>
<td>AT 240 kPa / 35 PSI COLD</td>
</tr>
</tbody>
</table>

This vehicle conforms to all applicable federal motor vehicle safety and theft prevention standards in effect on the date of manufacture shown above.

VIN: 1FMCU49399KA95726

TYPE: MPV

EXT PNT: UI RC: 41 DSO:
WB INT TR TP/PS R AXLE TR SPR 9M71A
103 2S Z 96 H HH22 H05
1200811097205 UTC 5U5A-1520472-BA
TIRE AND LOADING INFORMATION

SEATING CAPACITY
- TOTAL: 5
- FRONT: 2
- REAR: 3

The combined weight of occupants and cargo should never exceed:
- 438 kg or 967 lbs.

<table>
<thead>
<tr>
<th>TIRE</th>
<th>SIZE</th>
<th>COLD TIRE PRESSURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRONT</td>
<td>P235/70R16</td>
<td>240 KPA, 35 PSI</td>
</tr>
<tr>
<td>REAR</td>
<td>P235/70R16</td>
<td>240 KPA, 35 PSI</td>
</tr>
<tr>
<td>SPARE</td>
<td>T165/80D17</td>
<td>415 KPA, 60 PSI</td>
</tr>
</tbody>
</table>

SEE OWNERS MANUAL FOR ADDITIONAL INFORMATION
Pre-Test Front View of Test Vehicle
Post-Test Right Rear Three-Quarter View of Test Vehicle
Pre-Test Rear View of Test Vehicle
Pre-Test Fuel Filler Cap View
Post-Test Front Underbody View
Pre-Test Driver Dummy Front View (head position)
Post-Test Driver Dummy Seat Position
Post-Test Driver Dummy Head Contact (visor)
Post-Test Passenger Dummy Front View (head position)
Pre-Test Passenger Dummy Seat Position
Post-Test Passenger Dummy Feet Position
Post-Test Passenger Dummy Airbag Contact
Post-Test Passenger Dummy Head Contact (headrest)
MÊME AVEC DES SACS GONFLABLES PERFECTIONNÉS
- Les enfants peuvent être tués ou gravement blessés par le sac gonflable.
- Le siège arrière est la place la plus sûre pour les enfants.
- Ne placez jamais à l'avant un siège d'enfant faisant face à l'arrière.
- Utilisez toujours les ceintures de sécurité et les dispositifs de retenue pour enfant.
- Consultez le Guide du propriétaire pour des renseignements concernant les sacs gonflables.

Post-Test Passenger Dummy Head Contact (visor)
Rollover 90 Degrees
Alkaline electrolyte can cause blindness or severe burns.

Keep out of the reach of children.

Keep away from sparks and flame.

Garder loin des étincelles ou des flammes.

Recycle in accordance with local regulations.

Garder hors de portée de enfants.

Please recycle with or flood with water - Service by qualified technician only.

Do not tamper with or flood with water - Faire effectuer l'entretien par un technicien qualifié seulement.
Pre-Test Inertia Cut Off Switch
Post-Test Inertia Cut Off Switch
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Left Side View</td>
<td>D-1</td>
</tr>
<tr>
<td>2</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Left Side View</td>
<td>D-2</td>
</tr>
<tr>
<td>3</td>
<td>Pre-Test 5th Fem. P1 Driver Dummy Right Side View</td>
<td>D-3</td>
</tr>
<tr>
<td>4</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Right Side View</td>
<td>D-4</td>
</tr>
<tr>
<td>5</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Left Side View</td>
<td>D-5</td>
</tr>
<tr>
<td>6</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Airbag Right Side View</td>
<td>D-6</td>
</tr>
<tr>
<td>7</td>
<td>Post-Test 5th Fem. P1 Driver Dummy Head Contact (headrest)</td>
<td>D-7</td>
</tr>
<tr>
<td>8</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Left Side View</td>
<td>D-8</td>
</tr>
<tr>
<td>9</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Left Side View</td>
<td>D-9</td>
</tr>
<tr>
<td>10</td>
<td>Pre-Test 5th Fem. P2 Driver Dummy Right Side View</td>
<td>D-10</td>
</tr>
<tr>
<td>11</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Right Side View</td>
<td>D-11</td>
</tr>
<tr>
<td>12</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Airbag Left Side View</td>
<td>D-12</td>
</tr>
<tr>
<td>13</td>
<td>Post-Test 5th Fem. P2 Driver Dummy Airbag Right Side View</td>
<td>D-13</td>
</tr>
<tr>
<td>14</td>
<td>Post-Test 5th Fem P2 Driver Dummy Head Contact (visor)</td>
<td>D-14</td>
</tr>
</tbody>
</table>
Pre-Test 5th Fem. P1 Driver Dummy Left Side View
Post-Test 5th Fem. P2 Driver Dummy Airbag Right Side View
Post-Test 15th Fem P2 Driver Dummy Head Contact (visor)
APPENDIX E
SUPPRESSION PHOTOGRAPHS

TABLE OF PHOTOGRAPHS

<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cosco Dream Ride Car Bed Belted, Forward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>2</td>
<td>Cosco Dream Ride Car Bed Belted, Middle Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>3</td>
<td>Cosco Dream Ride Car Bed Belted, Rearward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>4</td>
<td>Unbelted 5th Percentile Female Reactivation, Forward Seat Track</td>
<td>E-1</td>
</tr>
<tr>
<td>5</td>
<td>Britax Handle With Care 191 Belted, Forward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>6</td>
<td>Britax Handle With Care 191 Belted, Middle Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>7</td>
<td>Britax Handle With Care 191 Belted, Rearward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>8</td>
<td>Britax Handle With Care 191 Unbelted, Forward Seat Track</td>
<td>E-2</td>
</tr>
<tr>
<td>9</td>
<td>Britax Handle With Care 191 Unbelted, Middle Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>10</td>
<td>Britax Handle With Care 191 Unbelted, Rearward Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>11</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>12</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-3</td>
</tr>
<tr>
<td>13</td>
<td>Britax Handle With Care 191 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-4</td>
</tr>
<tr>
<td>14</td>
<td>Unbelted 5th Percentile Female Reactivation, Rearward Seat Track</td>
<td>E-4</td>
</tr>
<tr>
<td>15</td>
<td>Evenflo First Choice 204 Belted, Forward Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>16</td>
<td>Evenflo First Choice 204 Belted, Middle Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>17</td>
<td>Evenflo First Choice 204 Belted, Rearward Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>18</td>
<td>Evenflo First Choice 204 Unbelted, Forward Seat Track</td>
<td>E-5</td>
</tr>
<tr>
<td>19</td>
<td>Evenflo First Choice 204 Unbelted, Middle Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>20</td>
<td>Evenflo First Choice 204 Unbelted, Rearward Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>21</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Forward Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>22</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Middle Seat Track</td>
<td>E-6</td>
</tr>
<tr>
<td>23</td>
<td>Evenflo First Choice 204 Forward Facing Unbelted, Rearward Seat Track</td>
<td>E-7</td>
</tr>
<tr>
<td>24</td>
<td>Unbelted 5th Percentile Female Reactivation, Middle Seat Track</td>
<td>E-7</td>
</tr>
<tr>
<td>25</td>
<td>Graco Infant W/ Base Belted, Forward Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>26</td>
<td>Graco Infant W/ Base Belted, Middle Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>27</td>
<td>Graco Infant W/ Base Belted, Rearward Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>28</td>
<td>Graco Infant W/ Base Unbelted, Middle Seat Track</td>
<td>E-8</td>
</tr>
<tr>
<td>29</td>
<td>Graco Infant W/ Base Unbelted, Rearward Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>30</td>
<td>Graco Infant W/ Base Forward Facing Unbelted, Forward Seat Track</td>
<td>E-9</td>
</tr>
<tr>
<td>31</td>
<td>Graco Infant W/ Base Forward Facing Unbelted, Middle Seat Track</td>
<td>E-9</td>
</tr>
</tbody>
</table>
Photo No. 32. Graco Infant W/O Base Belted, Forward Seat Track
Photo No. 33. Graco Infant W/O Base Belted, Middle Seat Track
Photo No. 34. Graco Infant W/O Base Belted, Rearward Seat Track
Photo No. 35. Graco Infant W/O Base Unbelted, Middle Seat Track
Photo No. 36. Graco Infant W/O Base Unbelted, Rearward Seat Track
Photo No. 37. Graco Infant W/O Base Forward Facing Unbelted, Forward Seat Track
Photo No. 38. Graco Infant W/O Base Forward Facing Unbelted, Middle Seat Track
Photo No. 39. Graco Infant W/O Base Forward Facing Unbelted, Rearward Seat Track
Photo No. 40. Unbelted 5th Percentile Female Reactivation, Forward Seat Track
Photo No. 41. Britax Roundabout 161 Forward Facing Belted, Forward Seat Track
Photo No. 42. Britax Roundabout 161 Forward Facing Belted, Middle Seat Track
Photo No. 43. Britax Roundabout 161 Forward Facing Belted, Rearward Seat Track
Photo No. 44. Britax Roundabout 161 Forward Facing Unbelted, Forward Seat Track
Photo No. 45. Britax Roundabout 161 Forward Facing Unbelted, Middle Seat Track
Photo No. 46. Britax Roundabout 161 Forward Facing Unbelted, Rearward Seat Track
Photo No. 47. Britax Roundabout 161 Rear Facing Belted, Forward Seat Track
Photo No. 48. Britax Roundabout 161 Rear Facing Belted, Middle Seat Track
Photo No. 49. Britax Roundabout 161 Rear Facing Belted, Rearward Seat Track
Photo No. 50. Britax Roundabout 161 Rear Facing Unbelted, Forward Seat Track
Photo No. 51. Britax Roundabout 161 Rear Facing Unbelted, Middle Seat Track
Photo No. 52. Britax Roundabout 161 Rear Facing Unbelted, Rearward Seat Track
Photo No. 53. Unbelted 5th Percentile Female Reactivation, Rearward Seat Track
Photo No. 54. Century Encore Forward Facing Belted, Forward Seat Track
Photo No. 55. Century Encore Forward Facing Belted, Middle Seat Track
Photo No. 56. Century Encore Forward Facing Belted, Rearward Seat Track
Photo No. 57. Century Encore Forward Facing Unbelted, Forward Seat Track
Photo No. 58. Century Encore Forward Facing Unbelted, Middle Seat Track
Photo No. 59. Century Encore Forward Facing Unbelted, Rearward Seat Track
Photo No. 60. Century Encore Rear Facing Belted, Forward Seat Track
Photo No. 61. Century Encore Rear Facing Belted, Middle Seat Track
Photo No. 62. Century Encore Rear Facing Belted, Rearward Seat Track
Photo No. 63. Century Encore Rear Facing Unbelted, Forward Seat Track
Photo No. 64. Century Encore Rear Facing Unbelted, Middle Seat Track
Photo No. 65. Century Encore Rear Facing Unbelted, Rearward Seat Track
Photo No. 66. Unbelted 5th Percentile Female Reactivation, Middle Seat Track
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>67</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Forward Seat Track</td>
</tr>
<tr>
<td>68</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Middle Seat Track</td>
</tr>
<tr>
<td>69</td>
<td>Evenflo Medallion 254 Forward Facing Belted, Rearward Seat Track</td>
</tr>
<tr>
<td>70</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Forward Seat Track</td>
</tr>
<tr>
<td>71</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Middle Seat Track</td>
</tr>
<tr>
<td>72</td>
<td>Evenflo Medallion 254 Forward Facing Unbelted, Rearward Seat Track</td>
</tr>
<tr>
<td>73</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Forward Seat Track</td>
</tr>
<tr>
<td>74</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Middle Seat Track</td>
</tr>
<tr>
<td>75</td>
<td>Evenflo Medallion 254 Rear Facing Belted, Rearward Seat Track</td>
</tr>
<tr>
<td>76</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Forward Seat Track</td>
</tr>
<tr>
<td>77</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Middle Seat Track</td>
</tr>
<tr>
<td>78</td>
<td>Evenflo Medallion 254 Rear Facing Unbelted, Rearward Seat Track</td>
</tr>
<tr>
<td>79</td>
<td>Unbelted 5th Percentile Female Reactivation, Rearward Seat Track</td>
</tr>
<tr>
<td>80</td>
<td>3-Year-Old Forward Facing Britax Roundabout Belted, Forward Seat Track</td>
</tr>
<tr>
<td>81</td>
<td>3-Year-Old Forward Facing Britax Roundabout Belted, Middle Seat Track</td>
</tr>
<tr>
<td>82</td>
<td>3-Year-Old Forward Facing Britax Roundabout Belted, Rearward Seat Track</td>
</tr>
<tr>
<td>83</td>
<td>Unbelted 5th Percentile Female Reactivation, Middle Seat Track</td>
</tr>
<tr>
<td>84</td>
<td>3-Year-Old Forward Facing Century Encore Belted, Forward Seat Track</td>
</tr>
<tr>
<td>85</td>
<td>3-Year-Old Forward Facing Century Encore Belted, Middle Seat Track</td>
</tr>
<tr>
<td>86</td>
<td>3-Year-Old Forward Facing Century Encore Belted, Rearward Seat Track</td>
</tr>
<tr>
<td>87</td>
<td>Unbelted 5th Percentile Female Reactivation, Middle Seat Track</td>
</tr>
<tr>
<td>88</td>
<td>3-Year-Old Forward Facing Evenflo Medallion Belted, Forward Seat Track</td>
</tr>
<tr>
<td>89</td>
<td>3-Year-Old Forward Facing Evenflo Medallion Belted, Middle Seat Track</td>
</tr>
<tr>
<td>90</td>
<td>3-Year-Old Forward Facing Evenflo Medallion Belted, Rearward Seat Track</td>
</tr>
<tr>
<td>91</td>
<td>Unbelted 5th Percentile Female Reactivation, Rearward Seat Track</td>
</tr>
<tr>
<td>92</td>
<td>3-Year-Old Century Next Step Belted, Forward Seat Track</td>
</tr>
<tr>
<td>93</td>
<td>3-Year-Old Century Next Step Belted, Middle Seat Track</td>
</tr>
<tr>
<td>94</td>
<td>3-Year-Old Century Next Step Belted, Rearward Seat Track</td>
</tr>
<tr>
<td>95</td>
<td>3-Year-Old Century Next Step Cinched With Harness, Forward Seat Track</td>
</tr>
<tr>
<td>96</td>
<td>3-Year-Old Century Next Step Cinched With Harness, Middle Seat Track</td>
</tr>
<tr>
<td>97</td>
<td>3-Year-Old Century Next Step Cinched With Harness, Rearward Seat Track</td>
</tr>
<tr>
<td>98</td>
<td>Unbelted 5th Percentile Female Reactivation, Forward Seat Track</td>
</tr>
<tr>
<td>99</td>
<td>3-Year-Old Cosco High Back Booster Belted, Forward Seat Track</td>
</tr>
<tr>
<td>100</td>
<td>3-Year-Old Cosco High Back Booster Belted, Middle Seat Track</td>
</tr>
<tr>
<td>101</td>
<td>3-Year-Old Cosco High Back Booster Belted, Rearward Seat Track</td>
</tr>
</tbody>
</table>
Photo No. 102. 3-Year-Old Cosco High Back Booster Cinched With Harness, Forward Seat Track

Photo No. 103. 3-Year-Old Cosco High Back Booster Cinched With Harness, Middle Seat Track

Photo No. 104. 3-Year-Old Cosco High Back Booster Cinched With Harness, Rearward Seat Track

Photo No. 105. Unbelted 5th Percentile Female Reactivation, Middle Seat Track

Photo No. 106. 6-Year-Old Century Next Step Belted, Forward Seat Track

Photo No. 107. 6-Year-Old Century Next Step Belted, Middle Seat Track

Photo No. 108. 6-Year-Old Century Next Step Belted, Rearward Seat Track

Photo No. 109. Unbelted 5th Percentile Female Reactivation, Forward Seat Track

Photo No. 110. 6-Year-Old Cosco High Back Booster Belted, Forward Seat Track

Photo No. 111. 6-Year-Old Cosco High Back Booster Belted, Middle Seat Track

Photo No. 112. 6-Year-Old Cosco High Back Booster Belted, Rearward Seat Track

Photo No. 113. Unbelted 5th Percentile Female Reactivation, Middle Seat Track

Photo No. 114. 6-Year-Old Evenflo Right Fit Belted, Forward Seat Track

Photo No. 115. 6-Year-Old Evenflo Right Fit Belted, Middle Seat Track

Photo No. 116. 6-Year-Old Evenflo Right Fit Belted, Rearward Seat Track

Photo No. 117. Unbelted 5th Percentile Female Reactivation, Forward Seat Track

Photo No. 118. 3-Year-Old Unbelted, Forward Seat Track, Position 1

Photo No. 119. 3-Year-Old Unbelted, Forward Seat Track, Position 2

Photo No. 120. 3-Year-Old Unbelted, Forward Seat Track, Position 3

Photo No. 121. 3-Year-Old Unbelted, Forward Seat Track, Position 4

Photo No. 122. 3-Year-Old Unbelted, Forward Seat Track, Position 5

Photo No. 123. 3-Year-Old Unbelted, Forward Seat Track, Position 6

Photo No. 124. 3-Year-Old Unbelted, Forward Seat Track, Position 7

Photo No. 125. 3-Year-Old Unbelted, Middle Seat Track, Position 1

Photo No. 126. 3-Year-Old Unbelted, Middle Seat Track, Position 2

Photo No. 127. 3-Year-Old Unbelted, Middle Seat Track, Position 3

Photo No. 128. 3-Year-Old Unbelted, Middle Seat Track, Position 4

Photo No. 129. 3-Year-Old Unbelted, Middle Seat Track, Position 5

Photo No. 130. 3-Year-Old Unbelted, Middle Seat Track, Position 6

Photo No. 131. 3-Year-Old Unbelted, Middle Seat Track, Position 7

Photo No. 132. 3-Year-Old Unbelted, Rearward Seat Track, Position 1

Photo No. 133. 3-Year-Old Unbelted, Rearward Seat Track, Position 2

Photo No. 134. 3-Year-Old Unbelted, Rearward Seat Track, Position 3

Photo No. 135. 3-Year-Old Unbelted, Rearward Seat Track, Position 4

Photo No. 136. 3-Year-Old Unbelted, Rearward Seat Track, Position 5
<table>
<thead>
<tr>
<th>Photo No.</th>
<th>Description</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>137</td>
<td>3-Year-Old Unbelted, Rearward Seat Track, Position 6</td>
<td>E-38</td>
</tr>
<tr>
<td>138</td>
<td>3-Year-Old Unbelted, Rearward Seat Track, Position 7</td>
<td>E-39</td>
</tr>
<tr>
<td>139</td>
<td>Unbelted 5th Percentile Female Reactivation, Middle Seat Track</td>
<td>E-39</td>
</tr>
<tr>
<td>140</td>
<td>6-Year-Old Unbelted, Forward Seat Track, Position 3</td>
<td>E-40</td>
</tr>
<tr>
<td>141</td>
<td>6-Year-Old Unbelted, Middle Seat Track, Position 1</td>
<td>E-40</td>
</tr>
<tr>
<td>142</td>
<td>6-Year-Old Unbelted, Middle Seat Track, Position 2</td>
<td>E-40</td>
</tr>
<tr>
<td>143</td>
<td>6-Year-Old Unbelted, Middle Seat Track, Position 3</td>
<td>E-40</td>
</tr>
<tr>
<td>144</td>
<td>6-Year-Old Unbelted, Middle Seat Track, Position 4</td>
<td>E-41</td>
</tr>
<tr>
<td>145</td>
<td>6-Year-Old Unbelted, Rearward Seat Track, Position 1</td>
<td>E-41</td>
</tr>
<tr>
<td>146</td>
<td>6-Year-Old Unbelted, Rearward Seat Track, Position 2</td>
<td>E-41</td>
</tr>
<tr>
<td>147</td>
<td>6-Year-Old Unbelted, Rearward Seat Track, Position 3</td>
<td>E-41</td>
</tr>
<tr>
<td>148</td>
<td>6-Year-Old Unbelted, Rearward Seat Track, Position 4</td>
<td>E-42</td>
</tr>
<tr>
<td>149</td>
<td>Unbelted 5th Percentile Female Reactivation, Forward Seat Track</td>
<td>E-42</td>
</tr>
</tbody>
</table>
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

Newborn Section A Car Bed

- Cosco Dream Ride Car Bed Belted, Middle Seat Track
- Cosco Dream Ride Car Bed Belted, Middle Seat Track
- Unbelted 5th Percentile Female Reactivation, Forward Seat Track
- Unbelted 5th Percentile Female Reactivation, Rearward Seat Track
Britax Handle With Care 191 Forward Facing Unbelted, Rearward Seat Track

Unbelted 5th Percentile Female Reactivation, Rearward Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

12 Month
Section B

Rear Facing CRS

Evenflo First Choice 204 Unbelted, Middle Seat Track

Evenflo First Choice 204 Unbelted, Rearward Seat Track

Evenflo First Choice 204 Forward Facing Unbelted, Forward Seat Track

Evenflo First Choice 204 Forward Facing Unbelted, Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)
12 Month Section B Rear Facing CRS

Evenflo First Choice 204 Forward Facing Unbelted, Rearward Seat Track

Unbelted 5th Percentile Female Reactivation, Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)
12 Month Section B Rear Facing CRS

Graco Infant W/ Base Unbelted, Rearward Seat Track
Graco Infant W/ Base Forward Facing Unbelted, Forward Seat Track
Graco Infant W/ Base Forward Facing Unbelted, Middle Seat Track
Graco Infant W/O Base Belted, Forward Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

Section B

12 Month

Graco Infant W/O Base Belted, Rearward Seat Track

Graco Infant W/O Base Unbelted, Rearward Seat Track

Graco Infant W/O Base Belted, Middle Seat Track

Graco Infant W/O Base Unbelted, Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

12 Month Section B Rear Facing CRS

Graco Infant W/O Base Forward Facing Unbelted, Forward Seat Track
Graco Infant W/O Base Forward Facing Unbelted, Middle Seat Track
Graco Infant W/O Base Forward Facing Unbelted, Rearward Seat Track
Unbelted 5th Percentile Female Reactivation, Forward Seat Track
Britax Roundabout 161 Forward Facing Unbelted, Middle Seat Track

Britax Roundabout 161 Forward Facing Unbelted, Rearward Seat Track

Britax Roundabout 161 Rear Facing Belted, Forward Seat Track

Britax Roundabout 161 Rear Facing Belted, Middle Seat Track
Unbelted 5th Percentile Female Reactivation, Rearward Seat Track
Century Encore Forward Facing Unbelted, Middle Seat Track
Century Encore Forward Facing Unbelted, Rearward Seat Track
Century Encore Rear Facing Belted, Forward Seat Track
Century Encore Rear Facing Belted, Middle Seat Track
Unbelted 5th Percentile Female Reactivation,
Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)
12 Month Section C Forward Facing Convertible CRS

Evenflo Medallion 254 Forward Facing Unbelted, Middle Seat Track

Evenflo Medallion 254 Forward Facing Unbelted, Rearward Seat Track

Evenflo Medallion 254 Rear Facing Belted, Forward Seat Track

Evenflo Medallion 254 Rear Facing Belted, Middle Seat Track
12 Month Section C Forward Facing Convertible CRS

- Evenflo Medallion 254 Rear Facing Unbelted, Forward Seat Track
- Evenflo Medallion 254 Rear Facing Unbelted, Middle Seat Track
- Evenflo Medallion 254 Rear Facing Unbelted, Rearward Seat Track

DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)
Unbelted 5th Percentile Female Reactivation, Rearward Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

3 Year Old
Section C
Forward Facing Convertible CRS

3-Year-Old Forward Facing Britax Roundabout Belted,
Forward Seat Track

3-Year-Old Forward Facing Britax Roundabout Belted,
Middle Seat Track

3-Year-Old Forward Facing Britax Roundabout Belted,
Rearward Seat Track

Unbelted 5th Percentile Female Reactivation,
Middle Seat Track
3 Year Old Forward Facing Convertible CRS

3 Year Old Forward Facing Century Encore Belted, Middle Seat Track

Unbelted 5th Percentile Female Reactivation, Middle Seat Track

3 Year Old Forward Facing Century Encore Belted, Rearward Seat Track

3 Year Old Forward Facing Century Encore Belted, Forward Seat Track
3-Year-Old Cosco High Back Booster Belted, Forward Seat Track

3-Year-Old Cosco High Back Booster Belted, Middle Seat Track

3-Year-Old Cosco High Back Booster Belted, Rearward Seat Track

3-Year-Old Cosco High Back Booster Cinched With Harness, Forward Seat Track
3-Year-Old Cosco High Back Booster Cinched With Harness, Middle Seat Track

3-Year-Old Cosco High Back Booster Cinched With Harness, Rearward Seat Track

Unbelted 5th Percentile Female Reactivation, Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

6 Year Old Section D Forward Facing Toddler Belt Positioning Booster Seat

6-Year-Old Century Next Step Belted, Forward Seat Track

6-Year-Old Century Next Step Belted, Middle Seat Track

6-Year-Old Century Next Step Belted, Rearward Seat Track

Unbelted 5th Percentile Female Reactivation, Forward Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

6 Year Old Section D Forward Facing Toddler Belt Positioning Booster Seat

6-Year-Old Cosco High Back Booster Belted, Forward Seat Track

6-Year-Old Cosco High Back Booster Belted, Middle Seat Track

6-Year-Old Cosco High Back Booster Belted, Rearward Seat Track

Unbelted 5th Percentile Female Reactivation, Middle Seat Track
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

6 Year Old Section D Forward Facing Toddler Belt Positioning Booster Seat

6-Year-Old Evenflo Right Fit Belted, Forward Seat Track

6-Year-Old Evenflo Right Fit Belted, Middle Seat Track

6-Year-Old Evenflo Right Fit Belted, Rearward Seat Track

Unbelted 5th Percentile Female Reactivation, Forward Seat Track
3-Year-Old Unbelted, Middle Seat Track, Position 7

3-Year-Old Unbelted, Rearward Seat Track, Position 2

3-Year-Old Unbelted, Middle Seat Track, Position 6

3-Year-Old Unbelted, Rearward Seat Track, Position 1

3-Year-Old No CRS

DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)
DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)

3 Year Old No CRS

3-Year-Old Unbelted, Rearward Seat Track, Position 7

Unbelted 5th Percentile Female Reactivation, Middle Seat Track
6-Year-Old Unbelted, Forward Seat Track, Position 1
6-Year-Old Unbelted, Middle Seat Track, Position 1
6-Year-Old Unbelted, Middle Seat Track, Position 2
6-Year-Old Unbelted, Middle Seat Track, Position 3

DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)
6-Year-Old Unbelted
6-Year-Old Unbelted, Forward Seat Track, Position 3
6-Year-Old Unbelted, Forward Seat Track, Position 2
6-Year-Old Unbelted, Middle Seat Track, Position 3
Unbelted 5th Percentile Female Reactivation,
Forward Seat Track

6-Year-Old Unbelted, Rearward Seat Track, Position 4

DOT/NHTSA 208 Suppression Test – 2009 Ford Escape Hybrid (C90200)
6 Year Old
No CRS
APPENDIX F

INSTRUMENTATION CALIBRATION

INSTRUMENTS FOR DRIVER DUMMY NO.: 401

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>C10727</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>AGH70</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>AGH78</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>376</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>AGH90</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>AH467</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>AH5P1</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>401</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>932</td>
<td>GSE</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>150</td>
<td>GSE</td>
</tr>
</tbody>
</table>

INSTRUMENTS FOR PASSENGER DUMMY NO.: 403

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>AGH79</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>AGH89</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>AGH55</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>1703</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>C10770</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>C12863</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>AH5E5</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>403</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>1362</td>
<td>Denton</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>1361</td>
<td>Denton</td>
</tr>
</tbody>
</table>
INSTRUMENTS FOR LOW RISK 5TH FEMALE DUMMY NO.: 126 (P1 & P2)

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head X</td>
<td>P47844</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Y</td>
<td>P47845</td>
<td>Endevco</td>
</tr>
<tr>
<td>Head Z</td>
<td>P47846</td>
<td>Endevco</td>
</tr>
<tr>
<td>Neck Load Cell</td>
<td>2146</td>
<td>Denton</td>
</tr>
<tr>
<td>Chest X</td>
<td>P47847</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Y</td>
<td>P47849</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Z</td>
<td>P47848</td>
<td>Endevco</td>
</tr>
<tr>
<td>Chest Displacement</td>
<td>126</td>
<td>Servo</td>
</tr>
<tr>
<td>Left Femur Load Cell</td>
<td>959</td>
<td>GSE</td>
</tr>
<tr>
<td>Right Femur Load Cell</td>
<td>950</td>
<td>GSE</td>
</tr>
</tbody>
</table>

VEHICLE INSTRUMENTS

<table>
<thead>
<tr>
<th>SERIAL NO.</th>
<th>MANUFACTURER</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Rear Seat Crossmember X</td>
<td>A29-N14</td>
<td>Entran</td>
</tr>
<tr>
<td>Right Rear Seat Crossmember X</td>
<td>D12-X18</td>
<td>Entran</td>
</tr>
<tr>
<td>Top of Engine X</td>
<td>A29-N09</td>
<td>Entran</td>
</tr>
<tr>
<td>Bottom of Engine X</td>
<td>B05-J04</td>
<td>Entran</td>
</tr>
<tr>
<td>Left Brake Caliper X</td>
<td>G16-Z03</td>
<td>Entran</td>
</tr>
<tr>
<td>Right Brake Caliper X</td>
<td>P27024</td>
<td>Endevco</td>
</tr>
<tr>
<td>Instrument Panel X</td>
<td>L02-Z13</td>
<td>Entran</td>
</tr>
<tr>
<td>Trunk Z</td>
<td>G06-X10</td>
<td>Entran</td>
</tr>
<tr>
<td>EDR X</td>
<td>A29-N19</td>
<td>Entran</td>
</tr>
<tr>
<td>EDR Y</td>
<td>A07-R16</td>
<td>Entran</td>
</tr>
<tr>
<td>EDR Z</td>
<td>A04-R04</td>
<td>Entran</td>
</tr>
<tr>
<td>Rear Tunnel X</td>
<td>F29-X13</td>
<td>Entran</td>
</tr>
<tr>
<td>Rear Tunnel Y</td>
<td>A29-B07</td>
<td>Entran</td>
</tr>
<tr>
<td>Rear Tunnel Z</td>
<td>A27-X13</td>
<td>Entran</td>
</tr>
</tbody>
</table>